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1 Introduction

1.1 Motivation

We show how European options with convex payoffs can be hedged in geo-
metric fractional Brownian motion market model. We assume that one can
use continuous trading for hedging, the interest rate is equal to zero, and
there are no transaction costs.

We shall work with the following market model: the bond B is constant
Bt = 1 for all t ∈ [0, T ], and stock S is a geometric fractional Brownian
motion:

St = S0e
BH

t

with fractional Brownian motion BH , H > 1
2
: here BH is a continuous

centered Gaussian process with covariance

E[BH
s B

H
t ] =

1

2

(

t2H + s2H − |t− s|2H
)

, s, t ∈ [0, T ] and H ∈ (0, 1).

The parameter H allows to include the standard Brownian motion W to the
fBm family: the process B

1

2 is a standard Brownian motion.
The standard Brownian motion is a martingale, but it is well-known

that when the parameter H 6= 1
2
, then fBm process BH is not even a semi-

martingale (see [11]). Since fractional Brownian motion is not a semimartin-
gale, one cannot use the classical theory of stochastic integral to model con-
tinuous trading.

If one models continuous trading in the geometric fractional Brownian
motion market model by using Riemann - Stieltjes integrals, then one can
construct following type of arbitrage strategies: initial capital is equal to
zero, and the final value of the portfolio is a non-negative random variable
V . One such explicit arbitrage strategy is given by [17, p. 659]. It is not
clear, however, if this kind of arbitrage is good enough for hedging options.

On the other hand, if one goes to more realistic market models, and
for example includes transaction costs in the market models, then the ideal
continuous time trading strategies turn out to be of bounded variation. In this
case one can show that geometric fBm models can be economically meaningful
in the sense that they do not allow arbitrage possibilities any more (see
Guasoni [7], Guasoni et.al [8] for more details). It is also well known that in
the case where one can not use continuous time trading, the pricing models
with geometric fBm are to some extent arbitrage free (see [3, 1]).

Our motivation comes from the recent works by Bender et al. [1] and
Valkeila [21]. In the first work the authors consider a class of models, where
the randomness of the risky asset comes from mixed Brownian - fractional
Brownian motion. Take this process to be ǫW +BH , where W is a standard
Brownian motion, BH is a fBm with index H ∈ (1

2
, 1), and independent of

W . If we take the model of the risky asset Sǫ to be

Sǫ
t = exp{ǫWt +BH

t −
1

2
ǫ2t},
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then there is a unique hedging price for the standard European type of op-
tions, provided that one uses so-called allowed (in the terminology of [1])
strategies only. If one lets in this model ǫ→ 0, then the limiting price for an
European call with strike K is (S0 −K)+. In the work [21] it is shown that
one gets the same limiting price, if one approximates geometric fractional
Brownian motion with a sequence of pricing models which are both complete
and arbitrage free.

On the other hand, from the hedging point of view the price (S0 −K)+

for an European call indicates that the hedging strategy should be

(ST −K)+ = (S0 −K)+ +

∫ T

0

1{Su≥K}dSu. (1.1)

The trading strategy in (1.1) is called stop-loss-start-gain in the financial
literature. One of the results of this paper is that this strategy with geometric
fractional Brownian motion is self-financing, and the integral in (1.1) is an
almost sure limit of Riemann sums.

We will show that this is true in the next two sections, where we also
explain how the integral is defined. We end the paper with a conclusion.
We start with some auxiliary material used to define the stochastic integrals.
But first we describe our aims in a more precise way.

1.2 The problem

Throughout the paper (Ω,F ,P) is a complete probability space and E stands
for the mathematical expectation with respect to probability measure P.
Assume BH = (BH

t )t∈[0,T ] be a standard fractional Brownian motion with
Hurst parameter H ∈ (1

2
, 1). Let St = exp{BH

t } be geometric fractional
Brownian motion. Since F (x) = exp{x} ∈ C2(R), then by Itô formula( [11,
Lemma 2.7.1]) we have

St = 1 +

∫ t

0

SudB
H
u or dSt = StdB

H
t , (1.2)

where the stochastic integral can be understood in the sense of Riemann-
Stieltjes integral almost surely since the trajectories of the process St are
Hölder continuous of any order λ < H with probability 1 (we refer to [22] for
more details).

