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Abstract: The discrete maximum principle (DMP) is an important qualitative
property of various discretized elliptic equations. Conditions that ensure the DMP
have drawn much attention, including geometric properties for FEM discretiza-
tions. This chapter starts with a brief summary of some background on the DMP,
including the algebraic case, and nonobtuseness or acuteness type conditions for
FEM. When lower order terms are included in the operator, the DMP can be en-
sured for sufficiently fine mesh, under uniform acuteness or strict non-narrowness
in the case of simplicial or rectangular FEM meshes, respectively. (Similar condi-
tions also appear for prismatic FEM.) Our main interest is formed by nonlinear
elliptic systems under standard linear or bilinear FEM discretizations. We first
present our previous results on systems with second and zeroth order terms, then
extend them to the case involving first order terms. The presentation includes
a detailed exposition of the required theory, which needs a generalization of the
usual underlying algebraic DMP and some Hilbert space background. The geomet-
ric properties of the FEM mesh are also discussed. In many applications the DMP
implies (or reduces to) a natural requirement of nonnegativity for the approxima-
tions of the corresponding nonnegative physical quantities. Such applications are
given to reaction-diffusion processes and diffusion-dominated transport systems,
respectively.
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1 Introduction

The maximum principle forms an important qualitative property of second
order elliptic equations [40, 46]. Therefore its discrete analogues, the so-called
discrete maximum principles (DMPs) have drawn much attention. Various
DMPs, including geometric conditions on the computational meshes for FEM
solutions, have been given e.g. in [4, 7, 8, 10, 11, 12, 19, 24, 33, 37, 38, 41,
47, 51, 53] for linear and [6, 25, 26, 27, 35] for nonlinear problems. For
elliptic operators with only principal part, if the discretized operator Lh and
the FEM solution uh satisfy Lhuh ≤ 0, then the DMP has the simple form
max

Ω
uh = max

∂Ω
uh. On the other hand, for operators with lower order terms

as well, one has the weaker statement

max
Ω

uh ≤ max{0,max
∂Ω

uh}. (1)

Also, in the latter case one can only provide the DMP for sufficiently fine
mesh and needs stronger acuteness type conditions in the case of standard
simplicial FEM meshes. Similar conditions on the shape and size of meshes
also appear in the case when bilinear or prismatic finite elements are used
[19].

The DMP has been extended to systems for the first time in [26]. The
class of systems considered there has a coupling which is cooperative and
weakly diagonally dominant, these conditions on the coupling also appear in
the underlying continuous maximum principle [9, 16, 42, 43]. In the case of
mixed boundary conditions and nonpositive right-hand sides, we have

max
k=1,...,s

max
Ω

uh
k ≤ max

k=1,...,s
max{0,max

ΓD

uh
k} (2)

where ΓD is the Dirichlet boundary and k is the number of equations. The
acuteness type conditions for simplicial FE meshes have also been suitably
weakened in [26].

This chapter is devoted to the DMP for elliptic systems of general type.
Its goal is twofold. First, after giving a proper background including algebraic
properties and a suitable Hilbert space theory, we summarize our previous
results on elliptic systems with second and zeroth order terms. Then, based
on these, we develop various new results on systems which are regularly
perturbed by first order terms, i.e. contain non-dominating convection type
terms. Our general goal is to ensure (2). Further, in many applications the
DMP reduces to the natural requirement of nonnegativity for the appropriate
discrete quantities, hence this will be also addressed. Some applications
are mentioned briefly to reaction-diffusion processes and transport systems,
respectively.

We note that the DMP for a single nonsymmetric equation has been stud-
ied extensively in the last three decades, see e.g. the early papers [28, 44, 45],
the monograph [23] and the references therein. Here a major issue is to pro-
vide a DMP for singularly perturbed (i.e. convection-dominated) problems,
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along with the construction of suitably stabilized Galerkin methods, see e.g.
[13, 14, 29, 39, 48, 50]. The present chapter is devoted to regularly perturbed
problems, with focus on the generalization of the standard DMP for Galerkin
methods to systems; extension of these results to stabilized Galerkin methods
may be the subject of further research.

2 Discrete maximum principles in different

settings

2.1 Algebraic background and the ’matrix maximum

principle’

Let us consider a system of equations of order (k +m) × (k +m):

Āc̄ = d̄, (3)

where the matrix Ā and the vectors d̄, c̄ have the following structure:

Ā =
[

A Ã

0 I

]

, d̄ =
[

d

d̃

]

, c̄ =
[

c

c̃

]

(4)

where I is the m×m identity matrix and 0 is the m× k zero matrix. Then
(3) becomes

[

A Ã

0 I

] [

c

c̃

]

=
[

d

d̃

]

. (5)

First we recall a basic definition in the study of DMP (cf. [52, p. 23]):

Definition 2.1 A square k × k matrix A = (aij)
k
i,j=1 is called irreducibly

diagonally dominant if it satisfies the following conditions:

(i) A is irreducible, i.e., for any i 6= j there exists a sequence of nonzero
entries {ai,i1 , ai1,i2 , . . . , ais,j} of A, where i, i1, i2, . . . , is, j are distinct
indices,

(ii) A is diagonally dominant, i.e., |aii| ≥
k
∑

j=1
j 6=i

|aij|, i = 1, ..., k,

(iii) for at least one index i0 ∈ {1, ..., k} the above inequality is strict, i.e.,

|ai0,i0 | >
k
∑

j=1
j 6=i0

|ai0,j|.

Following [11], we introduce

Definition 2.2 A (k+m)× (k+m) matrix Ā with the structure (4) is said
to be of generalized nonnegative type if the following properties hold:
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(i) aii > 0, i = 1, ..., k,

(ii) aij ≤ 0, i = 1, ..., k, j = 1, ..., k +m (i 6= j),

(iii)
k+m
∑

j=1
aij ≥ 0, i = 1, ..., k,

(iv) There exists an index i0 ∈ {1, . . . , k} for which

k
∑

j=1

ai0,j > 0. (6)

Remark 2.1 In the original definition in [11, p. 343], it is assumed instead
of the above property (iv) that the principal block A is irreducibly diagonally
dominant. However, if we assume that A is also irreducible, as will be done
in Theorem 2.1, then its irreducibly diagonal dominance follows directly from
Definition 2.2 under the given sign conditions on aij. We also note that a
well-known theorem [52, p. 85] implies in this case that A−1 > 0, i.e., the
entries of the matrix A−1 are positive.

Many known results on various discrete maximum principles are based
on the following theorem, considered as ’matrix maximum principle’ (for a
proof, see e.g. [11, Th. 3]).

Theorem 2.1 Let Ā be a (k+m)×(k+m) matrix with the structure (4), and
assume that Ā is of generalized nonnegative type in the sense of Definition
2.2, further, that A is irreducible.

If the vector c̄ = (c1, ..., ck+m)T ∈ Rk+m (where ( . )T denotes the trans-
posed) is such that (Āc̄)i ≤ 0, i = 1, ..., k, then

max
i=1,...,k+m

ci ≤ max{0, max
i=k+1,...,k+m

ci}. (7)

The irreducibility of A is a technical condition which is sometimes difficult
to check in applications, see e.g. [15, 20]. As shown in [26], it can be omitted
from the assumptions if (iv) is suitably strengthened. This requires two
definitions.

Definition 2.3 Let A be an arbitrary k × k matrix. The irreducible blocks
of A are the matrices A(l) (l = 1, . . . , q) defined as follows.

Let us call the indices i, j ∈ {1, . . . , k} connectible if there exists a se-
quence of nonzero entries {ai,i1 , ai1,i2 , . . . , ais,j} of A, where i, i1, i2, . . . , is, j ∈
{1, . . . , k} are distinct indices. Further, let us call the indices i, j mutually
connectible if both i, j and j, i are connectible in the above sense. (Clearly,
mutual connectibility is an equivalence relation.) LetN1, . . . , Nq be the equiv-
alence classes, i.e. the maximal sets of mutually connectible indices. (Clearly,

A is irreducible iff q = 1.) Letting Nl = {s
(l)
1 , . . . , s

(l)
kl
} for l = 1, . . . , q, we

have k1 + . . .+ kq = k. Then we define for all l = 1, . . . , q the kl × kl matrix
A(l) by A(l)

p q := a
s
(l)
p ,s

(l)
q

(p, q = 1, . . . , kl).
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Remark 2.2 One may prove (cf. [1, Th. 4.2]) that by a proper permutation
of indices, A becomes a block lower triangular matrix with the irreducible
diagonal blocks A(l).

Definition 2.4 A (k + m) × (k + m) matrix Ā with the structure (4) is
said to be of generalized nonnegative type with irreducible blocks if properties
(i)-(iii) of Definition 2.2 hold, further, property (iv) therein is replaced by
the following stronger one:

(iv’) For each irreducible component of A there exists an index i0 =

i0(l) ∈ Nl = {s
(l)
1 , . . . , s

(l)
kl
} for which

k
∑

j=1
ai0,j > 0.

Remark 2.3 Let assumptions (i)-(iii) hold in Definitions 2.2 or 2.4. Then
for a given index i0 ∈ {1, . . . , k}, a sufficient condition for (6) to hold is that:

there exists an index j0 ∈ {k + 1, . . . , k +m} for which ai0,j0 < 0.

Namely, using also assumptions (ii) and (iii), respectively, we then have

k
∑

j=1

ai0,j >
k
∑

j=1

ai0,j + ai0,j0 ≥
k
∑

j=1

ai0,j + ai0,j0 +
k+m
∑

j=k+1
j 6=j0

ai0,j =
k+m
∑

j=1

ai0,j ≥ 0.

Theorem 2.2 [26]. Let Ā be a (k+m)× (k+m) matrix with the structure
(4), and assume that Ā is of generalized nonnegative type with irreducible
blocks in the sense of Definition 2.4.

If the vector c̄ = (c1, ..., ck+m)T ∈ Rk+m is such that di ≡ (Āc̄)i ≤ 0, i =
1, ..., k, then (7) holds.

Consequently, in what follows, our main goal is to provide the stiffness
matrix of the problems considered to be of generalized nonnegative type with
irreducible blocks in the sense of Definition 2.4.

2.2 Some motivation for the DMP

2.2.1 Linear equations and continuous maximum principles

First we recall the (continuous) maximum principle (CMP) as it usually
stands for linear second order elliptic problems. Let L denote the following
linear operator, acting on smooth functions defined in a bounded domain Ω:

Lu ≡ − div
(

a(x)∇u
)

+ h(x)u, (8)

where the coefficients a ∈ C1(Ω) and h ∈ C(Ω) are such that 0 < µ0 ≤
a(x) ≤ µ1 and 0 ≤ h(x) ≤ µ1 with positive constants µ0 and µ1 independent
of x ∈ Ω. Further, we assume that Ω ⊂ Rd, d = 2, 3, ..., has a piecewise
smooth and Lipschitz continuous boundary ∂Ω. The following basic result is
found e.g. in [18, 40].
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Theorem 2.3 Let u ∈ C2(Ω) ∩ C(Ω) be such that Lu ≤ 0 in Ω, then

max
Ω

u ≤ max{0,max
∂Ω

u}. (9)

If, in addition, h ≡ 0, then

max
Ω

u = max
∂Ω

u. (10)

Theorem 2.3 is also valid for more general differential operators, but we
shall only use the operators in the form (8) in what follows. In the context
of boundary value problems, we immediately obtain from Theorem 2.3 the
following result:

Corollary 2.1 Let u ∈ C2(Ω) ∩ C(Ω) be a solution of the problem






Lu = f in Ω,

u = g on ∂Ω
(11)

where g ∈ C(∂Ω). If f ≤ 0 in Ω, then

max
Ω

u ≤ max{0,max
∂Ω

g}. (12)

If, in addition, h ≡ 0, then

max
Ω

u = max
∂Ω

g. (13)

The analogous (continuous) minimum principles can be immediately for-
mulated by changing the sign condition (i.e., replacing u by −u). In this
contribution we will be interested in the weak form (12) of the CMP.

Let us now consider a discretization of problem (11). The most widespread
methods in this context are the finite element method (FEM) and finite dif-
ference method (FDM). Both of these discretizations normally lead to linear
algebraic systems of the form (5), where the block decomposition corresponds
to interior and boundary mesh points, respectively. For such discretizations,
the goal is to ensure that the ’matrix maximum principle’ (7) holds, i.e. to
apply Theorem 2.1.

In this contribution we are mostly interested in FEM discretizations on
simplices. Simplicial elements are most popular and present a basic special
case of the FEM, because we can treat many complicated geometries with
simplices. We emphasize here an important property related to FEM. Under
standard assumptions, see later (66)-(67) (which hold e.g. for usual linear,
bilinear or prismatic finite elements), statement (7) directly means that

max
Ω

uh ≤ max{0,max
∂Ω

gh} (14)

for the discrete solution uh of the boundary value problem (11). (Here gh is
the linear interpolant of g.) That is, the exact analogue of (12) is valid.
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The main conditions that arise in this context are nonobtuseness (for
problems with only principal part, i.e. h ≡ 0) or uniform acuteness conditions
(for problems with lower order term) on the mesh. These conditions originate
from the early papers [11, 12], see also [35]. Such geometric conditions will
be discussed briefly in subsection 2.3.

When formulating discrete maximum principles, we will be interested in
families of meshes and not in a given (single) mesh. Hence the following
notion will be crucial for our study:

Definition 2.5 A set of FEM subspaces V = {Vh}h→0 is said to be a family
of FEM subspaces if for any ε > 0 there exists Vh ∈ V with h < ε.

