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1 Introduction

The Brinkman equations are used in modeling porous media flow in the case
of high porosity when shear effects of the fluid has to be taken into account,
se e.g. [20, 18, 1, 2, 3].

In a recent paper [15] we have studied the finite element approximation of
the model. We have proved both a priori and a posteriori estimates for some
classes of methods that (in view of the analysis) are robust. The purpose of
this paper is to complement the previous paper with numerical benchmark
computations.

The plan of the paper is as follows. In the next section we recall the
Brinkman equations, write them in a scaled form which shows the math-
ematical structure of the problem. Section 3 is devoted to the finite ele-
ment approximation. We recall the results of [15] and the methods presented
therein. We also give the corresponding results for the so-called Taylor-Hood
family. The main part of the paper is Section 4 in which we give the results
of extensive benchmark computations.

2 The Brinkman problem

The model consists of the following elliptic system of differential equations

−2µAu +
µ

K
u +∇p = f in Ω, (1)

div u = g in Ω, (2)

where u and p are the velocity and pressure, respectively. Here, we have
denoted

Au := div ε(u) with ε(u) =
1

2
(∇u +∇uT ).

µ denotes the viscosity and K the permeability.
For the analysis it is advantageous to scale the problem. To this end, we

rewrite (1) as

−2KAu + u +∇
(K

µ
p
)

=
K

µ
f . (3)

By denoting and redefining

t2 = 2K,
K

µ
p← p and

K

µ
f ← f , (4)

we get the scaled version of the Brinkman equations; find u and p such that

−t2Au + u +∇p = f in Ω, (5)

div u = g in Ω, (6)

where the parameter 0 ≤ t ≤ C. For t = 0 we have the Darcy equations, for
which we consider the natural boundary condition

u · n|∂Ω = 0. (7)
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For t > 0 we have Dirichlet boundary conditions

u|∂Ω = 0. (8)

For compatibility, assume g ∈ L2
0(Ω) and to get a unique pressure assume

also p ∈ L2
0(Ω). When t ≈ 1 the problem is a standard Stokes problem. For

”small” t the problem is a singular perturbation of the Darcy equations. In
the analysis natural norm for the velocity is

‖v‖2t = t2‖ε(v)‖20 + ‖v‖20. (9)

Hence, for t = 0 the space for the velocity is [L2(Ω)]N , and for t > 0 (by
Korn’s inequatity) [H0(Ω)]N . By defining

b(v, q) =

{

− (div v, q) for t > 0

(v,∇q) for t = 0,
(10)

the norm for the pressure is

|‖q‖|t = sup
v∈V

b(v, q)

‖v‖t
, (11)

and the solution space is

Q = { q ∈ L2
0(Ω) | |‖q‖|t <∞}. (12)

Note that for t = 0 we have

|‖q‖|t ≡ ‖∇q‖0, (13)

whereas for 0 < t ≤ C the Babuška-Brezzi inequality yields

C1‖q‖0 ≤ |‖q‖|t ≤ C2t
−1‖q‖0. (14)

Defining the bilinear forms

a(u,v) = t2 (ε(u), ε(v)) + (u,v) , (15)

B(u, p; v, q) = a(u,v) + b(v, p) + b(u, q), (16)

and the linear functional

L(v, q) = (f ,v) − (g, q) . (17)

The weak formulation of the problem is then: Find (u, p) ∈ V ×Q such that

B(u, p; v, q) = L(v, q) ∀(v, q) ∈ V ×Q. (18)

This is a saddle point problem and Brezzi’s conditions imply the stability

sup
(v,q)∈V×Q

B(w, r; v, q)

‖v‖t + |‖q‖|t
≥ C

(

‖w‖t + |‖r‖|t
)

∀(w, r) ∈ V ×Q (19)

by which the solution is unique.
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3 Finite elements and error estimates

The fact that the Brinkman model covers a whole range of problems, from
Darcy to Stokes, has some consequences. For the Darcy problem a balanced
method uses Pk−Pk−1 polynomials for the pressure and velocity, respectively.
For the pure Stokes problem (with t ≈ 1) it is the opposite, Pk for the velocity
and Pk−1 for the pressure. Hence, to obtain a method good for all values of
t it seems natural to use equal order interpolation. Families of this kind are
analyzed in our paper [15]. Here we recall the results and also show the
results for the well-known Taylor-Hood family of Stokes element.

We assume a partitioning Ch of the domain Ω into simplices. With K ∈ Ch
we denote an element of the partitioning, and the maximum size of K ∈ Ch
is denoted by h. With Γh we denote the boundary edges of the partitioning.