Let f : R → R be a convex function. It is well-known that the left
derivative of f , f

′

− exist a.e. Next we state our main problem.

(i) Does the stochastic integral

∫ T

0

f
′

−(St)StdB
H
t

exist? More precisely, in which sense the integral exists?
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(ii) Is it true that for convex function f we have the following Itô formula:

f(ST ) = f(S0) +

∫ T

0

f
′

−(St)dSt? (1.3)

It turns out that the integral exists as a generalized Lebesgue-Stieltjes
integral, and the Itô formula (1.3) holds. Moreover, the stochastic integral
∫ T

0
f ′
−(St)dSt is the limit of Riemann sums of the form

n
∑

k=1

f ′
−(Stk−1

)(Stk − Stk−1
);

here 0 = t0 < t1 < t2 < · · · < tn = T , and we take the limit as max(tk −
tk−1) → 0.

The proof of these facts is the topic of the next three sections.

2 Auxiliary results

2.1 Facts on Convex Functions

We recall some results on convex functions. First, recall that every convex
function f : R → R has a left-derivative f ′

− and a right-derivative f ′
+:

f ′
−(x) = lim

h→0−

f(x+ h) − f(x)

h
and f ′

+(x) = lim
h→0+

f(x+ h) − f(x)

h
.

The next Theorem gives information about the left-derivative f ′
− and

right-derivative f ′
+.

Theorem 2.1 [15] The functions f
′

− and f
′

+ are increasing, respectively left
and right-continuous and the set {x : f

′

−(x) 6= f
′

+(x)} is at most countable.

Moreover, the second derivative of a convex function f exists as a distribu-
tion, and first derivative can be represented in terms of the second derivative.

Theorem 2.2 [15] The second derivative f
′′

of convex function f exists in
the sense of distributions, and it is a positive Radon measure; conversely, for
any Radon measure µ on R, there is a convex function f such that f

′′

= µ

and for any interval I and x ∈ int(I) we have the equality

f
′

−(x) =
1

2

∫

I

sgn(x− a)µ(da) + αI , (2.1)

where αI is constant and sgn(x) = 1 if x > 0 and −1 if x ≤ 0.

Remark 2.2.1 If the supp(µ) is compact, then one can globally state that

f
′

−(x) =
1

2

∫

sgn(x− a)µ(da) (2.2)

up to a constant term.
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2.2 Pathwise stochastic integration in fractional Besov-

type spaces

Fractional Brownian motion is not a semimartingale, and hence the stochastic
integral with respect to fractional Brownian motion BH is not always defined.
We shall work with generalized Lebesgue-Stieltjes integrals, and we shall give
some details of this construction in this section. For more information see
[11, Section 2.1.2].

It turns out that so-called fractional Besov spaces are useful here. We
start with some definitions.

Definition 2.1 Fix 0 < β < 1.
(i) Let W β

1 = W
β
1 [0, T ] be the space of real-valued measurable functions f :

[0, T ] → R such that

‖f‖1,β := sup
0≤s<t≤T

(

|f(t) − f(s)|

(t− s)β
+

∫ t

s

|f(u) − f(s)|

(u− s)1+β
du

)

<∞.

(ii) Let W β
2 = W

β
2 [0, T ] be the space of real-valued measurable functions

f : [0, T ] → R such that

‖f‖2,β :=

∫ T

0

|f(s)|

sβ
ds+

∫ T

0

∫ s

0

|f(u) − f(s)|

(u− s)1+β
duds <∞.

Remark 2.2.2 The Besov-spaces are closely related to the spaces of Hölder
continuous functions. More precisely, for any 0 < ǫ < β ∧ (1 − β),

Cβ+ǫ[0, T ] ⊂ W
β
1 [0, T ] ⊂ Cβ−ǫ[0, T ] and Cβ+ǫ[0, T ] ⊂ W

β
2 [0, T ].

where Cγ [0, T ] stands for Hölder continuous functions of order γ.