When the results are formulated in terms of simplicial FE meshes, one simi-
larly defines the families of meshes T = {Th}h→0.

2.2.2 The DMP for a single nonlinear elliptic equation

The DMP for mixed nonlinear boundary value problems was first proved in
[25]. Let us consider the problem























− div
(

b(x,∇u)∇u
)

+ q(x, u) = f(x) in Ω,

b(x,∇u)∂u
∂ν

+ s(x, u) = γ(x) on ΓN ,

u = g(x) on ΓD,

(15)

where Ω is a bounded domain in Rd, under the following

Assumptions 2.2.2.

(A1) Ω has a piecewise smooth and Lipschitz continuous boundary ∂Ω;
ΓN ,ΓD ⊂ ∂Ω are measurable open sets, such that ΓN ∩ ΓD = ∅ and
ΓN ∪ ΓD = ∂Ω.

(A2) The scalar functions b : Ω × Rd → R, q : Ω × R → R and s : ΓN ×
R → R are continuously differentiable in their domains of definition.
Further, f ∈ L2(Ω), γ ∈ L2(ΓN) and g = g∗|ΓD

with g∗ ∈ H1(Ω).

(A3) The function b satisfies

0 < µ0 ≤ b(x, η) ≤ µ1 (16)

with positive constants µ0 and µ1 independent of (x, η), further, the

diadic product matrix η · ∂b(x,η)
∂η

is symmetric positive semidefinite and
bounded in any matrix norm by some positive constant µ2 independent
of (x, η).

(A4) Let 2 ≤ p1 if d = 2, or 2 ≤ p1 ≤ 2d
d−2

if d > 2, further, let 2 ≤ p2 if

d = 2, or 2 ≤ p2 ≤ 2d−2
d−2

if d > 2. There exist functions α1 ∈ Ld/2(Ω),
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α2 ∈ Ld−1(ΓN) and a constant β ≥ 0 such that for any x ∈ Ω (or
x ∈ ΓN , resp.) and ξ ∈ R

0 ≤
∂q(x, ξ)

∂ξ
≤ α1(x) + β|ξ|p1−2, 0 ≤

∂s(x, ξ)

∂ξ
≤ α2(x) + β|ξ|p2−2.

(17)

(A5) Either ΓD 6= ∅, or q increases strictly and at least linearly at ∞ in the
sense that

q(x, ξ) ≥ c1|ξ| − c2(x) (18)

(with a constant c1 > 0 and a function c2 ∈ L1(Ω)) ∀(x, ξ) ∈ Ω×R, or
s increases strictly and at least linearly at ∞ in the same sense.

Theorem 2.4 [25]. Let (A1)–(A5) hold and let us consider a family of sim-
plicial FEM meshes T = {Th}h→0 satisfying the following property: for any
i = 1, ..., n, j = 1, ..., n̄ (i 6= j), the basis functions satisfy

∇φi · ∇φj ≤ −
σ0

h2
< 0 (19)

on supp φi ∩ supp φj with σ0 > 0 independent of i, j and h.

If the simplicial meshes Th are regular, i.e., there exist constants m1,m2 >
0 such that for any h > 0 and any simplex Th ∈ Th

m1h
d ≤ meas(Th) ≤ m2h

d (20)

(where meas(Th) denotes the d-dimensional measure of Th), then for suffi-
ciently small h, the matrix Ā(c̄) defined in (46) is of generalized nonnegative
type in the sense of Definition 2.2, further, A is irreducible.

Consequently, by Theorem 2.1, under the conditions of Theorem 2.4 and
standard assumptions for the FEM mesh (see later (66)-(67)), if

f(x) − q(x, 0) ≤ 0, x ∈ Ω, and γ(x) − s(x, 0) ≤ 0, x ∈ ΓN . (21)

then we have the DMP

max
Ω

uh ≤ max{0,max
ΓD

gh}. (22)

We note that for problems with only principal part, i.e. q ≡ 0 and s ≡ 0, it
suffices to assume the weaker condition

∇φi · ∇φj ≤ 0 (23)

instead of (19), and we obtain the stronger DMP max
Ω

uh = max
ΓD

gh.
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Remark 2.4 It was also proved in [25] that, more generally, the above prop-
erties of the matrix Ā(c̄) are also valid if the simplicial FE meshes Th are
only quasi-regular in the following sense: the left-hand side of (20) is replaced
by

c1h
γ ≤ meas(Th) , (24)

where γ ≥ d satisfies

2 ≤ γ < 3 if d = 2,

3 ≤ γ < min{ 12
p1−2

, 5 − p2

2
} if d = 3,

d ≤ γ < min{ 4d
(p1−2)(d−2)

, 3 + (4−p2)(d−2)
2

} if d > 3

(25)

with p1, p2 from assumption (A4) for problem (15).

2.3 Geometric properties to ensure the DMP

The values ∇φi · ∇φj are constant on each element, hence conditions (19)
and (23) are not difficult to check, moreover, these conditions have a nice
geometric interpretation. We briefly discuss some of these famous geometric
properties, without the goal to give a detailed discussion. Some less strong
assumptions will be discussed in subsection 3.4.

Conditions (19) and (23) have the following geometric meaning in view
of well-known results. In order to satisfy condition (19) in the case of a
simplicial mesh, it is sufficient if the employed mesh is uniformly acute, and
similarly, condition (23) is satisfied if the employed mesh is nonobtuse [12, 35].
In the case of bilinear elements, condition (19) is equivalent to the so-called
condition of non-narrow mesh, see [10]. The same issue for prismatic finite
elements was recently treated in [19], where a convenient notion of (strictly)
well-shaped prismatic partition is introduced.

We note that conditions (19) and (23) are sufficient but not necessary.
For simplicial FEM, the DMP may still hold if some obtuse interior angles
occur in the simplices of the meshes, i.e. if ∇φi · ∇φj is positive on each
element. Namely, (19) was imposed to ensure the validity of the estimate

bij(c̄) =
∫

Ωij

b(x,∇uh) ∇φi · ∇φj dx ≤ −
σ1

h2
< 0 (26)

with σ1 > 0 independent of i, j and h, where Ωij = supp φi ∩ supp φj.
However, using (16), we have in general

bij(c̄) ≤ µ0

∑

Kl∈K−

meas (Kl) ∇φi ·∇φj + µ1

∑

Kl∈K+

meas (Kl) ∇φi ·∇φj , (27)

with notations

K− = {K ∈ Th : ∇φi·∇φj < 0 onK}, K+ = {K ∈ Th : ∇φi·∇φj ≥ 0 onK}.
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Then, it suffices to require that the expression in (27) is estimated above by
−σ1/h

2, which may allow the set K+ to be nonempty in certain situations.
For linear problems, such weakened acute type conditions are given in e.g.
in [33, 47].

One often wishes to solve the problem on finer meshes in order to ob-
tain a more accurate approximation. These geometric conditions then need
special attention. Namely, if we propose a global refinement of the initial
mesh using some refinement technique (see e.g. [31]), then we must take care
that the refined mesh preserves the desired acuteness (or nonobtuseness)
property. Obviously, this is an easy task in the two-dimensional case, since,
using the standard “2D red refinement” [31], we obtain a mesh consisting
only of acute or nonobtuse triangular elements if the initial mesh had only
acute or nonobtuse triangles, respectively. If we consider a tetrahedral mesh,
the task is far from being trivial since in general it is not possible to refine
any tetrahedron into eight subtetrahedra similar to it using “3D red refine-
ment” (cf. [31]). A new technique, the so-called “3D yellow refinement” was
developed in [30], which allows a global refinement of a nonobtuse tetrahe-
dral mesh so that the resulting (conforming) mesh preserves the property of
nonobtuseness. For local nonobtuse refinements (also in higher dimensions),
see [2] and [32]. A construction of regular meshes, using a technique different
from the red-refinement by midlines, is proposed in [34].

2.4 An algebraic DMP in Hilbert space

When dealing with elliptic systems, it is useful to state an algebraic (matrix)
DMP in a Hilbert space setting in order to provide a clean line of thoughts.
Namely, this setting will help an organized derivation of the corresponding
results under the considered different conditions. The discussion below is
based on [26], where it was applied to systems with second and zeroth order
terms.

2.4.1 Formulation of the operator equation

Let H be a real Hilbert space and H0 ⊂ H a given subspace. We consider
the following operator equation: for given vectors ψ, g∗ ∈ H, find u ∈ H such
that

〈A(u), v〉 = 〈ψ, v〉 (v ∈ H0) (28)

and u− g∗ ∈ H0 (29)

with an operator A : H → H satisfying the following conditions:

Assumptions 2.4.1.

(i) The operator A : H → H has the form

A(u) = B(u)u+N(u)u+R(u)u (30)
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where B, N and R are given operators mapping fromH to B(H). (Here
B(H) denotes the set of bounded linear operators in H.)

(ii) There exists a constant m > 0 such that

〈(

B(u) +N(u)
)

v, v
〉

≥ m ‖v‖2 (u ∈ H, v ∈ H0). (31)

(iii) There exist subsets of ’positive vectors’ D,P ⊂ H such that for any
u ∈ H and v ∈ D, we have

〈R(u)w, v〉 ≥ 0 (32)

provided that either w ∈ P or w = v ∈ D.

(iv) There exists a continuous function MNR : R+ → R+ and another norm
‖|.‖| on H such that

〈(

N(u) +R(u)
)

z, v
〉

≤MNR(‖u‖) ‖|z‖| ‖|v‖| (u, z, v ∈ H). (33)

In practice for PDE problems, g∗ plays the role of boundary condition and
H0 will be the subspace corresponding to homogeneous boundary conditions,
further, B(u) is the principal part of A.

Assumptions 2.4.1 are not in general known to imply existence and unique-
ness for (28)-(29). The following extra conditions already ensure well-posedness:

Assumptions 2.4.2.

(i) The operator A is Gateaux differentiable, further, A′ is bihemicontin-
uous (i.e. mappings (s, t) 7→ A′(u+ sk + tw)h are continuous from R2

to H).

(ii) There exists a continuous function MA : R+ → R+ such that

〈A′(u)w, v〉 ≤MA(‖u‖) ‖w‖ ‖v‖ (u ∈ H, w, v ∈ H0). (34)

(iii) There exists a constant m > 0 such that

〈A′(u)v, v〉 ≥ m ‖v‖2 (u ∈ H, v ∈ H0). (35)

Proposition 2.1 If Assumptions 2.4.1–2.4.2 hold, then problem (28)-(29)
is well-posed.

The proof is based on uniform monotonicity and local Lipschitz continuity,
see e.g. [17]. The proof of an equivalent formulation of Proposition 2.1 is
given in [26].
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2.4.2 Galerkin type discretization

Let n0 ≤ n be positive integers and φ1, ..., φn ∈ H be given linearly indepen-
dent vectors such that φ1, ..., φn0 ∈ H0. We consider the finite dimensional
subspaces

Vh = span{φ1, ..., φn} ⊂ H, V 0
h = span{φ1, ..., φn0} ⊂ H0 (36)

with a real positive parameter h > 0. In practice, as is usual for FEM, h is
inversely proportional to n, and one will consider a family of such subspaces
in the sense of Definition 2.5.

We formulate here some connectivity type properties for these subspaces
that we will need later. For this, certain pairs {φi, φj} ∈ Vh × Vh are called
’neighbouring basis vectors’, and then i, j are called ’neighbouring indices’.
The only requirement for the set of these pairs is that they satisfy As-
sumptions 2.4.3 below, given in terms of the graph of neighbouring indices,
by which we mean the following. The corresponding indices {1, . . . , n0} or
{1, . . . , n}, respectively, are represented as vertices of the graph, and the ith
and jth vertices are connected by an edge iff i, j are neighbouring indices.

Assumptions 2.4.3. The set {1, . . . , n} can be partitioned into disjoint
sets S1, . . . , Sr such that for each k = 1, . . . , r,

(i) both S0
k := Sk∩{1, . . . , n0} and S̃k := Sk∩{n0+1, . . . , n} are nonempty;

(ii) the graph of all neighbouring indices in S0
k is connected;

(iii) the graph of all neighbouring indices in Sk is connected.

(In later PDE applications, these properties are meant to express that the
supports of basis functions cover the domain, both its interior and the bound-
ary.)