In the following the discrete counterpart of the pressure norm (11) is
utilized;

|‖q‖|2t,h =
∑

K∈Ch

h2
K

t2 + h2
K

‖∇q‖20,K . (20)

This norm has the advantage that it can be explicitly computed.

3.1 The family generalizing the MINI element

For this family, generalizing the well-known MINI element of Arnold, Brezzi
and Fortin [4]. The finite element spaces are

Vh = {v ∈ [C(Ω)]N ∩ V | v|K ∈ [Pk(K) ∪Bk+N(K)]N }, (21)

Qh = {q ∈ C(Ω) ∩ L2
0(Ω) | q|K ∈ Pk(K)}, (22)

where Pk(K) denotes the polynomials of degree k and Bk+N(K) = Pk+N(K)∩
H1

0 (K) are the bubbles of degree k + N .
The finite element formulation is: find (uh, ph) ∈ Vh ×Qh such that

B(uh, ph; v, q) = L(v, q) ∀(v, q) ∈ Vh ×Qh. (23)

The stability is shown in [15]:

Theorem 3.1. There is a constant C > 0 such that

sup
(v,q)∈Vh×Qh

B(w, r; v, q)

‖v‖t + |‖q‖|t,h
≥ C

(

‖w‖t + |‖r‖|t,h
)

∀(w, r) ∈ Vh ×Qh. (24)

The stability gives the quasioptimal a priori result [15]:

Theorem 3.2. There exists C > 0 such that

‖u− uh‖t + |‖p− ph‖|t,h ≤ C
(

inf
v∈Vh

{

‖u− v‖t + t
(

∑

K∈Ch

h−2
K ‖u− v‖20,K

)1/2
}

+ inf
q∈Qh

{

|‖p− q‖|t,h + |‖p− q‖|t
})

. (25)
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We have also proved an a posteriori estimate. Since this is the same for
all methods considered we give it in Section 3.4 below. Due to the boundary
layer and corner singularities, the solution to the equations is never smooth.
Nevertheless it is instructive to look at the error estimate assuming a smooth
solution and a quasiuniform mesh. In this case we get the estimate

‖u−uh‖t + |‖p− ph‖|t,h ≤ C
(

(t+h)hk‖u‖k+1 +(t+h)−1hk+1‖p‖k+1

)

. (26)

Hence, we get a uniform convergence (with respect to t) of O(hk).

3.2 Stabilized methods

The linear stabilized method was introduced by Brezzi and Pitkäranta [9]
and then generalized by Hughes and Franca [14]. In [15] we analyze the
method using the techniques developed in [12, 11].

The method uses pure piecewise polynomials of equal degree:

Vh = {v ∈ [C(Ω)]N ∩ V |v|K ∈ [Pk(K)]N}, (27)

Qh = {q ∈ C(Ω) ∩ L2
0(Ω) | q|K ∈ Pk(K)}. (28)

The stabilized method is then: Find (uh, ph) ∈ Vh ×Qh such that

Bh(uh, ph; v, q) = Lh(v, q) ∀(v, q) ∈ Vh ×Qh, (29)

with

Bh(uh, ph; v, q) = B(uh, ph; v, q) (30)

− α
∑

K∈Ch

h2
K

t2 + h2
K

(

t2Auh − uh −∇ph, t
2Av − v −∇q

)

K

and

Lh(v, q) = L(v, q)− α
∑

K∈Ch

h2
K

t2 + h2
K

(

f , t2Av − v −∇q
)

K
, (31)

with a parameter α > 0. For consistency, assume

t2Au− u−∇p = f ∈ [L2(Ω)]2. (32)

Then it holds

Bh(u− uh, p− ph; v, q) = 0 ∀(v, q) ∈ Vh ×Qh. (33)

By CI we denote the constant in the following inverse inequality

h2
K‖Aw‖20,K ≤ CI‖∇w‖20,K ∀w ∈ [Pk(K)]N . (34)

The stability result is:
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Theorem 3.3. For 0 ≤ α ≤ min{1/(2CI), 1/2} there exists C > 0 such that

sup
(v,q)∈Vh×Qh

Bh(w, r; v, q)

‖v‖t + |‖q‖|t,h
≥ C

(

‖w‖t + |‖r‖|t,h
)

∀(w, r) ∈ Vh ×Qh. (35)

Again we have a quasioptimal error estimate.