Recall that the trajectories of BH for a.s. ω ∈ Ω, any T > 0 and any
0 < γ < H belong to Cγ[0, T ]. This follows from the Kolmogorov continuity
theorem. By Remark 2.2.2 we obtain that the trajectories of BH for a.s.
ω ∈ Ω, any T > 0 and any 0 < β < H belong to W β

1 [0, T ].
Denote by Γ(β) the Gamma-function. Recall the left-sided Riemann-

Liouville fractional integral operator Iβ
+ of order β > 0:

I
β
0+(f)(s) =

1

Γ(β)

∫ s

0

f(u)(s− u)β−1du.

The corresponding right-sided fractional integral operator Iβ
− is defined by

I
β
t−(f)(s) =

1

Γ(β)

∫ t

s

f(u)(u− s)β−1du.

Remark 2.2.3 If f ∈ W
β
1 [0, T ], then its restriction to [0, t] ⊆ [0, T ] belongs

to I
β
−(L∞[0, t]). Also, if f ∈ W

β
2 [0, T ], then its restriction to [0, t] ⊆ [0, T ]

belongs to I
β
+(L1[0, t]), where Iβ

−(L∞[0, t]) (resp. I
β
+(L1[0, t])) stand for the

image of L∞[0, t] (resp. L1[0, t]) by the fractional Riemann-Liouville operator
I

β
− (resp. Iβ

+).(For details we refer to [16]).
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Definition 2.2 Let f : [0, T ] → R and 0 < β < 1. If f ∈ I
β
+(L1[0, T ])(resp.

f ∈ I
β
−(L∞[0, T ]) then the Weyl fractional derivatives are defined by

(Dβ
0+f)(x) =

1

Γ(1 − β)

(

f(x)

xβ
+ β

∫ x

0

f(x) − f(y)

(x− y)β+1
dy

)

1(0,T )(x),

(

resp.(Dβ

T−f)(x) =
1

Γ(1 − β)

(

f(x)

(T − x)β
+ β

∫ T

x

f(x) − f(y)

(y − x)β+1
dy

)

1(0,T )(x)

)

.

For a detailed discussion we refer to [16]. The following proposition clarifies
the construction of the stochastic integrals. This approach is by Nualart and
Ră	scanu.

Proposition 2.1 [13] Let f ∈ W
β
2 [0, T ], g ∈ W

1−β
1 [0, T ]. Then for any

t ∈ (0, T ] the Lebesgue integral
∫ t

0
(Dβ

0+f)(x)(D1−β
t− gt−)(x)dx

exists, and we can define the generalized Lebesgue-Stieltjes integral by

∫ t

0

fdg :=

∫ t

0

(Dβ
0+f)(x)(D1−β

t− gt−)(x)dx.

Remark 2.2.4 The fractional derivative Dβ
0+f also can be denoted by ([11],

page 3),

(Dβ
0+f)(x) =

1

Γ(1 − β)

d

dx

∫ x

0

f(t)(x− t)−βdt.

So for two functions f1, f2 : [0, T ] → R such that f1 = f2 a.e. we have

∫ T

0

f1dg =

∫ T

0

f2dg,

whenever both side are well-defined.

Remark 2.2.5 It is shown in [22] when f ∈ Cγ[0, T ] and g ∈ Cµ[0, T ] with

γ + µ > 1,then the integral
∫ T

0
fdg exists in the sense of the Proposition 2.1

and coincides with the Riemann-Stieltjes integral.

The next theorem can be used to study the continuity of the integral.

Theorem 2.3 [13] Let f ∈ W
β
2 [0, T ] and g ∈ W

1−β
1 [0, T ]. Then we have the

estimation

|

∫ t

0

fdg| ≤
1

Γ(β)
‖f‖2,β‖g‖1,1−β. (2.3)

Corollary 2.1 Let f, fn ∈ W
β
2 [0, T ], ‖fn − f‖2,β → 0 as n → ∞, and

g ∈ W
1−β
1 [0, T ]. Then

∫

fndg →

∫

fdg.
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3 Stochastic integrals and Itô formula

Now we can state the existence result for the stochastic integral. We use the
results mentioned in the previous section to show that the integral exists.