Now let gh =
n
∑

j=n0+1
gjφj ∈ Vh be a given approximation of the component

of g∗ in H \H0. To find the Galerkin solution of (28)-(29) in Vh, we solve the
following problem: find uh ∈ Vh such that

〈A(uh), vh〉 = 〈ψ, vh〉 (vh ∈ V 0
h ) (37)

and uh − gh ∈ V 0
h . (38)

Using (30), we can rewrite (37) as

〈B(uh)uh, vh〉+〈N(uh)uh, vh〉+〈R(uh)uh, vh〉 = 〈ψ, vh〉 (vh ∈ V 0
h ). (39)

Let us now formulate the nonlinear algebraic system corresponding to
(39). We set

uh =
n
∑

j=1

cjφj, (40)

13



and look for the coefficients c1, . . . , cn. For any c̄ = (c1, ..., cn)T ∈ Rn, i =
1, ..., n0 and j = 1, ..., n, we set

bij(c̄) := 〈B(uh)φj, φi〉, nij(c̄) := 〈N(uh)φj, φi〉, rij(c̄) := 〈R(uh)φj, φi〉,

aij(c̄) := bij(c̄) + nij(c̄) + rij(c̄), di := 〈ψ, φi〉. (41)

Putting (40) and v = φi into (39), we obtain the n0 × n system of algebraic
equations

n
∑

j=1

aij(c̄) cj = di (i = 1, ..., n0). (42)

Using the notations

A(c̄) := {aij(c̄)}, i, j = 1, ..., n0, Ã(c̄) := {aij(c)}, i = 1, ..., n0; j = n0+1, ..., n,

d := {dj}, c := {cj}, j = 1, ..., n0, and c̃ := {cj}, j = n0 + 1, ..., n,
(43)

system (42) turns into
A(c̄)c + Ã(c̄)c̃ = d. (44)

In order to obtain a system with a square matrix, we enlarge our system to
an n × n one. Since uh − gh ∈ V 0

h , the coordinates ci with n0 + 1 ≤ i ≤ n
satisfy automatically ci = gi, i.e.,

c̃ = g̃ := {gj}, j = n0 + 1, ..., n,

hence we can replace (44) by the equivalent system

[

A(c̄) Ã(c̄)
0 I

] [

c

c̃

]

=
[

d

g̃

]

. (45)

Defining further

Ā(c̄) :=
[

A(c̄) Ã(c̄)
0 I

]

, c̄ :=
[

c

c̃

]

, (46)

we rewrite (44) as follows:
Ā(c̄)c̄ = d. (47)

2.4.3 Maximum principle for the abstract discretized problem

When formulating a discrete maximum principle for system (47), the notion
of family of subspaces will be used in analogy of Definition 2.5. First we give
sufficient conditions for the generalized nonnegativity of the matrix Ā(c̄).

Theorem 2.5 Let Assumptions 2.4.1 and 2.4.3 hold. Let us consider the
discretization of operator equation (28)-(29) in a family of subspaces V =
{Vh}h→0 with bases as in (36). Let uh ∈ Vh be the solution of (39) and let
the following properties hold:

14



(a) For all φi ∈ V 0
h and φj ∈ Vh, one of the following holds: either

〈B(uh)φj, φi〉 = 〈N(uh)φj, φi〉 = 0 and 〈R(uh)φj, φi〉 ≤ 0, (48)

or
〈B(uh)φj, φi〉 ≤ −MB(h) (49)

with a proper function MB : R+ → R+ (independent of h, φi, φj) such
that, defining

T (h) := sup{‖|φi‖| : φi ∈ Vh)} , (50)

we have

lim
h→0

MB(h)

T (h)2
= +∞. (51)

(b) If, in particular, φi ∈ V 0
h and φj ∈ Vh are neighbouring basis vectors

(as defined for Assumptions 2.4.3), then (49)-(51) hold.

(c) MNR(‖uh‖) is bounded as h → 0, where MNR is the function in As-
sumption 2.4.1 (iv).

(d) For all u ∈ H and h > 0,
n
∑

j=1
φj ∈ kerB(u) ∩ kerN(u).

(e) For all h > 0, i = 1, ..., n, we have φi ∈ D and
n
∑

j=1
φj ∈ P for the sets

D,P introduced in Assumption 2.4.1 (iii).

Then for sufficiently small h, the matrix Ā(c̄) defined in (46) is of gen-
eralized nonnegative type with irreducible blocks in the sense of Definition
2.4.

The proof is given in [26, Theorem 3.1] for the case N(u) ≡ 0. It is easy
to see that the inclusion of N(u) gives no difference in the proof, since N(u)
has been joined either to B(u) or to R(u) both in Assumptions 2.4.1 and in
the appropriate conditions of Theorem 2.5. Hence in each step of the proof
one has the same condition now with N(u) as it was in [26, Theorem 3.1]
without N(u). (When applying Theorem 2.5 later, we will need N(u) for the
first order terms. Since it could not be joined either only to B(u) or only to
R(u) above, we could not use [26, Theorem 3.1] formally in the original way.)

By Theorem 2.2, we immediately obtain the corresponding algebraic dis-
crete maximum principle:

Corollary 2.2 Let the assumptions of Theorem 2.5 hold. For sufficiently
small h, if di ≤ 0 (i = 1, ..., n0) in (43) and c̄ = (c1, ..., cn)T ∈ Rn is the
solution of (47), then

max
i=1,...,n

ci ≤ max{0, max
i=n0+1,...,n

ci}. (52)
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Remark 2.5 Assumption (c) of Theorem 2.5 follows in particular if As-
sumptions 2.4.2 are added to Assumptions 2.4.1 as done in Proposition 2.1,
provided that the functions gh ∈ Vh in (38) are bounded in H-norm as h→ 0.
(In practice, the usual choices for gh even produce gh → g∗ in H-norm.) In
fact, in this case ‖uh‖ is bounded as h → 0; then the continuity of MNR

yields that MNR(‖uh‖) is bounded too. For more details see [26].

Remark 2.6 Assumptions 2.4.1. (iv) can be weakened such that one may
allow different norms both forN and R and in the factors, i.e. (33) is replaced
by

〈N(u)z, v〉 ≤MN(‖u‖) ‖|z‖|N1 ‖|v‖|N2 , (53)

〈R(u)w, v
〉

≤MR(‖u‖) ‖|w‖|R1 ‖|v‖|R2 (54)

(for all u,w, v ∈ H). Then Theorem 2.5 remains true if we appropriately
replace (50) by

T (h) := sup
{

max
{

‖|φj‖|N1‖|φi‖|N2 , ‖|φj‖|R1‖|φi‖|R2

}

: φi, φj ∈ Vh

}1/2
,

(55)
and require in assumption (c) that bothMN(‖uh‖) andMR(‖uh‖) are bounded
as h→ 0.

3 Discrete maximum principles for elliptic

reaction-diffusion type systems

We first study various types of nonlinear elliptic systems with second and
zeroth order terms, quoting our results from [26]. The considered domain Ω
and the diffusion coefficient functions bk (k = 1, . . . , s) will satisfy common
properties, formulated below:

Assumptions 3.0.

(i) Ω ⊂ Rd is a bounded piecewise C1 domain; ΓD,ΓN are disjoint open
measurable subsets of ∂Ω such that ∂Ω = ΓD ∪ ΓN and ΓD 6= ∅.

(ii) (Ellipticity.) There exists m > 0 such that bk ≥ m holds pointwise for
all k = 1, . . . , s.

3.1 Systems with nonlinear coefficients

3.1.1 Formulation of the problem

First we consider nonlinear elliptic systems of the form

−div
(

bk(x, u,∇u)∇uk

)

+
s
∑

l=1

Vkl(x, u,∇u)ul = fk(x) a.e. in Ω,

bk(x, u,∇u)
∂uk

∂ν
= γk(x) a.e. on ΓN ,

uk = gk(x) a.e. on ΓD



























(k = 1, . . . , s)

(56)
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with unknown function u = (u1, . . . , us)
T , under the following assumptions.

Here ∇u denotes the s× d tensor with rows ∇uk (k = 1, . . . , s), further,
’a.e.’ means Lebesgue almost everywhere and inequalities for functions are
understood a.e. pointwise for all possible arguments.

Assumptions 3.1.

(i) The domain Ω and the diffusion coefficients bk satisfy Assumptions 3.0.

(ii) (Smoothness and boundedness.) For all k, l = 1, . . . , s we have bk ∈
(C1 ∩ L∞)(Ω × Rs × Rs×d) and Vkl ∈ L∞(Ω × Rs × Rs×d).

(iii) (Cooperativity.) We have

Vkl ≤ 0 (k, l = 1, . . . , s, k 6= l). (57)

(iv) (Weak diagonal dominance.) We have

s
∑

l=1

Vkl ≥ 0 (k = 1, . . . , s). (58)

(v) For all k = 1, . . . , s we have fk ∈ L2(Ω), γk ∈ L2(ΓN), gk = g∗k |ΓD
with

g∗k ∈ H1(Ω).

Remark 3.1 (i) Assumptions (57)-(58) imply

Vkk ≥ 0 (k = 1, . . . , s). (59)

(ii) One may consider additional terms on the Neumann boundary, see Re-
mark 3.4 later.

For the weak formulation of such problems, we define the Sobolev space

H1
D(Ω) := {z ∈ H1(Ω) : z|ΓD

= 0}. (60)

The weak formulation of problem (56) then reads as follows: find u ∈ H1(Ω)s

such that

〈A(u), v〉 = 〈ψ, v〉 (∀v ∈ H1
D(Ω)s) (61)

and u− g∗ ∈ H1
D(Ω)s, (62)

where

〈A(u), v〉 =
∫

Ω

(

s
∑

k=1

bk(x, u,∇u)∇uk · ∇vk +
s
∑

k,l=1

Vkl(x, u,∇u)ul vk

)

(63)

for given u = (u1, . . . , us) ∈ H1(Ω)s and v = (v1, . . . , vs) ∈ H1
D(Ω)s, further,

〈ψ, v〉 =
∫

Ω

s
∑

k=1

fkvk +
∫

ΓN

s
∑

k=1

γkvk (64)

for given v = (v1, . . . , vs) ∈ H1
D(Ω)s, and g∗ := (g∗1, . . . , g

∗
s).
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3.1.2 Finite element discretization

We define the finite element discretization of problem (56) in the following
way. First, let n̄0 ≤ n̄ be positive integers and let us choose basis functions

ϕ1, . . . , ϕn̄0 ∈ H1
D(Ω), ϕn̄0+1, . . . , ϕn̄ ∈ H1(Ω) \H1

D(Ω), (65)

which correspond to homogeneous and inhomogeneous boundary conditions
on ΓD, respectively. (For simplicity, we will refer to them as ’interior basis
functions’ and ’boundary basis functions’, respectively, thus adopting the
terminology of Dirichlet problems even in the general case.) These basis
functions are assumed to be continuous and to satisfy

ϕp ≥ 0 (p = 1, . . . , n̄),
n̄
∑

p=1

ϕp ≡ 1, (66)

further, that there exist node points Bp ∈ Ω (p = 1, . . . , n̄0) and Bp ∈ ΓD

(p = n̄0 + 1, . . . , n̄) such that

ϕp(Bq) = δpq (67)

where δpq is the Kronecker symbol; and finally, there exists a constant c > 0
(independent of the basis functions) such that

max |∇ϕt| ≤
c

diam(suppϕt)
(68)

where supp denotes the support, i.e. the closure of the set where the func-
tion does not vanish. These conditions hold e.g. for standard linear, bilinear
or prismatic finite elements. Finally, we assume that any two interior basis
functions can be connected with a chain of interior basis functions with over-
lapping support. By its geometric meaning, this assumption obviously holds
for any reasonable FE mesh.

We in fact need a basis in the corresponding product spaces, which we
define by repeating the above functions in each of the s coordinates and
setting zero in the other coordinates. That is, let n0 := sn̄0 and n := sn̄.
First, for any 1 ≤ i ≤ n0,

if i = (k − 1)n̄0 + p for some 1 ≤ k ≤ s and 1 ≤ p ≤ n̄0, then

φi := (0, . . . , 0, ϕp, 0, . . . , 0) where ϕp stands at the k-th entry, (69)

that is, (φi)m = ϕp if m = k and (φi)m = 0 if m 6= k. From these, we
let

V 0
h := span{φ1, ..., φn0} ⊂ H1

D(Ω)s. (70)

Similarly, for any n0 + 1 ≤ i ≤ n, if

i = n0 + (k − 1)(n̄− n̄0) + p− n̄0 for some 1 ≤ k ≤ s and n̄0 + 1 ≤ p ≤ n̄, then

φi := (0, . . . , 0, ϕp, 0, . . . , 0)T where ϕp stands at the k-th entry, (71)
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that is, (φi)m = ϕp if m = k and (φi)m = 0 if m 6= k. From (70) and
these, we let

Vh := span{φ1, ..., φn} ⊂ H1(Ω)s. (72)

Using the above FEM subspaces, the finite element discretization of prob-
lem (56) leads to the task of finding uh ∈ Vh such that

〈A(uh), vh〉 = 〈ψ, vh〉 (∀vh ∈ V 0
h ) (73)

and uh − gh ∈ V 0
h , i.e., uh = gh on ΓD (74)

(where gh =
n
∑

j=n0+1
gjφj ∈ Vh is the approximation of g∗ on ΓD). Then,

setting uh =
n
∑

j=1
cjφj and v = φi (i = 1, . . . , n0) in (61) (just as in

(40)-(42)), we obtain the n0 × n system of algebraic equations

n
∑

j=1

aij(c̄) cj = di (i = 1, ..., n0), (75)

where for any c̄ = (c1, ..., cn)T ∈ Rn and i = 1, ..., n0, j = 1, ..., n,

aij(c̄) :=
∫

Ω

(

s
∑

k=1

bk(x, u
h,∇uh) (∇φj)k·(∇φi)k+

s
∑

k,l=1

Vkl(x, u
h,∇uh) (φj)l (φi)k

)

(76)

and di :=
∫

Ω

s
∑

k=1

fk(φi)k +
∫

ΓN

s
∑

k=1

γk(φi)k . (77)

In the same way as for (47), we enlarge system (75) to a square one by adding
an identity block, and write it briefly as

Ā(c̄)c̄ = d . (78)

That is, for i = 1, ..., n0 and j = 1, ..., n, the matrix Ā(c̄) has the entry aij(c̄)
from (76).

In what follows, we will need notions of (patch-)regularity of the consid-
ered FE meshes, cf. [3].