Theorem 3.4. Assume that 0 < α < min{1/(2CI), 1/2}. Then it holds

‖u− uh‖t + |‖p− ph‖|t,h
≤ C inf

(v,q)∈Vh×Qh

{

‖u− v‖t + t
(

∑

K∈Ch

h−2
K ‖u− v‖20,K

)1/2

+ |‖p− q‖|t,h + |‖p− q‖|t (36)

+
(

∑

K∈Ch

h2
K

t2 + h2
K

‖t2Av − v −∇q + f‖20,K

)1/2
}

.

We have written the estimate in this form in order to emphasize that one
does not have to assume that t2Au ∈ [L2(Ω)]N and ∇p ∈ [L2(Ω)]N , only
that f ∈ [L2(Ω)]N .

For a smooth solution and a quasiuniform mesh we again get the uniform
O(hk) estimate (26).

3.3 The Taylor-Hood family

The third method to be considered is the Taylor-Hood family with the finite
element subspaces

Vh = {v ∈ [C(Ω)]N ∩ V | v|K ∈ [Pk+1(K)]N }, (37)

Qh = {q ∈ C(Ω) ∩ L2
0(Ω) | q|K ∈ Pk(K)}. (38)

The finite element formulation is: find (uh, ph) ∈ Vh ×Qh such that

B(uh, ph; v, q) = L(v, q) ∀(v, q) ∈ Vh ×Qh. (39)

For the Stokes problem (t ≈ 1) this method has been proved to be optimal
both in two and three space dimensions [5, 22, 21, 8, 23, 6, 7, 10]. By
established techniques the analysis can be carried over to the present case
and Theorems 3.1 and 3.2 are valid.

For this family the assumption of a quasiuniform mesh and a smooth
solution gives the estimate

‖u−uh‖t+|‖p−ph‖|t,h ≤ C
(

(t+h)hk+1‖u‖k+2+(t+h)−1hk+1‖p‖k+1

)

. (40)

From here we see that also for this method we a uniform convergence of
O(hk). Only for the Stokes limit with t ≈ 1 we have a O(hk+1) convergence
rate. In the Darcy limit t = 0 the two terms are not in balance, O(hk+2) and
O(hk), respectively.
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3.4 The a posteriori estimate

In this section a residual based a posteriori estimator is introduced. The a
posteriori results hold for all the elements considered in the previous section.
For the derivation and analysis of the estimator we refer to [15].

The elementwise estimator is

EK(uh, ph)
2 =

h2
K

t2 + h2
K

‖t2Auh − uh −∇ph + f‖20,K

+ (t2 + h2
K)‖div uh − g‖20,K (41)

+
hK

t2 + h2
K

‖[[t2εn(uh)]]‖20,∂K\∂Ω +
t2 + h2

K

hK

‖uh · n‖20,∂K∩∂Ω

and the global estimator is

η =
(

∑

K∈Ch

EK(uh, ph)
2
)1/2

. (42)

Here εn(·) denotes the normal derivative and [[·]] is the jump. Notice that the
last term in (41) vanishes for t > 0.

In the limit t = 0 (or as t < h) the a posteriori estimator becomes

EK(uh, ph)
2 ≈ ‖uh +∇ph − f‖20,K

+ h2
K‖div uh − g‖20,K + hE‖uh · n‖20,∂K∩∂Ω,

which is the estimator for the Darcy problem. On the other hand, if t ≥ C >
0, the estimator can be expressed as

EK(uh, ph)
2 ≈ h2

K‖t2Auh − uh −∇ph + f‖20,K + ‖div uh − g‖20,K

+ hE‖[[t2εn(uh)]]‖20,∂K\∂Ω,

which is the standard Stokes estimator.
Under a saturation assumption we are able prove the following theorem[15].

Theorem 3.5. There exists C > 0 such that

‖u− uh‖t + |‖p− ph‖|t,h ≤ Cη. (43)

The a posteriori estimator is also a lower bound to the error. In this sense
the estimator is sharp.

Theorem 3.6. There exist C > 0 such that

Cη2 ≤ ‖u− uh‖2t + |‖p− ph‖|2t,h (44)

+
∑

K∈Ch

( h2
K

t2 + h2
K

‖f − fh‖20,K + (t2 + h2
K)‖g − gh‖20,K

)

,

with fh ∈ Vh and gh ∈ Qh being interpolants to f and g, respectively.
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3.5 Nitsche’s method for imposing boundary

conditions

In this section the modified method of imposing the Dirichlet boundary con-
ditions in a weak sense using the technique of Nitsche [19, 15, 16] is outlined.
With this, we obtain formulations that use the same finite element spaces
both for t > 0 and in the limit t = 0. Recall that in the methods above, the
boundary conditions disappear from the definition of Vh in the limit t = 0.