Theorem 3.1 Let St = exp{BH
t } be a geometric fractional Brownian mo-

tion, H ∈ (1
2
, 1), t ∈ [0, T ] and f : R → R be a convex function. Then the

stochastic integral
∫ T

0

f
′

−(St)StdB
H
t (3.1)

can be understood in the sense of the generalized Lebesgue-Stieltjes integral
a.s. ω ∈ Ω.

Proof : First assume that K := supp(µ) is a compact set. According
to Proposition 2.1 the stochastic integral in (3.1) is defined as a generalized
Lebesgue-Stieltjes integral if for a selected β ∈ (1 −H, 1

2
),

‖f
′

−(St)St‖2,β <∞ a.s.

Obviously,

∫ T

0

|f
′

−(St)||St|

tβ
dt ≤ max

t∈[0,T ]
(St)|f

′

−( max
t∈[0,T ]

St)|

∫ T

0

1

tβ
dt <∞ a.s.

By the triangular inequality,

∫ T

0

∫ t

0

|f
′

−(St)St − f
′

−(Ss)Ss|

(t− s)β+1
dsdt ≤ I1 + I2,

where,


















I1 =

∫ T

0

∫ t

0

|f
′

−(St)||St − Ss|

(t− s)β+1
dsdt,

I2 =

∫ T

0

∫ t

0

|Ss||f
′

−(St) − f
′

−(Ss)|

(t− s)β+1
dsdt.

Furthermore, using the Hölder continuity property of geometric fractional
Brownian motion trajectories one can bound from above I1 as

|I1| ≤ |f
′

−( max
t∈[0,T ]

St)|C(ω)

∫ T

0

∫ t

0

(t− s)H−δ

(t− s)β+1
dsdt <∞ a.s.,

where δ ∈ (0, H − β) and C is a almost surely finite random variable such
that

|St − Ss| ≤ C(ω)|t− s|H−δ.

We use the representation (2.1) to show I2 is finite almost surely.

|I2| ≤ max
t∈[0,T ]

(St)

∫ T

0

∫ t

0

|f
′

−(St) − f
′

−(Ss)|

(t− s)β+1
dsdt ≤ I2,1 + I2,2,
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where,


















I2,1 = max
t∈[0,T ]

(St)

∫ T

0

∫ t

0

∫

K

1{Ss<a<St}

(t− s)β+1
µ(da)dsdt,

I2,2 = max
t∈[0,T ]

(St)

∫ T

0

∫ t

0

∫

K

1{St<a<Ss}

(t− s)β+1
µ(da)dsdt.

On the other hand, by Tonelli’s theorem we have

E

∫ T

0

∫ t

0

∫

K

1{Ss<a<St}

(t− s)β+1
µ(da)dsdt =

∫

K

E

(
∫ T

0

∫ t

0

1{Ss<a<St}

(t− s)β+1
dsdt

)

µ(da)

≤

∫

K

Mµ(da) = Mµ(K) <∞,

since µ is a Radon measure and the upper bound M is independent of a (see
[12, Lemma A2] and [11], pages 268-269). This implies

∫ T

0

∫ t

0

∫

K

1{Ss<a<St}

(t− s)β+1
µ(da)dsdt <∞ a.s.

Therefore |I2| < ∞ a.s., thus the integral (3.1) exists as a generalized
Lebesgue–Stieltjes integral.

Now assume supp(µ) is not necessarily compact1. For any n ∈ N define,

Kn = {ω ∈ Ω| max
t∈[0,T ]

(St) ∈ [0, n]},

and a new convex function f̃n by

f̃n(x) =











f
′

+(0)x+ f(0) if x < 0,

f(x) if 0 ≤ x ≤ n,

f
′

−(n)(x− n) + f(n) if x > n.