Definition 3.1 Let Ω ⊂ Rd and let us consider a family of FEM subspaces
V = {Vh}h→0 constructed as above. Here h > 0 is the mesh parameter,
proportional to the maximal diameter of the supports of the basis functions
φ1, ..., φn. The corresponding family of meshes will be called

(a) regular from above if there exists a constant c0 > 0 such that for any
Vh ∈ V and basis function ϕp ∈ Vh,

meas(suppϕp) ≤ c0h
d (79)

(where meas denotes d-dimensional measure and supp denotes the support,
i.e. the closure of the set where the function does not vanish);
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(b) regular if there exist constants c1, c2 > 0 such that for any Vh ∈ V
and basis function ϕp ∈ Vh,

c1h
d ≤ meas(suppϕp) ≤ c2h

d ; (80)

(c) quasi-regular if (80) is replaced by

c1h
γ ≤ meas(suppϕp) ≤ c2h

d (81)

for some fixed constant
d ≤ γ < d+ 2. (82)

3.1.3 Discrete maximum principle for systems with nonlinear co-

efficients

The theory of subsection 2.4 can be applied to derive a DMP for problem
(56). The underlying operators have the following properties:

Lemma 3.1 [26, Lemma 4.1]. For any u ∈ H1(Ω)s, let us define the opera-
tors B(u) and R(u) via

〈B(u)z, v〉=
∫

Ω

s
∑

k=1

bk(x, u,∇u)∇zk · ∇vk

〈R(u)z, v〉=
∫

Ω

s
∑

k,l=1

Vkl(x, u,∇u) zl vk

(83)

(z ∈ H1(Ω)s, v ∈ H1
D(Ω)s). Together with the operator A, defined in (63),

the operators B(u) and R(u), together with N(u) ≡ 0, satisfy Assumptions
2.4.1 in the spaces H = H1(Ω)s and H0 = H1

D(Ω)s, and with the new norm

‖|v‖|2 := ‖v‖2
L2(Ω)s =

∫

Ω

s
∑

k=1

v2
k . (84)

Now let us consider the finite element discretization for problem (56),
developed in the previous subsection. One can then derive from Theorem 2.5
the following nonnegativity result for the stiffness matrix:

Theorem 3.1 [26, Theorem 4.1]. Let problem (56) satisfy Assumptions 3.1.
Let us consider a family of finite element subspaces V = {Vh}h→0 satisfying
the following property: there exists a real number γ satisfying

d ≤ γ < d+ 2

(where d is the space dimension) such that for any p = 1, ..., n̄0, t = 1, ..., n̄ (p 6=
t), if meas(suppϕp ∩ suppϕt) > 0 then

∇ϕt · ∇ϕp ≤ 0 on Ω and
∫

Ω
∇ϕt · ∇ϕp ≤ −K0 h

γ−2 (85)

with some constant K0 > 0 independent of p, t and h. Further, let the family
of associated meshes be regular from above, according to Definition 3.1.

Then for sufficiently small h, the matrix Ā(c̄) defined in (76) is of gen-
eralized nonnegative type with irreducible blocks in the sense of Definition
2.4.
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By (77) we have di ≤ 0 (i = 1, ..., n0), hence Corollary 2.2 immediately
yields

Corollary 3.1 Let the assumptions of Theorem 3.1 hold and let fk ≤ 0,
γk ≤ 0 (k = 1, . . . , s). For sufficiently small h, if c̄ = (c1, ..., cn)T ∈ Rn is
the solution of (75) with matrix Ā(c̄) defined in (76), then

max
i=1,...,n

ci ≤ max{0, max
i=n0+1,...,n

ci}. (86)

The meaning of (86) is as follows. Let us split the vector c̄ = (c1, ..., cn)T ∈

Rn as in (46), i.e. c̄ =
[

c

c̃

]

, where c = (c1, ..., cn0)
T and c̃ = (cn0+1, ..., cn)T .

Following the notions introduced after (65), the vectors c and c̃ contain the
coefficients of the ’interior basis functions’ and ’boundary basis functions’,
respectively. Then (86) states that the maximal coordinate is nonpositive or
arises for a boundary basis function.

Our main interest is the meaning of Corollary 3.1 for the FEM solution
uh = (uh

1 , . . . , u
h
s )

T itself.

Theorem 3.2 [26, Theorem 4.2]. Let the basis functions satisfy (66)-(67).
If (86) holds for the FEM solution uh = (uh

1 , . . . , u
h
s )

T , then uh satisfies

max
k=1,...,s

max
Ω

uh
k ≤ max

k=1,...,s
max{0,max

ΓD

gh
k}. (87)

Thus we obtain the discrete maximum principle for system (56):

Corollary 3.2 Let the assumptions of Theorem 3.1 hold and let

fk ≤ 0, γk ≤ 0 (k = 1, . . . , s).

Let the basis functions satisfy (66)-(67). Then for sufficiently small h, if
uh = (uh

1 , . . . , u
h
s )

T is the FEM solution of system (56), then

max
k=1,...,s

max
Ω

uh
k ≤ max

k=1,...,s
max{0,max

ΓD

gh
k}. (88)

Remark 3.2 (i) Let fk ≤ 0, γk ≤ 0 for all k. The result (88) can be divided
in two cases, both of which are remarkable: if at least one of the functions
gh

k has positive values on ΓD then

max
k=1,...,s

max
Ω

uh
k = max

k=1,...,s
max
ΓD

gh
k (89)

(which can be called more directly a discrete maximum principle than (88)),
and if gk ≤ 0 on ΓD for all k, then we obtain the nonpositivity property

uh
k ≤ 0 on Ω for all k . (90)

(ii) Analogously, if fk ≥ 0, γk ≥ 0 for all k, then (by reversing signs) we can
derive the corresponding discrete minimum principles instead of (88) and
(89), or the corresponding nonnegativity property instead of (90).
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Remark 3.3 The key assumption for the meshes in the above results is prop-
erty (85). A simple but stronger sufficient condition to satisfy (85) is (19),
provided that the family of meshes is quasi-regular according to Definition
3.1. For simplicial FEM, assumption (19) corresponds to acute triangula-
tions. Less strong assumptions to satisfy (85) will be discussed in subsection
3.4.

Remark 3.4 The results of this section may hold as well if there are addi-

tional terms
s
∑

l=1
ωkl(x, u,∇u)ul on the Neumann boundary ΓN , which we did

not include for technical simplicity. Then ωkl must satisfy similar properties
as assumed for Vkl in (57)-(58).

3.2 Systems with general reaction terms of sublinear

growth

In (56) both the principal and lower-order parts of the equations were given
as containing products of coefficients with ∇uk and ul, respectively. Whereas
this is widespread in real models for the principal part, the lower order terms
are usually not given in such a coefficient form. Now we consider problems
where the dependence on the lower order terms is given as general functions of
x and u. In this section these functions are allowed to grow at most linearly,
in which case one can reduce the problem to the previous one (56) directly.
(Superlinear growth of qk will be dealt with in the next section.)

Accordingly, let us now consider the system

−div
(

bk(x, u,∇u)∇uk

)

+ qk(x, u1, . . . , us) = fk(x) a.e. in Ω,

bk(x, u,∇u)
∂uk

∂ν
= γk(x) a.e. on ΓN ,

uk = gk(x) a.e. on ΓD























(k = 1, . . . , s)

(91)
under the following assumptions:

Assumptions 3.2.

(i) The domain Ω and the diffusion coefficients bk satisfy Assumptions 3.0.

(ii) (Smoothness and boundedness.) For all k, l = 1, . . . , s we have bk ∈
(C1 ∩ L∞)(Ω × Rs × Rs×d) and qk ∈W 1,∞(Ω × Rs).

(iii) (Cooperativity.) We have

∂qk
∂ξl

(x, ξ) ≤ 0 (k, l = 1, . . . , s, k 6= l; x ∈ Ω, ξ ∈ Rs). (92)

(iv) (Weak diagonal dominance for the Jacobians.) We have

s
∑

l=1

∂qk
∂ξl

(x, ξ) ≥ 0 (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (93)
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(v) For all k = 1, . . . , s we have fk ∈ L2(Ω), γk ∈ L2(ΓN), gk = g∗k |ΓD
with

g∗ ∈ H1(Ω).

Remark 3.5 Similarly to (59), assumptions (92)-(93) now imply

∂qk
∂ξk

(x, ξ) ≥ 0 (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (94)

The basic idea to deal with problem (91) is to reduce it to (56) via suitably
defined functions Vkl : Ω × Rs → R. Namely, let

Vkl(x, ξ) :=
∫ 1

0

∂qk
∂ξl

(x, tξ) dt (k, l = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (95)

Then the Newton-Leibniz formula yields

qk(x, ξ) = qk(x, 0) +
s
∑

l=1

Vkl(x, ξ) ξl (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (96)

Defining
f̂k(x) := fk(x) − qk(x, 0) (k = 1, . . . , s), (97)

problem (91) then becomes

−div
(

bk(x, u,∇u)∇uk

)

+
s
∑

l=1

Vkl(x, u)ul = f̂k(x) a.e. in Ω,

bk(x, u,∇u)
∂uk

∂ν
= γk(x) a.e. on ΓN ,

uk = gk(x) a.e. on ΓD



































(k = 1, . . . , s),

(98)
which is a special case of (56). Here the assumption qk ∈W 1,∞(Ω×Rs) yields
that Vkl ∈ L∞(Ω×Rs) (k, l = 1, . . . , s). Clearly, assumptions (92) and (93)
imply that the functions Vkl defined in (95) satisfy (57) and (58), respectively.
The remaining items of Assumptions 3.1 and 3.2 coincide, therefore system
(98) satisfies Assumptions 3.2.

Consequently, for a finite element discretization developed as in subsec-
tion 3.1.2, Theorem 3.2 yields the discrete maximum principle (87) for suit-
able discretizations of (98), provided f̂k ≤ 0 and γk ≤ 0 (k = 1, . . . , s). For
the original system (91), we thus obtain

Corollary 3.3 Let problem (91) satisfy Assumptions 3.2, and let its FEM
discretization satisfy the corresponding conditions of Theorem 3.1. If

fk ≤ qk(x, 0), γk ≤ 0 (k = 1, . . . , s)

and uh = (uh
1 , . . . , u

h
s )

T is the FEM solution of system (91), then for suffi-
ciently small h,

max
k=1,...,s

max
Ω

uh
k ≤ max

k=1,...,s
max{0,max

ΓD

gh
k}. (99)
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3.3 Systems with general reaction terms of superlinear

growth

In the previous section we have required the functions qk to grow at most
linearly via the condition qk ∈ W 1,∞(Ω × Rs). However, this is a strong re-
striction and is not satisfied even by (nonlinear) polynomials of uk that often
arise in reaction-diffusion problems. In this section we extend the previous
results to problems where the functions qk may grow polynomially. This
generalization, however, needs stronger assumptions in other parts of the
problem, because we now need the monotonicity of the corresponding oper-
ator in the proof of the DMP. For this to hold, the row-diagonal dominance
for the Jacobians in Assumption 3.2 (iv) must be strengthened to diagonal
dominance w.r.t. both rows and columns. (In addition, the principal part
must be more specific too, but this is not so much restrictive since in practice
it is even linear.)

Accordingly, let us now consider the system

−div
(

bk(x,∇uk)∇uk

)

+ qk(x, u1, . . . , us) = fk(x) a.e. in Ω,

bk(x,∇uk)
∂uk

∂ν
= γk(x) a.e. on ΓN ,

uk = gk(x) a.e. on ΓD























(k = 1, . . . , s)

(100)
under the following assumptions:

Assumptions 3.3.

(i) The domain Ω and the diffusion coefficients bk satisfy Assumptions 3.0.

(ii) (Smoothness and growth.) For all k, l = 1, . . . , s we have bk ∈ (C1 ∩
L∞)(Ω × Rd) and qk ∈ C1(Ω × Rs). Further, let

2 ≤ p < p∗, where p∗ := 2d
d−2

if d ≥ 3 and p∗ := +∞ if d = 2;
(101)

then there exist constants β1, β2 ≥ 0 such that

∣

∣

∣

∣

∣

∂qk
∂ξl

(x, ξ)

∣

∣

∣

∣

∣

≤ β1 + β2|ξ|
p−2 (k, l = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (102)

(iii) (Ellipticity.) Defining ak(x, η) := bk(x, η)η for all k, the Jacobian ma-
trices ∂

∂η
ak(x, η) are uniformly spectrally bounded from both below and

above.

(iv) (Cooperativity.) We have

∂qk
∂ξl

(x, ξ) ≤ 0 (k, l = 1, . . . , s, k 6= l; x ∈ Ω, ξ ∈ Rs). (103)
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(v) (Weak diagonal dominance for the Jacobians w.r.t. rows and columns.)
We have
s
∑

l=1

∂qk
∂ξl

(x, ξ) ≥ 0,
s
∑

l=1

∂ql
∂ξk

(x, ξ) ≥ 0 (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs).

(104)

(vi) For all k = 1, . . . , s we have fk ∈ L2(Ω), γk ∈ L2(ΓN), gk = g∗k |ΓD
with

g∗ ∈ H1(Ω).

Remark 3.6 (i) Similarly to (59), assumptions (103)-(104) now imply

∂qk
∂ξk

(x, ξ) ≥ 0 (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (105)

(ii) Similarly to Remark 3.4, one may include additional terms sk(x, u1, . . . , us)
on the Neumann boundary ΓN , which we omit here for technical simplicity;
then sk must satisfy similar properties as assumed for qk.