For notational convenience we have above assumed homogeneous bound-
ary conditions. Since Nitsche’s method is not so standard, we will here
describe the method assuming nonhomogeneous boundary conditions, viz.

{

u|∂Ω = uΓ for t > 0,

u · n|∂Ω = uΓ · n for t = 0.
(45)

For Nitsche’s method the velocity space is modified by removing the Dirichlet
boundary conditions from Vh even for t > 0, i.e v ∈ [C(Ω)]N∩V is replaced by
v ∈ [C(Ω)]N in (21), (27) and (37). The nonhomogeneouity of the boundary
conditions implies that the term

〈uΓ · n, q〉 (46)

has to be included in the right hand side of the weak forms.

The discrete variational formulations are modified by changing the bilin-
ear form a(·, ·) to

ah(u,v) = a(u,v) (47)

+ t2
∑

E∈Γh

(

− 〈εn(u),v〉E − 〈εn(v),u〉E + γh−1
E 〈u,v〉E

)

,

where Γh denotes the edges/faces on the boundary ∂Ω. The parameter has
to satisfy γ > C ′

I , where C ′
I is the constant in the discrete trace inequality

hE‖εn(v)‖20,∂K ≤ C ′
I‖∇v‖20,K ∀v ∈ Vh|K . (48)

Then the ellipticity

ah(v,v) ≥ C‖v‖2t,h ∀v ∈ Vh (49)

with

‖v‖2t,h = ‖v‖2t + t2
∑

E∈Γh

h−1
E ‖v‖20,E (50)

holds. In addition to (46) the following term has to be added to the right
hand side

t2
∑

E∈Γh

(

− 〈εn(v),uΓ〉E + γh−1
E 〈uΓ,v〉E

)

. (51)
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For a posteriori result the elementwise estimator EK(uh, ph)
2 (41) is

changed by adding the term

t2

hK

‖uh − uΓ‖20,∂K∩∂Ω. (52)

and changing

t2 + h2
K

hK

‖uh · n‖20,∂K∩∂Ω to
t2 + h2

K

hK

‖(uh − uΓ) · n‖20,∂K∩∂Ω. (53)

Using the global estimator η (42) defined with the above local estimator it
holds

C1η ≤ ‖u− uh‖t,h + |‖p− ph‖|t,h ≤ C2η. (54)

4 Numerical examples

The finite element methods tested here are the lowest order MINI and Taylor-
Hood elements and stabilized P1-P1 and P2-P2 methods. In all the computa-
tions the residual stabilization parameter is α = 0.4 for the P1-P1-stab and
α = 0.01 for the P2-P2-stab. The stabilization parameter of Nitsche’s met-
hod is γ = 35. We use Dirichlet condition for the velocity on all boundaries.

Our first model problem is the L-shape domain with the solution

p(r, θ) = rβ sin(βθ) + C and

u = −∇p(x, y) = βrβ−1

(

− sin(θ − βθ)
cos(θ − βθ)

)

,

where (r, θ) are the polar coordinates, β > 0 is a parameter and C is a
constant such that p ∈ L2

0(Ω). The smoothness of the solution is p ∈ Hβ+1

and u ∈ [Hβ]2. In Figure 1 is the error as a function of degrees of freedom for
different values of the parameter t. The value of the smoothness parameter
is β = 3.1. This means that the solution is smooth enough to take the full
advantage of the higher order methods P2-P2-stab and Taylor-Hood even
in the Stokes problem. All the methods perform as predicted by the theory.
Notice the O(h) rate of convergence of the Taylor-Hood element in the Darcy
type problem, that is when the parameter t is small. For more details see
equation (40) and the discussion within.

Our next model problem is the Poiseuille flow in a unit square Ω =
(0, 1)×(0, 1). The Poiseuille flow is such that f and g vanish, and the linearly
decreasing pressure drives the flow. Assume the pressure is p = −x + 1

2
and

that the velocity is zero at the sides y = 0 and y = 1. The solution of this

problem is u =
(

u, 0
)T

where

u =

{

(

1 + e1/t − e(1−y)/t − ey/t
)

/
(

1 + e1/t
)

if t > 0

1 if t = 0.
(55)
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In Figure 2 are some flow profiles of this solution. Notice the steep changes
in the solution near the boundaries if the value of the parameter t is small.