(3.2)

Then f̃n = f on the interval [0, n] and moreover supp(µ̃n) ⊂ [0, n] is compact.
Now by the previous argument

∫ T

0

(f̃n)
′

−(St)StdB
H
t

is well-defined a.s. on the set Kn. Clearly

∫ T

0

f
′

−(St)StdB
H
t =

∫ T

0

(f̃n)
′

−(St)StdB
H a.s. on Kn.

Since Ω = ∪n∈NKn, this means that
∫ T

0
f

′

−(St)StdB
H
t is well-defined a.s.

ω ∈ Ω. �

1We thank A-P Perkkiö for the argument how to reduce general case to the compact
case.
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Remark 3.1.1 By (1.2) and the Remark 2.2.5 the integral in (3.1) is the

same with
∫ T

0
f

′

−(St)dSt.

Remark 3.1.2 In the same lines one can show the pathwise stochastic inte-
gral

∫ T

0
f

′

+(St)StdB
H
t

is well-defined in the sense of the generalized Lebesgue-Stieltjes integral a.s.
Moreover by Theorem 2.1 and Remark 2.2.4,

∫ T

0

f
′

−(St)StdB
H
t =

∫ T

0

f
′

+(St)StdB
H
t .

Next we consider the Itô formula, which is more interesting for us.

Theorem 3.2 Let St = exp{BH
t } be a geometric fractional Brownian mo-

tion with H ∈ (1
2
, 1), t ∈ [0, T ] and f : R → R be a convex function. Then

f(ST ) = f(S0) +

∫ T

0

f
′

−(St)StdB
H
t ,

where the stochastic integral is understood in the sense of generalized Lebesgue-
Stieltjes integral.

Proof : Without loosing generality we can assume supp(µ) corresponds to
second derivative of f is compact. If f ∈ C2 then by Itô formula we have

f(St) = f(S0) +

∫ t

0

f
′

(Su)SudB
H
u t ∈ [0, T ], (3.3)

where the stochastic integral in the right hand side is limit of Riemann–
Stieltjes sums a.s.[11]. We want to show that the equation (3.3) is valid for
convex f , where f ′ is replaced with the left derivative f ′

− and the integral is
generalized Lebesgue - Stieltjes integral.

Let f be a convex function, and φ be a positive C∞-function with compact
support in (−∞, 0] such that

∫ 0

−∞
φ(y)dy = 1. Define the functions

fn(x) = n

∫ 0

−∞

f(x+ y)φ(ny)dy; n ∈ N.

For every n ∈ N, fn ∈ C∞is convex, locally bounded. [Note that supp (fn)
is not necessarily compact]. Moreover, fn converges to f pointwise but f

′

n

increases to f
′

− (see [15, p.221] and [14, p. 210]). In addition, if g ∈ C1 and
has compact support, then

lim
n→∞

∫

R

g(x)f
′′

n (x)dx =

∫

R

g(x)µ(dx).
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Thus by (3.3) we have

fn(St) = fn(S0) +

∫ t

0

f
′

n(Su)SudB
H
u t ∈ [0, T ].

Obviously fn(St) → f(St) and fn(S0) → f(S0) a.s. For convergence of
stochastic integral by Theorem 2.3, it is sufficient to show

‖f
′

n(St)St − f
′

−(St)St‖2,β → 0 n→ ∞ a.s.

Since

|f
′

n(St)St − f
′

−(St)St|

tβ
≤

2 maxt∈[0,T ] St|f
′

−(maxt∈[0,T ] St)|

tβ
∈ L1([0, T ], dt).

The Lebesgue dominated convergence theorem implies
∫ T

0

|f
′

n(St)St − f
′

−(St)St|

tβ
dt→ 0 a.s.