To handle system (100), we start as in the previous subsection by reducing
it to a system with nonlinear coefficients: if the functions Vkl and f̂k (k, l =
1, . . . , s) are defined as in (95) and (97), respectively, then (100) takes a form
similar to (98):

−div
(

bk(x,∇u)∇uk

)

+
s
∑

l=1

Vkl(x, u)ul = f̂k(x) a.e. in Ω,

bk(x, u,∇u)
∂uk

∂ν
= γk(x) a.e. on ΓN ,

uk = gk(x) a.e. on ΓD



























(k = 1, . . . , s).

(106)
The difference compared to the previous subsection is the superlinear growth
allowed in (102), which does not let us apply Theorem 3.2 directly as we did
for system (91). Instead, we must reprove Theorem 3.1 under Assumptions
3.3.

First, when considering a finite element discretization developed as in
subsection 3.1.2, we need a strengthened assumption for the quasi-regularity
of the mesh.

Definition 3.2 Let Ω ⊂ Rd and let us consider a family of FEM subspaces
V = {Vh}h→0 constructed as in subsection 3.1.2. Here h > 0 is the mesh
parameter, proportional to the maximal diameter of the supports of the ba-
sis functions φ1, ..., φn. The corresponding mesh will be called quasi-regular
w.r.t. problem (100) if

c1h
γ ≤ meas(suppϕp) ≤ c2h

d , (107)

where the positive real number γ satisfies

d ≤ γ < γ∗d(p) := 2d−
(d− 2)p

2
(108)

with p from Assumption 3.3 (ii).
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Remark 3.7 Assumption (108) makes sense for γ since by (101),

d < d+ d(1 − p
p∗

) = γ∗d(p) . (109)

Note on the other hand that γ∗d(p) ≤ γ∗d(2) = d + 2, which is in accordance
with (82). Further, we have, in particular, in 2D: γ∗2(p) ≡ 4 for all 2 ≤ p <
∞, and in 3D: γ∗3(p) = 6 − (p/2) (where 2 ≤ p ≤ 6, and accordingly
3 ≤ γ∗3(p) ≤ 5).

Next, as an analogue of Lemma 3.1, the following technical result holds
for problem (100):

Lemma 3.2 [26]. Let Assumptions 3.3 hold. Analogously to (83), for any
u ∈ H1(Ω)s let us define the operators B(u) and R(u) via

〈B(u)w, v〉 =
∫

Ω

s
∑

k=1

bk(x,∇u)∇wk·∇vk, 〈R(u)w, v〉 =
∫

Ω

s
∑

k,l=1

Vkl(x, u)wl vk

(w ∈ H1(Ω)s, v ∈ H1
D(Ω)s). Together with A(u) := B(u)u + R(u)u, the

operators B(u) and R(u) satisfy Assumptions 2.4.1-2.4.2.

Then one can derive the desired nonnegativity result for the stiffness
matrix, i.e. the analogue of Theorem 3.1 for system (100). Here the entries
of Ā(c̄) are

aij(c̄) =
∫

Ω

(

s
∑

k=1

bk(x,∇u
h) (∇φj)k ·(∇φi)k+

s
∑

k,l=1

Vkl(x, u
h) (φj)l (φi)k

)

, (110)

where by (95),

Vkl(x, u
h(x)) =

∫ 1

0

∂qk
∂ξl

(x, tuh(x)) dt (k, l = 1, . . . , s; x ∈ Ω). (111)

Theorem 3.3 [26]. Let problem (100) satisfy Assumptions 3.3. Let us con-
sider a family of finite element subspaces Vh (h→ 0) satisfying the following
property: there exists a real number γ satisfying (108) such that for any in-
dices p = 1, ..., n̄0, t = 1, ..., n̄ (p 6= t), if meas(suppϕp ∩ suppϕt) > 0
then

∇ϕt · ∇ϕp ≤ 0 on Ω and
∫

Ω
∇ϕt · ∇ϕp ≤ −K0 h

γ−2 (112)

with some constant K0 > 0 independent of p, t and h. Further, let the family
of meshes be regular from above, according to Definition 3.1.

Then for sufficiently small h, the matrix Ā(c̄) defined in (110) is of gen-
eralized nonnegative type with irreducible blocks in the sense of Definition
2.4.

Similarly as in Corollary 3.3, using Theorem 3.3, Corollary 2.2 and The-
orem 3.2, respectively, we obtain the discrete maximum principle for system
(100):
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Corollary 3.4 Let problem (100) satisfy Assumptions 3.3, and let its FEM
discretization satisfy the conditions of Theorem 3.3. If

fk ≤ qk(x, 0), γk ≤ 0 (k = 1, . . . , s)

then for sufficiently small h, the FEM solution uh = (uh
1 , . . . , u

h
s ) of system

(100) satisfies

max
k=1,...,s

max
Ω

uh
k ≤ max

k=1,...,s
max{0,max

ΓD

gh
k}. (113)

Remark 3.8 As pointed out in Remark 3.2, the result (113) can be divided
in two cases: a ’more direct’ DMP (89) or the nonpositivity property (90).
Further, if fk ≥ qk(x, 0), γk ≥ 0 for all k, then (by reversing signs) one
can derive the corresponding discrete minimum principle or nonnegativity
property. We formulate the latter below for its practical importance.

Corollary 3.5 Let problem (100) satisfy Assumptions 3.3, and let its FEM
discretization satisfy the conditions of Theorem 3.3. If

fk ≥ qk(x, 0), γk ≥ 0, gk ≥ 0 (k = 1, . . . , s)

then for sufficiently small h, the FEM solution uh = (uh
1 , . . . , u

h
s )

T of system
(100) satisfies

uh
k ≥ 0 on Ω (k = 1, . . . , s). (114)

3.4 Sufficient conditions and their geometric meaning

The key assumption for the FEM subspaces Vh and the associated meshes in
the above results has been the following property, see (85) in Theorem 3.1
and (112) in Theorem 3.3. There exists a real number γ satisfying (82) or
(108), respectively, such that for any indices p = 1, ..., n̄0, t = 1, ..., n̄ (p 6= t),
if meas(suppϕp ∩ suppϕt) > 0 then

∇ϕt · ∇ϕp ≤ 0 on Ω and (115)

∫

Ω
∇ϕt · ∇ϕp ≤ −K0 h

γ−2 (116)

with some constant K0 > 0 independent of p, t and h. (The family of meshes
must also be regular from above as in (79), but that requirement obviously
holds for the usual definition of the mesh parameter h as the maximal diam-
eter of elements.)

A classical way to satisfy such conditions is a pointwise inequality like
(19) together with suitable mesh regularity, see Remark 3.3. However, one
can ensure (115)-(116) with less strong conditions as well. We summarize
some possibilities below.
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Proposition 3.1 Let the family of FEM discretizations V = {Vh}h→0 satisfy
either of the following conditions, where ϕt, ϕp are arbitrary basis functions
such that p = 1, ..., n̄0, t = 1, ..., n̄, p 6= t, we let

Ωpt := suppϕp ∩ suppϕt ,

further, let
σ > 0 and c1, c2, c3 > 0

denote constants independent of the indices p, t and the mesh parameter h,
and finally, d is the space dimension and γ satisfies (108).

(i) Let the basis functions satisfy

∇ϕt · ∇ϕp ≤ −
σ

h2
< 0 on Ωpt, (117)

and the family of meshes be quasi-regular as in (107).

(ii) Let there exist 0 < ε ≤ γ − d such that the basis functions satisfy

∇ϕt · ∇ϕp ≤ −
σ

h2−ε
< 0 on Ωpt, (118)

but let the quasi-regularity (107) of the family of meshes be now strength-
ened to

c1h
γ−ε ≤ meas(suppϕp) ≤ c2h

d . (119)

(iii) Let there exist subsets Ω+
pt ⊂ Ωpt for all p, t such that the basis functions

satisfy

∇ϕt · ∇ϕp ≤ −
σ

h2
< 0 on Ω+

pt and ∇ϕt · ∇ϕp ≤ 0 on Ωpt \ Ω+
pt

(120)
and we have

meas(Ω+
pt)

meas(Ωpt)
≥ c3 > 0 , (121)

further, let the family of meshes be quasi-regular as in (107).

Then (115)-(116) holds.

Proof is obvious.

As discussed in subsection 2.3, conditions (115) and (117) have nice geo-
metric interpretations for simplicial, bilinear and for prismatic finite elements,
but these conditions are often restrictive. The weaker conditions (118) and
(120) allow in theory easier refinement procedures as the property of (strict)
acuteness is often hard to preserve in refinement procedures, e.g. by bisection
algorithms [5, 34]. First, (118) may allow the acute mesh angles to deterio-
rate (i.e. tend to 90◦) as h → 0. Namely, if a family of simplicial meshes is
regular then |∇ϕt| = O(h−1) for all linear basis functions: hence, considering
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two basis functions ϕp, ϕt and letting α denote the angle of their gradients
on a given simplex, the sufficient condition

cosα ≤ −σhε (122)

(with some constant σ > 0 independent of h) implies

∇ϕt · ∇ϕp = |∇ϕt| |∇ϕp| cosα ≤ −
σ hε

h2
,

i.e. (118) holds. Clearly, if h→ 0 then (122) allows cosα→ 0, i.e. α→ 90◦,
for the angle of gradients, in which case the corresponding mesh angle also
tends to 90◦. (In particular, for problem (56), when (108) coincides with
d ≤ γ < d + 2 as in (82), then γ − d can be chosen arbitrarily close to 2.
Hence the exponent 2 − ε in (118) can be arbitrarily close to 0, i.e. the decay
of mesh angles to 90◦ may be fast as h→ 0.)

Second, (120) means that one can allow some right mesh angles, but each
Ωpt, which consists of a finite number of elements, must contain some elements
with acute mesh angles and the measure of these must not asymptotically
vanish.

4 Discrete maximum principles for elliptic sys-

tems including first order terms

In this section we give various new results for elliptic systems including first
order terms. We consider four types of systems, in which the diffusion and
reaction terms are nonlinear: first the reaction terms are given as the un-
known functions multiplied by nonlinear coefficients, later the reactions are
general functions of x and the uk. On the other hand, the first three types of
problems involve linear convection terms and general Dirichlet data, whereas
the last type contains nonlinear convection terms and homogeneous Dirichlet
data. The allowed growth of the reaction terms is sublinear in two cases
and superlinear in the other two cases. These differences require suitable
modifications in the assumptions and the treatment.

4.1 Nonsymmetric systems with nonlinear reaction co-

efficients

First we consider nonlinear elliptic systems of the form

−div
(

bk(x, u,∇u)∇uk

)

+ wk(x) · ∇uk +
s
∑

l=1

Vkl(x, u,∇u)ul = fk(x) a.e. in Ω,

bk(x, u,∇u)
∂uk

∂ν
= γk(x) a.e. on ΓN ,

uk = gk(x) a.e. on ΓD



























(123)
(k = 1, . . . , s). The notations follow those of section 3.

Assumptions 4.1.
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(i) The domain Ω and the diffusion coefficients bk satisfy Assumptions 3.0.

(ii) (Smoothness and boundedness.) For all k, l = 1, . . . , s we have bk ∈
(C1∩L∞)(Ω×Rs×Rs×d), wk ∈ W 1,∞(Ω) and Vkl ∈ L∞(Ω×Rs×Rs×d).

(iii) (Coercivity.) We have div wk ≤ 0 on Ω and wk · ν ≥ 0 on ΓN

(k = 1, . . . , s).

(iv) (Cooperativity.) We have

Vkl ≤ 0 (k, l = 1, . . . , s, k 6= l). (124)

(v) (Weak diagonal dominance.) We have

s
∑

l=1

Vkl ≥ 0 (k = 1, . . . , s). (125)

(vi) For all k = 1, . . . , s we have fk ∈ L2(Ω), γk ∈ L2(ΓN), gk = g∗k |ΓD
with

g∗k ∈ H1(Ω).

Remark 4.1 (i) Assumptions (124)-(125) imply (59).
(ii) One may consider additional terms on the Neumann boundary as in

Remark 3.4.

For the weak formulation of problem (123), we suitable modify (61)–(62):
find u ∈ H1(Ω)s such that

〈A(u), v〉 = 〈ψ, v〉 (∀v ∈ H1
D(Ω)s) (126)

and u− g∗ ∈ H1
D(Ω)s, (127)

where

〈A(u), v〉 =
∫

Ω

(

s
∑

k=1

bk(x, u,∇u)∇uk · ∇vk

+
s
∑

k=1

(wk(x) · ∇uk) vk +
s
∑

k,l=1

Vkl(x, u,∇u)ul vk

)

(128)

for given u = (u1, . . . , us) ∈ H1(Ω)s and v = (v1, . . . , vs) ∈ H1
D(Ω)s, further,

〈ψ, v〉 =
∫

Ω

s
∑

k=1

fkvk +
∫

ΓN

s
∑

k=1

γkvk (129)

for given v = (v1, . . . , vs) ∈ H1
D(Ω)s, and finally g∗ := (g∗1, . . . , g

∗
s).