Due to the boundary layers the Poiseuille flow problem is ideal for test-
ing the effect of boundary conditions. To this end, the rate of convergence
is computed using both the traditional boundary conditions and Nitsche’s
method. In Figure 3 are the rates of convergence using the MINI element.
Since the ratio of the mesh size h and the parameter t is crucial, the results
are plotted as a function of h/t. For both methods the rate of convergence
is slower if h > t. For Nitsche’s method the rate of convergence is very lim-
ited but the error is already much smaller than for the traditional boundary
conditions. Also, notice the clear change in the rate of convergence for both
the methods in the limit t ≈ h. This is due to the transition from the sigu-
larly perturbed Darcy problem to the Stokes type problem as the mesh size
becomes smaller than t. This suggests that numerically the ’limit’ for the
Brinkman problem being singularly perturbed is t ≈ h. Similar result holds
also for the reaction-diffusion problem [17].

To examine the slow convergence near the Darcy limit in more detail, the
convergence of the different components of the energy norm are studied. Since
the gradient of the pressure is constant, the velocity part of the error dom-
inates the total error. In Figure 4 are the rates of convergence for different
components of the velocity energy norm, namely for the t‖∇(u−uh)‖0-part
and the ‖u−uh‖0-part. Surprisingly, for the traditional method the L2-part
dominates the error for h > t. Nitsche’s method, on the other hand, is able
to balance the error between the components for h > t.

Above it is studied how the boundary conditions affect the solution in
the energy norm. To see what happens in the L∞-norm consider a simplified
problem: assume the pressure is already known, then the problem for the
x-component of the velocity becomes

−t2u′′(y) + u(y) = 1 and u(0) = u(1) = 0. (56)

Solving this simple 1D problem with the finite element method gives good
insight in what happens in L∞-norm. In Figure 5 we have the solutions to
the above problem using both Nitsche’s and the traditional method. The
velocity energy norm has two major components, namely t‖∇(u−uh)‖0 and
‖u−uh‖. For small values of t the weight of the gradient error is considerably
smaller hence Nitsche’s method relaxes the boundary conditions to reduce
the dominating L2-error. The traditional method does not have degrees of
freedom on the boundary and cannot relax the boundary conditions. As the
mesh size h becomes smaller both methods give the same solution. Figure 5
also shows how the boundary conditions transform naturally from the Stokes
condition u = 0 to Darcy condition u · n = 0 in Nitsche’s method. In [13]
similar results are observed.

Lastly we test how the proposed a posteriori estimator (42) works in
adaptive refinement. The implementation here is to refine all the elements
whose elementwise indicator is larger than (or equal to) the mean value of
the elementwise indicators. In Figure 6 is the error in the energy norm with
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respect to the degrees of freedom using both the adaptive and the uniform
refinement. Initially the parameter t is small compared to the mesh size h,
hence the convergence is very limited using uniform refinement. However, the
adaptive refinement detects the source of error, see Figure 7, and increases
the rate of convergence substantially.
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Figure 1: Convergence of the finite element solutions in the energy norm
using uniform refinement. The value in the brackets is the average rate of
convergence; values −0.5 and −1.0 correspond to O(h) and O(h2) rates of
convergence. On the top row the problem is of the Stokes type and on the
bottom row of the Darcy type. Notice the O(h) rate of convergence of the
Taylor-Hood element in the Darcy type problem even though the solution is
smooth.
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10
−2

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

0.5

1.0

h/t

R
e

la
ti
v
e

 e
rr

o
r

MINI + Nitsche: Convergence in the energy norm w.r.t. h/t

10
−2

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

0.5

1.0

h/t

R
e

la
ti
v
e

 e
rr

o
r

MINI: Convergence in the energy norm w.r.t. h/t

Figure 3: Convergence of the finite element solution in the energy norm w.r.t
h/t using uniform refinement; on the left using Nitsche’s method and on the
right using the traditional boundary conditions. Dashed lines are reference
slopes of O(

√
h) and O(h) convergence. Notice the slower convergence of

both methods if h > t.
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Figure 5: Finite element solutions to the problem (56); on the left with
Nitsche’s and on the right with the traditional method. Dashed line is the
exact solution. The h/t ratio is in the title. Notice how Nitsche’s method
relaxes the boundary conditions if h > t.
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Figure 7: Adaptive meshes with the MINI element using Nitsche’s method
for various values of parameter t. The mesh size in the initial mesh is h = 0.1.
For t ≈ 1 the solution is smooth hence the adaptive refinement is roughly
uniform. For small t the refinement is mostly near the boundaries where the
solution has steep changes.
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