Furthermore, by Hölder continuity property of geometric fractional Brownian
motion trajectories and mean value theorem one can see

|f
′

n(St)St − f
′

n(Ss)Ss|

(t− s)β+1

≤ C(ω)|f
′

−( max
t∈[0,T ]

St)|
(t− s)H−δ

(t− s)β+1
+ ( max

t∈[0,T ]
St)|f

′′

n (θω)|
(t− s)H−δ

(t− s)β+1

where θω is between Ss(ω) and St(ω). Now fix ω ∈ Ω, such that the stochastic
integral (3.1) is well-defined. Take θω ∈ [0,maxt∈[0,T ] St(ω)] be arbitrary,
ǫ > 0 and function ψǫ ∈ C∞ with compact support which approximates in
uniform norm Dirac delta function δθω

, i.e.

lim
ǫ→0

ψǫ(θω) = δθω
.

Thus,
∫

R

ψǫf
′′

n (x)dx −→

∫

R

ψǫµ(dx)

−→

∫

R

δθω
(x)µ(dx) = µ(θω) <∞.

On the other hand, by dominated convergence theorem,
∫

R

ψǫf
′′

n (x)dx −→

∫

R

δθω
(x)f

′′

n (x)dx = f
′′

n (θω) ǫ→ 0.

Therefore |f
′′

n (θω)| = f
′′

n (θω)(fn’s are convex functions) is uniformly bounded
in n and the upper bound is an integrable dominant, so we can deduce again
by dominated convergence theorem

‖f
′

n(St)St − f
′

−(St)St‖2,β → 0 n→ ∞.

�
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Remark 3.2.1 The above results are true also for fractional Brownian mo-
tion BH , when H > 1

2
. If f : R → R is a convex function with left-derivative

f ′
−, then the integral

∫ t

0

f ′
−(BH

u )dBH
u

exists as a generalized Lebesgue-Stieltjes integral. Moreover, we have the
change of variables formula

f(BH
t ) − f(0) =

∫ t

0

f ′
−(BH

u )dBH
u .

For example, if f(x) = |x| we have the following version of Tanaka’s formula

|BH
T | =

∫ T

0

sgn(BH
u )dBH

u . (3.4)

4 Approximation by Riemann-Stieltjes sums

We prove the approximation result for integrals under the assumption that
the second derivative of the convex function f has a finite support. As in the
Theorem 3.1 one can show that this is not a restriction.

Theorem 4.1 Assume T = 1 and let f be a convex function which positive
Borel measure µ corresponding to its second derivative with finite support K,
i.e. µ(K) <∞. Let ti = i

n
; i = 0, 1, ..., n. Then,

n
∑

i=0

f
′

−(Sti−1
)(Sti − Sti−1

)
a.s

−→

∫ 1

0

f
′

−(St)dSt.

Proof : Again the key ideas for the proof are representation (2.1) and esti-
mation (2.3). First, note that,

In =
n
∑

i=0

f
′

−(Sti−1
)(Sti − Sti−1

) −

∫ 1

0

f
′

−(St)dSt

=

∫ 1

0

(

n
∑

i=0

f
′

−(Sti−1
)1(ti−1,ti](t) − f

′

−(St)

)

StdB
H
t .

Put

hn(t) =
(
∑n

i=0 f
′

−(Sti−1
)1(ti−1,ti](t) − f

′

−(St)
)

St,

then
|hn(t)| ≤ 2(max

t∈[0,1]
St)|f

′

−(max
t∈[0,1]

St)| a.s.

Therefore by dominated convergence theorem
∫ 1

0

|hn(t)|

tβ
dt→ 0 a.s. as n→ ∞.
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Note that hn → 0 pointwise, since outside a countable set f
′

− is a continuous
function. Moreover for any 0 ≤ s ≤ t ≤ 1,

|St

n
∑

i=0

f
′

−(Sti−1
)1(ti−1,ti](t) − Ss

n
∑

i=0

f
′

−(Sti−1
)1(ti−1,ti](s)|

≤ |

n
∑

i=0

f
′

−(Sti−1
)1(ti−1,ti](t)||St − Ss|

+ Ss|
n
∑

i=0

f
′

−(Sti−1
)1(ti−1,ti](t) −

n
∑

i=0

f
′

−(Sti−1
)1(ti−1,ti](s)|

≤ |f
′

−(max
t∈[0,1]

St)||St − Ss|

+ (max
t∈[0,1]

St)|
∑

1≤i≤n,j<i

(

f
′

−(Sti−1
) − f

′

−(Stj−1
)
)

1(tj−1,tj ]×(ti−1,ti](s, t)|.