The finite element discretization of problem (123) is defined in the same
way as in subsection 3.1.2. Using the FEM subspaces (70) and (72), one
seeks uh ∈ Vh such that

〈A(uh), vh〉 = 〈ψ, vh〉 (∀vh ∈ V 0
h ) (130)

and uh − gh ∈ V 0
h , i.e., uh = gh on ΓD (131)
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(where gh =
n
∑

j=n0+1
gjφj ∈ Vh is the approximation of g∗ on ΓD). The

only difference is that the entries of the stiffness matrix become, for any
c̄ = (c1, ..., cn)T ∈ Rn and i = 1, ..., n0, j = 1, ..., n,

aij(c̄) :=
∫

Ω

(

s
∑

k=1

bk(x, u
h,∇uh) (∇φj)k · (∇φi)k +

s
∑

k=1

(

wk(x) · (∇φj)k

)

(φi)k

+
s
∑

k,l=1

Vkl(x, u
h,∇uh) (φj)l (φi)k





(132)
instead of (76). With these, similarly to (75), we have the n0 × n system of
algebraic equations

n
∑

j=1

aij(c̄) cj = di (i = 1, ..., n0). (133)

Now our goal is to derive a DMP for problem (123) using Theorem 2.5.
For this, we first define the underlying operators as in (83), for which As-
sumptions 2.4.1 must hold.

Lemma 4.1 Let Assumptions 4.1 hold. For any u ∈ H1(Ω)s, let us define
the operators B(u), N(u) ≡ N and R(u) via

〈B(u)z, v〉 =
∫

Ω

s
∑

k=1

bk(x, u,∇u)∇zk · ∇vk, 〈Nz, v〉 =
∫

Ω

s
∑

k=1

(wk(x) · ∇zk) vk,

〈R(u)z, v〉 =
∫

Ω

s
∑

k,l=1

Vkl(x, u,∇u) zl vk

(134)
(z ∈ H1(Ω)s, v ∈ H1

D(Ω)s). Together with the operator A, defined in (128),
the operators B(u), N(u) and R(u) satisfy Assumptions 2.4.1, modified ac-
cording to Remark 2.6, in the spaces H = H1(Ω)s and H0 = H1

D(Ω)s.

Proof. By Lemma 3.1, we only need to prove those statements that do
not concern only B(u) or R(u). We define

‖v‖2 :=
s
∑

k=1

(
∫

Ω
|∇vk|

2 +
∫

ΓD

|vk|
2) (135)

on H1(Ω)s, which is a norm since ΓD 6= ∅. Then for v ∈ H1
D(Ω)s we have

‖v‖2 =
s
∑

k=1

∫

Ω
|∇vk|

2.

(i) It is obvious from (128) and (134) that A(u) = B(u)u+N(u)u+R(u)u.
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(ii) By Lemma 3.1, we have 〈B(u)v, v〉 ≥ m ‖v‖2 (u ∈ H1(Ω)s, v ∈
H1

D(Ω)s). Further, the assumptions and the divergence theorem imply
for all vk ∈ H1

D(Ω) that

2
∫

Ω
(wk · ∇vk)vk = −

∫

Ω
(div wk) v

2
k dx+

∫

∂Ω
(wk · ν) v

2
k dσ ≥ 0. (136)

Summing up for k and dividing by 2, we obtain that 〈Nv, v〉 ≥ 0.
Hence (31) is valid.

(iii) This follows from Lemma 3.1, where P and D were defined as follows.
Let D ⊂ H1(Ω)s consist of the functions that have only one nonzero
coordinate that is nonnegative, i.e. v ∈ D iff v = (0, . . . , 0, g, 0, . . . , 0)T

with g at the k-th entry for some 1 ≤ k ≤ s and g ∈ H1(Ω), g ≥ 0.
Further, let P ⊂ H1(Ω)s consist of the functions that have identical
nonnegative coordinates, i.e. v ∈ P iff v = (y, . . . , y) for some y ∈
H1(Ω), y ≥ 0.

(iv) By Lemma 3.1, we have for all u,w, v ∈ H1(Ω)s

〈R(u)z, v〉 ≤MR(‖u‖) ‖|z‖| ‖|v‖|,

for the new norm ‖|v‖|2 = ‖v‖2
L2(Ω)s , i.e. (54) holds. In fact [26,

Lemma 4.1], one has the constant function MR(r) ≡ sṼ , where Ṽ :=
max

k,l
‖Vkl‖L∞ . For N , we have

〈Nz, v〉 ≤ ‖w‖L∞(Ω)s‖∇z‖L2(Ω)s ‖v‖L2(Ω)s ≤ ‖w‖L∞(Ω)s‖z‖ ‖v‖L2(Ω)s ,

where ‖w‖L∞(Ω)s := supk,x |wk(x)|, i.e. (53) holds for the constant
function MN(r) ≡ ‖w‖L∞(Ω)s and the norms ‖|z‖|N1 := ‖z‖, ‖|v‖|N2 :=
‖v‖L2(Ω)s .

Now let us consider the finite element discretization for problem (56),
developed as in subsection 3.1.2. First we need a strengthened assumption
for the regularity of the mesh.

Definition 4.1 Let Ω ⊂ Rd and let us consider a family of FEM subspaces
V = {Vh}h→0 constructed as in subsection 3.1.2. Here h > 0 is the mesh
parameter, proportional to the maximal diameter of the supports of the ba-
sis functions φ1, ..., φn. The corresponding mesh will be called quasi-regular
w.r.t. problem (123) if

c1h
γ ≤ meas(suppϕp) ≤ c2h

d , (137)

where the positive real number γ satisfies

d ≤ γ <
d(d+ 2)

d+ 1
. (138)
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One can then prove the desired nonnegativity result for the stiffness ma-
trix:

Theorem 4.1 Let problem (123) satisfy Assumptions 4.1. Let us consider a
family of finite element subspaces V = {Vh}h→0, such that the corresponding
family of meshes is quasi-regular according to Definition 4.1, further, for any
p = 1, ..., n̄0, t = 1, ..., n̄ (p 6= t), if meas(suppϕp ∩ suppϕt) > 0 then

∇ϕt · ∇ϕp ≤ 0 on Ω and
∫

Ω
∇ϕt · ∇ϕp ≤ −K0 h

γ−2 (139)

where γ is from (138) and K0 > 0 is a constant independent of p, t and h.

Then for sufficiently small h, the matrix Ā(c̄) defined in (132) is of gen-
eralized nonnegative type with irreducible blocks in the sense of Definition
2.4.

Proof. We wish to apply Theorem 2.5, modified according to Remark
2.6, in the spaces H = H1(Ω)s and H0 = H1

D(Ω)s. We use that the operators
B(u) and R(u) satisfy the corresponding assumptions, since this was used in
Theorem 3.1.

With the operator A defined in (128), our problem (126)-(127) coincides
with (28)-(29). The FEM subspaces (70) and (72) fall into the class (36).
Using the operators B(u), N(u) ≡ N and R(u) in (134), the discrete problem
(130)-(131) turns into the form (39) such that by Lemma 4.1, these operators
satisfy Assumptions 2.4.1, modified according to Remark 2.6.

Now we follow the proof of Theorem 3.1, see [26, Theorem 4.1]. First
we define neighbouring basis functions satisfying Assumptions 2.4.3. Let
φi, φj ∈ Vh. Using definitions (69) and (71), assume that φi has ϕp at its k-th
entry and φj has ϕt at its l-th entry. Then we call φi and φj neighbouring
basis functions if k = l andmeas(suppϕp∩suppϕt) > 0. LetN := {1, . . . , n}
as before. For any k = 1, . . . , s let

S0
k := {i ∈ N : i = (k − 1)n̄0 + p for some 1 ≤ p ≤ n̄0},

S̃k := {i ∈ N : i = n0 + (k − 1)(n̄− n̄0) + p− n̄0 for some n̄0 + 1 ≤ p ≤ n̄},

Sk := S0
k ∪ S̃k ,

i.e. by (69) and (71), the basis functions φi with index i ∈ Sk have a nonzero
coordinate ϕp for some p at the k-th entry, and in particular, i ∈ S0

k if this
ϕp is an ’interior’ basis function (i.e. 1 ≤ p ≤ n̄0) and i ∈ S̃k if this ϕp is a
’boundary’ basis function (i.e. n̄0 + 1 ≤ p ≤ n̄). By [26, Theorem 4.1], these
neighbouring basis functions satisfy Assumptions 2.4.3.

Our remaining task is to check assumptions (a)-(e) of Theorem 2.5.

(a) Let φi ∈ V 0
h , φj ∈ Vh, and let φi have ϕp at its k-th entry and φj have

ϕt at its l-th entry. We must prove that either (48) or (49)-(51) holds.

If k 6= l, then from [26, Theorem 4.1] we have 〈B(uh)φj, φi〉 = 0 and
〈R(uh)φj, φi〉 ≤ 0. Here φi and φj have no common nonzero coordi-
nates, hence 〈Nφj, φi〉 = 0, i.e. (48) holds.
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If k = l, then Assumption 3.0 (ii) and (85) yield

〈B(uh)φj, φi〉 =
∫

Ω
bk(x, u

h,∇uh)∇ϕt · ∇ϕp ≤ m
∫

Ωpt

∇ϕt · ∇ϕp (140)

where Ωpt := suppϕp ∩ suppϕt. If meas(Ωpt) = 0 then 〈B(uh)φj, φi〉 =
〈Nφj, φi〉 = 0 and we have 〈R(uh)φj, φi〉 ≤ 0 similarly as before, hence
(48) holds again. If meas(Ωpt) > 0 then (85) and (140) imply

〈B(uh)φj, φi〉 ≤ −mK0h
γ−2 ≡ −ĉ1 h

γ−2 =: −MB(h) (141)

and we must check (51). Let us estimate T (h)2 from (55). As seen in the
proof of Lemma 4.1, ‖|z‖|N1 = ‖z‖ and ‖|v‖|N2 = ‖|v‖|R1 = ‖|v‖|R2 =
‖v‖L2(Ω)s . Here ‖z‖ denotes the H1(Ω)-norm, which we replace here by

the equivalent norm ‖v‖2
H1(Ω)s =

s
∑

k=1
(
∫

Ω |∇vk|
2 +

∫

Ω |vk|
2). Hence we

must estimate

T (h)2 = sup
{

max
{

‖φi‖H1(Ω)s‖φj‖L2(Ω)s , ‖φi‖L2(Ω)s‖φj‖L2(Ω)s

}

:

φi, φj ∈ Vh

}

.

(142)

The L2-norm of the basis functions satisfies the following estimate,
where φj has ϕt at its l-th entry as before, and we use (137) and that
(66) implies ϕt ≤ 1:

‖φj‖
2
L2(Ω)s = ‖ϕt‖

2
L2(Ω) ≤

∫

supp ϕt

1 = meas(suppϕt) ≤ c2h
d (143)

for all j. For the H1-norm, let us first estimate the gradient term.
Using the previous argument, (137) and (68), respectively,

‖∇φj‖
2
L2(Ω)s = ‖∇ϕt‖

2
L2(Ω) =

∫

supp ϕt

|∇ϕt|
2 ≤

meas(suppϕt)

diam2(suppϕt)
. (144)

Here diam(suppϕt) ≥ c1h
γ/d for some c1 > 0 independent of h, since

otherwise the l.h.s. of (137) would fail. With this and the r.h.s. of
(137), we obtain

‖∇φj‖
2
L2(Ω)s ≤ c3h

d− 2γ

d (145)

for some c3 > 0 independent of h. Since this is larger (as h → 0) than
the L2-norm estimate in (143), we also have

‖φj‖
2
H1(Ω)s ≤ c3h

d− 2γ

d , (146)

and from (143) and (146) we obtain ‖φi‖
2
H1(Ω)s‖φj‖

2
L2(Ω)s ≤ const. ·

h2d− 2γ

d for all i, j. Also, in (142) the first term in the max is the greater
than the second one, hence

T (h)2 ≤ sup
{

‖φi‖H1(Ω)s‖φj‖L2(Ω)s : φi, φj ∈ Vh

}

≤ c4h
d− γ

d
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for some c4 > 0 independent of h. From this, using (141) and that
(138) implies γ + γ

d
< d+ 2 , we obtain

lim
h→0

MB(h)

T (h)2
≥ c5 lim

h→0
hγ−2−d+ γ

d = +∞. (147)

(b) Let φi ∈ V 0
h and φj ∈ Vh be neighbouring basis vectors, i.e, as defined

before in the proof, k = l and meas(suppϕp ∩ suppϕt) > 0. Then,
as seen just above, we obtain (141) and (147), which coincide with
(49)-(51).

(c) According to Remark 2.6, it is required here thatMN(‖uh‖) andMR(‖uh‖)
are bounded as h→ 0. Since we have the constant bounds MR(r) ≡ sṼ
and MN(r) ≡ ‖w‖L∞(Ω)s , see part (iv) of the proof of Lemma 4.1, these
are trivially bounded.

(d) For all u ∈ H1(Ω)s and h > 0, the definition of the functions φj and
assumption (66) imply

n
∑

j=1

φj =

























n̄
∑

p=1
ϕp

n̄
∑

p=1
ϕp

. . .
n̄
∑

p=1
ϕp

























=











1
1
. . .
1











=: 1 . (148)

Then by (134)

〈B(u)(
n
∑

j=1

φj), v〉 = 〈B(u)1, v〉 =
∫

Ω

s
∑

k=1

bk(x, u,∇u)∇1 · ∇vk = 0 and

〈N(
n
∑

j=1

φj), v〉 = 〈N1, v〉 =
∫

Ω

s
∑

k=1

(wk(x) · ∇1) vk = 0

for all v ∈ H1
D(Ω)s, i.e.

n
∑

j=1
φj belongs to both kerB(u) and kerN .

(e) This was proved in Theorem 3.1, see [26, Theorem 4.1].