So, it is enough to find an integrated dominant for the last term w.r.to
measure 1

(t−s)β+1dsdt. On the other hand by the representation (2.1) we have

|
∑

1≤i≤n,j<i

(

f
′

−(Sti−1
) − f

′

−(Stj−1
)
)

1(tj−1,tj ]×(ti−1,ti](s, t)|

≤
1

2

∑

1≤i≤n,j<i

(
∫

1{ Stj−1
<a<Sti−1

}µ(da)

)

1(tj−1,tj ]×(ti−1,ti](s, t)

+
1

2

∑

1≤i≤n,j<i

(
∫

1{ Sti−1
<a<Stj−1

}µ(da)

)

1(tj−1,tj ]×(ti−1,ti](s, t)

=
1

2

∫

(

∑

1≤i≤n,j<i

1{ Stj−1
<a<Sti−1

}1(tj−1,tj ]×(ti−1,ti](s, t)

)

µ(da)

+
1

2

∫

(

∑

1≤i≤n,j<i

1{ Sti−1
<a<Stj−1

}1(tj−1,tj ]×(ti−1,ti](s, t)

)

µ(da)

−→

{

1
2

∫

1{ Ss<a<St}µ(da) on the set {Ss < a < St} ,
1
2

∫

1{ St<a<Ss}µ(da) on the set {St < a < Ss}.

which will bring an integrated dominant in both cases (see proof of the The-
orem (3.1)). Hence by dominated convergence theorem

∫ 1

0

∫ t

0

|hn(t) − hn(s)|

(t− s)β+1
dsdt→ 0 a.s. as n→ ∞.

�

5 Conclusions

Shiryaev notes that the properties of no-arbitrage and completeness in a pric-
ing model are not related: there can be completeness both in arbitrage-free
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models and in models with arbitrage (see [17, p. 661]). One example of a
complete market model with arbitrage possibilities is given by Sottinen: he
approximates geometric fractional Brownian motion by a complicated ’frac-
tional’ tree, which is complete, but can have arbitrage possibilities (see [19]
for more details).

Now we can say something more about replication in pricing models with
geometric fractional Brownian motion. How much one can replicate in the
model with geometric fractional Brownian motion depends on the integral
we use. If we use the integration theory of Young, then the integral

∫ t

0

1{Su≥K}dSu

is not defined, since the process Uu = 1{Su≥K} has infinite p variation for
every p ≥ 1, and it seems that it is difficult to give meaning to the hedging
equation

(ST −K)+ = (S0 −K)+ +

∫ T

0

1{Su≥K}dSu;

but if we interpret the integral as generalized Lebesgue – Stieltjes integral we
have shown that this equation has a certain pathwise interpretation as a con-
tinuous time hedging strategy. It is also known that if one uses more formal
integrals like the Skorohod integral, one can hedge more (see [4] and [10]),
but then the economic interpretation of the stochastic integrals as trading
strategies becomes more and more difficult (see [2] and [20]).

We can now say something more definitive of the arbitrage/replication
issue. If one allows continuous trading, and uses geometric fractional Brow-
nian motion as a model for the risky asset, then the following set of random
variables can be hedged with the generalized Lebesgue – Stieltjes integrals:

C = {f(ST ) : f ≥ 0, f is a linear combination convex functions },

and the hedging price is given by f(S0), with the self-financing hedging strat-
egy is f ′

−(Ss). Note also that although one can make arbitrage with continu-
ous trading, it is not clear weather this arbitrage is good enough for hedging.
On the other hand, the hedging price f(S0) can be meaningless from the
economic point of view.

Sondermann gives an argument why continuous stock prices must have
an infinite variation in [18, Remark 6.4], see also the earlier work in [9]. If
the driving processes is a standard Brownian motion, then the European call
can not be hedged with the stop-loss-start-gain strategy, as it is the case here
(cf. (1.1)). If the pricing model is the classical Black – Scholes model, then
this stop-loss-start-gain is not self-financing, but instead a term coming from
the local time appears. We refer to Sondermann for more details on this.
Our results show that out-of-the-money options have zero value, and this is
yet another critical point against using pricing models driven by fractional
Brownian motion in stochastic finance.

14



We have shown that there exists models where the price process has
infinite variation, and out-of-the-money options have zero value. This is not
reasonable from the economic point of view. To exclude this kind of examples
in addition to infinite variation one should ask also that non-zero quadratic
variation should exist; see [1] for results how one can hedge in some non-
semimartingale models, when the quadratic variation exists. Note also that
in pricing models with non-zero quadratic variation the arbitrage strategies
like the one given by Shiryaev [17] are not anymore arbitrage strategies.
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Gaussiennes, Lecture Notes in Mathematics, 480, 2–95.

[6] Garsia, A., Rodemich, E., Rumsey, H.(1970/1971). A real variable lemma
and the continuity of paths of some Gaussian processes. Indiana Univ.
Math. Journal, 20, 565–578.

[7] Guasoni, P., (2006). No arbitrage under transaction costs, with fractional
Brownian motion and beyond. Math. Finance, 16, (2006), 569–582.

[8] Guasoni, P., Rasonyi, M., and Schachermayer, W. (2008). The Funda-
mental Theorem of Asset Pricing for Continuous Processes under Small
Transaction Costs. Annals of Applied Probability, 18, 491–520.

[9] Harrison, J. M, Pitbladdo, R, and Schaefer, S. M. (1984). Continuous
Price Processes in Frictionless Markets Have Infinite Variation. The Jour-
nal of business, 57, 353–365.

[10] Hu, Y., and Øksendal, B. (2003). Fractional white noise calculus and
applications to finance. Infin. Dimens. Anal. Quantum Probab. Relat.
Top., 6, 1–32.

15



[11] Mishura, Y. (2008). Stochastic Calculus for Fractional Brownian Mo-
tion and Related Processes, Lecture Notes in Mathematics, Vol. 1929,
Springer, Berlin.

[12] Mishura, Y., Nualart, D. (2004). Weak solutions for stochastic dif-
ferential equations with additive fractional noise. Stat. Prob. Lett., 70,
253–261.

[13] Nualart, D., Rascanu, A. (2002). Differential equations driven by frac-
tional Brownian motion. Collect. Math., 53, 55–81.

[14] Protter, P. (2004). Stochastic integration and differential equations. 2nd
ed.,Springer, Berlin.

[15] Revuz, D., Yor, M. (1999). Continuous martingales and Brownian
motion. Springer, Berlin.

[16] Samko, S.G, Kilbas, A.A., Marichev, O.I. (1993). Fractional integrals
and derivatives, Theory and applications. Gordon and Breach Science
Publishers, Yvendon.

[17] Shiryaev, A.N. (1999). Essentials of Stochastic Finance. Facts, Models,
Theory. World Scientific, New Jersey.

[18] Sondermann, D. (2006). Introduction to Stochastic Calculus to Finance.
Springer, New York.

[19] Sottinen, T. (2001). Fractional Brownian motion, random walks and
binary market models. Finance and Stochastics, 5, 343–355.

[20] Sottinen, T. and Valkeila, E. (2003). On arbitrage and replication in
the fractional Black-Scholes pricing model. Statistics & Decisions , 21,
93–107.

[21] Valkeila, E. (2007). On the approximation of geometric fractional Brow-
nian motion. HUT, Institute of Mathematics, Preprint A535.

[22] Zähle, M. (1998). Integration with respect to fractal functions and
stochastic calculus. Part I. Probability Theory and Related Fields, 111,
333–372.

16



(continued from the back cover)

A559 Sergey Korotov, Michal Krizek, Jakub Solc

On a discrete maximum principle for linear FE solutions of elliptic problems

with a nondiagonal coefficient matrix

November 2008
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