Similarly to Corollary 3.2 before, we thus obtain

Corollary 4.1 Let the assumptions of Theorem 4.1 hold and let

fk ≤ 0, γk ≤ 0 (k = 1, . . . , s).

Let the basis functions satisfy (66)-(68). Then for sufficiently small h, if
uh = (uh

1 , . . . , u
h
s )

T is the FEM solution of system (123), then

max
k=1,...,s

max
Ω

uh
k ≤ max

k=1,...,s
max{0,max

ΓD

gh
k}. (149)
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4.2 Nonsymmetric systems with sublinear reaction terms

Now we consider problems where the dependence on the lower order terms is
given as general functions of x and u, growing at most linearly, thus following
subsection 3.2. One can then reduce the problem to the previous one (123)
directly. Accordingly, let us consider the system

−div
(

bk(x, u,∇u)∇uk

)

+ wk(x) · ∇uk + qk(x, u1, ..., us) = fk(x) a.e. in Ω,

bk(x, u,∇u)
∂uk

∂ν
= γk(x) a.e. on ΓN ,

uk = gk(x) a.e. on ΓD























(150)
(k = 1, . . . , s).

Assumptions 4.2.

(i) The domain Ω and the diffusion coefficients bk satisfy Assumptions 3.0.

(ii) (Smoothness and boundedness.) For all k, l = 1, . . . , s we have bk ∈
(C1 ∩ L∞)(Ω × Rs × Rs×d), wk ∈ W 1,∞(Ω) and qk ∈ W 1,∞(Ω × Rs).

(iii) (Coercivity.) We have div wk ≤ 0 on Ω and wk · ν ≥ 0 on ΓN

(k = 1, . . . , s).

(iv) (Cooperativity.) We have

∂qk
∂ξl

(x, ξ) ≤ 0 (k, l = 1, . . . , s, k 6= l; x ∈ Ω, ξ ∈ Rs). (151)

(v) (Weak diagonal dominance for the Jacobians.) We have

s
∑

l=1

∂qk
∂ξl

(x, ξ) ≥ 0 (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (152)

(vi) For all k = 1, . . . , s we have fk ∈ L2(Ω), γk ∈ L2(ΓN), gk = g∗k |ΓD
with

g∗ ∈ H1(Ω).

The basic idea to deal with problem (150) is to reduce it to (123), similarly
as in Subsection 3.2. Defining the functions Vkl : Ω × Rs → R and f̂k as in
(95) and (97), respectively, problem (150) becomes

−div
(

bk(x, u,∇u)∇uk

)

+ wk(x) · ∇uk +
s
∑

l=1
Vkl(x, u,∇u)ul = f̂k(x) a.e. in Ω,

bk(x, u,∇u)
∂uk

∂ν
= γk(x) a.e. on ΓN ,

uk = gk(x) a.e. on ΓD























(153)
(k = 1, . . . , s), which is a special case of (150).

Consequently, for a finite element discretization developed as in subsec-
tion 3.1.2, Corollary 4.1 discrete maximum principle (149) for suitable dis-
cretizations of (153), provided f̂k ≤ 0 and γk ≤ 0 (k = 1, . . . , s). For the
original system (91), we thus obtain
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Corollary 4.2 Let problem (150) satisfy Assumptions 4.2, and let its FEM
discretization satisfy the corresponding conditions of Theorem 4.1. If

fk ≤ qk(x, 0), γk ≤ 0 (k = 1, . . . , s)

and uh = (uh
1 , . . . , u

h
s )

T is the FEM solution of system (150), then for suffi-
ciently small h,

max
k=1,...,s

max
Ω

uh
k ≤ max

k=1,...,s
max{0,max

ΓD

gh
k}. (154)

4.3 Nonsymmetric systems with superlinear reaction

terms

−div
(

bk(x,∇u)∇uk

)

+ wk(x) · ∇uk + qk(x, u1, ..., us) = fk(x) a.e. in Ω,

bk(x,∇u)
∂uk

∂ν
= γk(x) a.e. on ΓN ,

uk = gk(x) a.e. on ΓD























(155)
(k = 1, . . . , s).

Assumptions 4.3.

(i) The domain Ω and the diffusion coefficients bk satisfy Assumptions 3.0.

(ii) (Smoothness and growth.) For all k, l = 1, . . . , s we have bk ∈ (C1 ∩
L∞)(Ω × Rd), wk ∈ W 1,∞(Ω) and qk ∈ C1(Ω × Rs). Further, let

2 ≤ p < p∗, where p∗ := 2d
d−2

if d ≥ 3 and p∗ := +∞ if d = 2;
(156)

then there exist constants β1, β2 ≥ 0 such that
∣

∣

∣

∣

∣

∂qk
∂ξl

(x, ξ)

∣

∣

∣

∣

∣

≤ β1 + β2|ξ|
p−2 (k, l = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (157)

(iii) (Ellipticity.) Defining ak(x, η) := bk(x, η)η for all k, the Jacobian ma-
trices ∂

∂η
ak(x, η) are uniformly spectrally bounded from both below and

above.

(iv) (Coercivity.) We have div wk ≤ 0 on Ω and wk · ν ≥ 0 on ΓN

(k = 1, . . . , s).

(v) (Cooperativity.) We have

∂qk
∂ξl

(x, ξ) ≤ 0 (k, l = 1, . . . , s, k 6= l; x ∈ Ω, ξ ∈ Rs). (158)

(vi) (Weak diagonal dominance for the Jacobians w.r.t. rows and columns.)
We have
s
∑

l=1

∂qk
∂ξl

(x, ξ) ≥ 0,
s
∑

l=1

∂ql
∂ξk

(x, ξ) ≥ 0 (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs).

(159)
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(vii) For all k = 1, . . . , s we have fk ∈ L2(Ω), γk ∈ L2(ΓN), gk = g∗k |ΓD
with

g∗ ∈ H1(Ω).

We note that Remark 3.6 is valid for the above system as well.

Now we proceed as in subsection 3.3. System (155) is first reduced to
a system with nonlinear coefficients like (153). Owing to the superlinear
growth allowed in (157), we must reprove Theorem 4.1 under Assumptions
4.3. For this, we first define the operators

〈B(u)z, v〉 =
∫

Ω

s
∑

k=1

bk(x,∇u)∇zk · ∇vk, 〈Nz, v〉 =
∫

Ω

s
∑

k=1

(wk(x) · ∇zk) vk,

〈R(u)z, v〉 =
∫

Ω

s
∑

k,l=1

Vkl(x, u) zl vk

(160)
(z ∈ H1(Ω)s, v ∈ H1

D(Ω)s).

Lemma 4.2 Let Assumptions 4.3 hold. For any u ∈ H1(Ω)s, the above
operators B(u), N(u) ≡ N and R(u), together with the operator A(u) =
B(u)u+Nu+R(u)u, satisfy Assumptions 2.4.1, modified according to Remark
2.6, and Assumptions 2.4.2, in the spaces H = H1(Ω)s and H0 = H1

D(Ω)s.

Proof. This follows from Lemma 4.1 and Lemma 3.2, using the argu-
ments of the former for B(u) and N , and (under the polynomial growth) the
arguments of the latter for R(u).

We recall the new norms for (53)–(54): we have

‖|z‖|N1 = ‖z‖H1(Ω)s and ‖|v‖|N2 = ‖v‖L2(Ω)s (161)

from Lemma 4.1, and

‖|v‖|2R1
= ‖|v‖|2R2

= ‖v‖2
L2q(Ω)s :=

∥

∥

∥

s
∑

k=1

v2
k

∥

∥

∥

Lq(Ω)
(v ∈ H1(Ω)s) (162)

from Lemma 3.2, see [26], where r is any fixed real number satisfying

d

2 + d− γ
< r ≤

p∗

p− 2
. (163)

and then q in (162) is chosen as

1

r
+

1

q
= 1. (164)

We also need to strengthen Definition 4.1 on the quasi-regularity of the
mesh.
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Definition 4.2 Let Ω ⊂ Rd and let us consider a family of FEM subspaces
V = {Vh}h→0 constructed as in subsection 3.1.2. The corresponding mesh
will be called quasi-regular w.r.t. problem (155) if

c1h
γ ≤ meas(suppϕp) ≤ c2h

d , (165)

where the positive real number γ satisfies

d ≤ γ < min
{

γ∗d(p),
d(d+ 2)

d+ 1

}

(166)

with p from (157) and γ∗d(p) from (108).

Now we can derive the desired nonnegativity result for the stiffness matrix.
Here the entries of Ā(c̄) are, for any c̄ = (c1, ..., cn)T ∈ Rn and i = 1, ..., n0,
j = 1, ..., n,

aij(c̄) :=
∫

Ω

(

s
∑

k=1

bk(x,∇u
h) (∇φj)k · (∇φi)k

+
s
∑

k=1

(

wk(x) · (∇φj)k

)

(φi)k +
s
∑

k,l=1

Vkl(x, u
h) (φj)l (φi)k

) (167)

where, as in (111),

Vkl(x, u
h(x)) =

∫ 1

0

∂qk
∂ξl

(x, tuh(x)) dt (k, l = 1, . . . , s; x ∈ Ω). (168)

Theorem 4.2 Let problem (155) satisfy Assumptions 4.3. Let us consider a
family of finite element subspaces V = {Vh}h→0, such that the corresponding
family of meshes is quasi-regular according to Definition 4.2, further, for any
p = 1, ..., n̄0, t = 1, ..., n̄ (p 6= t), if meas(suppϕp ∩ suppϕt) > 0 then (139)
holds, where γ is from (166) and K0 > 0 is a constant independent of p, t
and h.

Then for sufficiently small h, the matrix Ā(c̄) defined in (167) is of gen-
eralized nonnegative type with irreducible blocks in the sense of Definition
2.4.

Proof. The proof is similar to that of Theorem 4.1, combining it with
the proof of Theorem 3.3 [26, Theorem 4.3]. We will only point out the
differences.

First, owing to (161)–(162), instead of (142) we must estimate

T (h)2 = sup
{

max
{

‖φi‖H1(Ω)s‖φj‖L2(Ω)s , ‖φi‖L2q(Ω)s‖φj‖L2q(Ω)s

}

:

φi, φj ∈ Vh

}

.
(169)

We have for all i, j

‖φi‖H1(Ω)s‖φj‖L2(Ω)s ≤ c4h
d− γ

d
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from Theorem 4.1 and

‖φi‖L2q(Ω)s‖φj‖L2q(Ω)s ≤ c5 h
d/q

from Theorem 3.3, hence

T (h)2 ≤ c6 max(hd/q, hd− γ

d ).

Here in (166), γ has been chosen such that both γ − 2 − d
q
< 0, see (143) in

[26], and γ − 2 − d+ γ
d
< 0, see (147). Therefore

lim
h→0

MB(h)

T (h)2
≥ c7 lim

h→0
min{hγ−2− d

q , hγ−2−d+ γ

d } = +∞. (170)

(Here c4, c5 etc. denote positive constants.)
It is left to verify assumption (c), i.e. that MN(‖uh‖) and MR(‖uh‖) are

bounded as h→ 0. For the former, we have the constant bound MN(‖uh‖) ≡
‖w‖L∞(Ω)s , see part (iv) of the proof of Lemma 4.1. For the latter, the
boundedness of MR(‖uh‖) was proved in [26, Theorem 4.3].

The other parts of the proof coincide with that of Theorem 4.1.

As before, we can derive the corresponding DMP:

Corollary 4.3 Let problem (155) satisfy Assumptions 4.3, and let its FEM
discretization satisfy the corresponding conditions of Theorem 4.2. If fk ≤
qk(x, 0) and γk ≤ 0 (k = 1, . . . , s), then (154) holds.

4.4 Nonsymmetric systems with nonlinear convection

coefficients

Finally we study a system containing nonlinear convection terms. The re-
quired strengthening in the other assumptions is the strong uniform diagonal
dominance (172)–(173) and the homogenity of the Dirichlet data. The ap-
plicability of these conditions will be illustrated in the example in subsection
5.3.

Let us consider the system

−div
(

bk(x,∇u)∇uk

)

+ wk(x, u) · ∇uk + qk(x, u1, ..., us) = fk(x) a.e. in Ω,

bk(x,∇u)
∂uk

∂ν
= γk(x) a.e. on ΓN ,

uk = 0 a.e. on ΓD























(171)
(k = 1, . . . , s).

Assumptions 4.4.

(i) The domain Ω and the diffusion coefficients bk satisfy Assumptions 3.0.
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(ii) (Smoothness and growth.) For all k, l = 1, . . . , s we have bk ∈ (C1 ∩
L∞)(Ω × Rd) and qk ∈ C1(Ω × Rs), further, (156) and (157) hold.

(iii) (Ellipticity.) Defining ak(x, η) := bk(x, η)η for all k, the Jacobian ma-
trices ∂

∂η
ak(x, η) are uniformly spectrally bounded from both below and

above.

(iv) (Bounded convection term.) We have wk ∈ L∞(Ω×R) (k = 1, . . . , s).

(v) (Cooperativity.) We have
∂qk
∂ξl

(x, ξ) ≤ 0 (k, l = 1, . . . , s, k 6= l; x ∈

Ω, ξ ∈ Rs).

(vi) (Uniform diagonal dominance for the Jacobians w.r.t. rows and columns.)
There exists µ > 0 such that

s
∑

l=1

∂qk
∂ξl

(x, ξ) ≥ µ,
s
∑

l=1

∂ql
∂ξk

(x, ξ) ≥ µ (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs).

(172)
Moreover,

µ >
‖w‖2

L∞(Ω)s

4m
(173)

where ‖w‖L∞(Ω)s := sup
k=1,...,s

(x,ξ)∈Ω×Rs

|wk(x, ξ)| and m is from Assumption

3.0 (ii).

(vii) For all k = 1, . . . , s we have fk ∈ L2(Ω) and γk ∈ L2(ΓN).

We proceed similarly as in the previous subsection, system (171) is re-
duced to a system with nonlinear coefficients as before via the functions
Vkl : Ω × Rs → R and f̂k from (95) and (97), respectively. The difference
is is the nonlinear convection term. Taking this into account, we must re-
prove Theorem 4.2 under Assumptions 4.4, but only those parts are addressed
where the convection term is involved.

The operator corresponding to our problem is

〈A(u), v〉 =
∫

Ω

(

s
∑

k=1

bk(x,∇u)∇uk · ∇vk +
s
∑

k=1

(wk(x, u) · ∇uk) vk

+
s
∑

k,l=1

Vkl(x, u)ul vk

)

(174)

(u ∈ H1(Ω)s, v ∈ H1
D(Ω)s). First we properly modify (160), where the

main point is to compensate for the presence of the convection term in the
positivity of the operator without a coercivity condition on wk. We define
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the operators

〈B(u)z, v〉=
∫

Ω

s
∑

k=1

(

bk(x,∇u)∇zk · ∇vk + µzkvk

)

〈N(u)z, v〉=
∫

Ω

s
∑

k=1

(wk(x, u) · ∇zk) vk

〈R(u)z, v〉=
∫

Ω

(

s
∑

k,l=1

Vkl(x, u) zl vk − µ
s
∑

k=1

zkvk

)

(175)

(z ∈ H1(Ω)s, v ∈ H1
D(Ω)s). We note that (95) and (172) yield

s
∑

l=1

Vkl(x, ξ) ≥ µ (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs), (176)

and hence, since Vkl(x, ξ) ≤ 0 for k 6= l by Assumption 4.4 (v), we also have

Vkk(x, ξ) ≥ µ (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (177)

Lemma 4.3 Let Assumptions 4.4 hold. For any u ∈ H1(Ω)s, the operators
B(u), N(u) and R(u), together with the operator A(u) in (174), satisfy As-
sumptions 2.4.1, modified according to Remark 2.6, in the spaces H = H1(Ω)s

and H0 = H1
D(Ω)s.

Proof. We must reprove those parts of Lemma 4.2 that involve the con-
vection term or the modifications of B(u) and R(u) with the term containing
µ.

(i) It is obvious from (174) and (175) that A(u) = B(u)u+N(u)u+R(u)u.

(ii) We must prove (31). Here for all u ∈ H1(Ω)s and v ∈ H1
D(Ω)s,

〈(

B(u) +N(u)
)

v, v
〉

=
∫

Ω

s
∑

k=1

(

bk(x,∇u) |∇vk|
2 + µv2

k

)

+
∫

Ω

s
∑

k=1

(wk(x, u) · ∇vk) vk

≥ m‖∇v‖2
L2(Ω)s + µ‖v‖2

L2(Ω)s − ω‖∇v‖L2(Ω)s ‖v‖L2(Ω)s

(178)

where ω := ‖w‖L∞(Ω)s . Using the basic inequality xy ≤ 1
2

(

εx2 + 1
ε
y2
)

(ε > 0, x, y ∈ R) for the last two factors, we obtain

〈(

B(u) +N(u)
)

v, v
〉

≥
(

m−
ωε

2

)

‖∇v‖2
L2(Ω)s +

(

µ−
ω

2ε

)

‖v‖2
L2(Ω)s .

Choosing ε := ω
2µ

, we have

〈(

B(u) +N(u)
)

v, v
〉

≥ m̂ ‖∇v‖2
L2(Ω)s ≡ m̂ ‖v‖2

where m̂ := m− ω2

4µ
> 0 by (173).
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(iii) Let us consider the sets P and D, defined in paragraph (iii) of the proof
of Lemma 4.1. That is, v ∈ D iff v = (0, . . . , 0, g, 0, . . . , 0)T with g at
the k-th entry for some 1 ≤ k ≤ s and g ∈ H1(Ω), g ≥ 0. Further,
v ∈ P iff v = (y, . . . , y) for some y ∈ H1(Ω), y ≥ 0. We must prove
that for any u ∈ H1(Ω)s and v ∈ D, we have

〈R(u)z, v〉 ≥ 0 (179)

provided that either z ∈ P or z = v ∈ D.

If z ∈ P , then

〈R(u)z, v〉 =
∫

Ω

(

s
∑

l=1

Vkl(x, u) − µ
)

yg ≥ 0

by (176) and that y, g ≥ 0. If z = v ∈ D, then by (177)

〈R(u)v, v〉 =
∫

Ω

(

Vkk(x, u) − µ
)

g2 ≥ 0.

(iv) This follows in the same way as in Lemma 4.2. For N(u), we can
similarly factor out ‖w‖L∞(Ω)s . For R(u), the new norms can remain
‖|v‖|2R1

= ‖|v‖|2R2
= ‖v‖2

L2q(Ω)s as in (162), since the additional term in

(175) can be bounded by the product L2-norm ‖.‖L2(Ω)s , which is (up
to a constant factor) not larger than the norm ‖.‖2

L2q(Ω)s owing to the
Sobolev inequality.

Now we can derive the nonnegativity of the stiffness matrix. Here the
entries of Ā(c̄) are, for any c̄ = (c1, ..., cn)T ∈ Rn and i = 1, ..., n0,
j = 1, ..., n,

aij(c̄) :=
∫

Ω

(

s
∑

k=1

bk(x,∇u
h) (∇φj)k · (∇φi)k

+
s
∑

k=1

(

wk(x, u
h) · (∇φj)k

)

(φi)k +
s
∑

k,l=1

Vkl(x, u
h) (φj)l (φi)k





(180)

where Vkl(x, u
h) is as in (168).

Theorem 4.3 Let problem (171) satisfy Assumptions 4.4. Let us consider a
family of finite element subspaces V = {Vh}h→0, such that the corresponding
family of meshes is quasi-regular according to Definition 4.2, further, for any
p = 1, ..., n̄0, t = 1, ..., n̄ (p 6= t), if meas(suppϕp ∩ suppϕt) > 0 then (139)
holds, where γ is from (166) and K0 > 0 is a constant independent of p, t
and h.

Then for sufficiently small h, the matrix Ā(c̄) defined in (180) is of gen-
eralized nonnegative type with irreducible blocks in the sense of Definition
2.4.
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Proof. The proof is similar to that of Theorem 4.2, with a few differ-
ences. First, the proof for assumption (a) relies on (141), where by (175),

now 〈B(uh)φj, φi〉 contains the additional term
∫

Ω
µ

s
∑

k=1

(φj)k (φi)k. However,

this term is bounded by µs, hence altogether (141) is preserved with another
constant instead of ĉ1 and still tends to −∞. In the other parts of the proof
we only need the sum of B(u) and R(u), in which the additional terms vanish
by definition.

Finally, Theorem 4.2 contains the boundedness of MR(‖uh‖), see the end
of its proof, which fact is quoted from [26, Theorem 4.3]. This part of the
proof uses Assumptions 2.4.2, which have not yet been proved now. Assump-
tions 2.4.2 are used in [26, Theorem 4.3] to have uniform monotonicity of A
in order to prove that

〈A(uh) − A(gh), uh − gh〉 ≥ m ‖uh − gh‖2 , (181)

since this implies the boundedness of ‖uh‖ if we assume the boundedness of
‖gh‖ (as h → 0). These properties are derived in [26, Remark 3.1]. Now we
have gh = 0 by the homogeneous Dirichlet data in (171), hence we only need
(181) for the special case gh = 0. Therefore, to prove our theorem, it suffices
instead of Assumptions 2.4.2 to verify

〈A(uh), uh〉 ≥ m̃ ‖uh‖2 (h > 0) (182)

for some constant m̃ > 0, independent of the FEM solution uh of our problem.
Since uh = 0 on ΓD, we can substitute u = v = uh in (174):

〈A(uh), uh〉 =
∫

Ω

(

s
∑

k=1

bk(x,∇u
h) |∇uh

k|
2 +

s
∑

k=1

(wk(x, u
h) · ∇uh

k)u
h
k

)

+
∫

Ω

s
∑

k,l=1

Vkl(x, u
h)uh

l u
h
k

(183)

=
∫

Ω

(

s
∑

k=1

bk(x,∇u
h) |∇uh

k|
2 + µ|uh

k|
2 +

s
∑

k=1

(wk(x, u
h) · ∇uh

k)u
h
k

)

(184)

+
∫

Ω

s
∑

k,l=1

(

Vkl(x, u
h)uh

l u
h
k − µ|uh

k|
2
)

. (185)

We can estimate (184) in the same way as in (178), and obtain the lower
bound m̂ ‖uh‖2 where m̂ := m− ω2

4µ
> 0. For (185), note that (172) and (95)

imply that µ is a lower uniform spectral bound for the matrices V (x, ξ), i.e.

V (x, ξ) ζ · ζ ≡
s
∑

k,l=1

Vkl(x, ξ) ζl ζk ≥ µ|ζ|2 (186)

(for all (x, ξ) ∈ Ω×Rs and ζ ∈ Rs), which yields that the expression in (185)
is nonnegative. Altogether, (182) holds with m̃ := m̂.
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As before, we can derive the corresponding DMP (154) under the condi-
tions of Theorem 4.3. Since now g = 0, this becomes the discrete nonposi-
tivity property uh

k ≤ 0. One can similarly obtain the discrete nonnegativity
property, which is more noteworthy to formulate here:

Corollary 4.4 Let problem (171) satisfy Assumptions 4.4, and let its FEM
discretization satisfy the corresponding conditions of Theorem 4.3. If fk ≥
qk(x, 0) and γk ≥ 0 (k = 1, . . . , s), then for sufficiently small h, the FEM
solution uh = (uh

1 , . . . , u
h
s )

T of system (171) satisfies

uh
k ≥ 0 on Ω (k = 1, . . . , s). (187)

5 Some real-life examples

5.1 Reaction-diffusion systems in chemistry

The following result is quoted from [26]. The steady states of certain reaction-
diffusion processes in chemistry are described by systems of the following
form:

−bk∆uk + Pk(x, u1, . . . , us) = fk(x) in Ω,

bk
∂uk

∂ν
= γk(x) on ΓN ,

uk = gk(x) on ΓD























(k = 1, . . . , s). (188)

Here, for all k, the quantity uk describes the concentration of the kth species,
and Pk is a polynomial which characterizes the rate of the reactions involving
the k-th species. A common way to describe such reactions is the so-called
mass action type kinetics [21, 22], which implies that Pk has no constant
term for any k, in other words, Pk(x, 0) ≡ 0 on Ω for all k. Further, the
reaction between different species is often proportional to the product of their
concentration, in which case Pk(x, u1, . . . , us) = akk(x)u

α
k +

∑

k 6=l
akl(x)ukul.

The function fk ≥ 0 describes a source independent of concentrations.

We consider system (188) under the following conditions, such that it
becomes a special case of system (100). As pointed out later, such chemical
models describe processes with cross-catalysis and strong autoinhibiton.

Assumptions 5.1.

(i) Ω ⊂ Rd is a bounded piecewise C1 domain, where d = 2 or 3, and
ΓD,ΓN are disjoint open measurable subsets of ∂Ω such that ∂Ω =
ΓD ∪ ΓN .

(ii) (Smoothness and growth.) For all k, l = 1, . . . , s, the functions Pk are
polynomials of arbitrary degree if d = 2 and of degree at most 4 if
d = 3, further, Pk(x, 0) ≡ 0 on Ω.
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(iii) (Ellipticity.) bk > 0 (k = 1, . . . , s) are given numbers.

(iv) (Cooperativity.) We have

∂Pk

∂ξl
(x, ξ) ≤ 0 (k, l = 1, . . . , s, k 6= l; x ∈ Ω, ξ ∈ Rs). (189)

(v) (Weak diagonal dominance for the Jacobians w.r.t. rows and columns.)
We have

s
∑

l=1

∂Pk

∂ξl
(x, ξ) ≥ 0,

s
∑

l=1

∂Pl

∂ξk
(x, ξ) ≥ 0 (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs).

(190)

(vi) For all k = 1, . . . , s we have fk ∈ L2(Ω), γk ∈ L2(ΓN), gk = g∗k |ΓD
with

g∗ ∈ H1(Ω).

Similarly to (94), assumptions (189)-(190) now imply

∂Pk

∂ξk
(x, ξ) ≥ 0 (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (191)

Returning to the model described by system (188), the chemical meaning
of the cooperativity (189) is cross-catalysis, whereas (191) means autoin-
hibiton. Cross-catalysis arises e.g. in gradient systems [49]. Condition (190)
means that autoinhibition is strong enough to ensure both weak diagonal
dominances.

By definition, the concentrations uk are nonnegative, therefore a proper
numerical model must produce such numerical solutions. We can use Corol-
lary 3.5 to obtain the required property:

Corollary 5.1 Let problem (188) satisfy Assumptions 5.1, and let its FEM
discretization satisfy the conditions of Theorem 3.3. If

fk ≥ 0, γk ≥ 0, gk ≥ 0 (k = 1, . . . , s)

then for sufficiently small h, the FEM solution uh = (uh
1 , . . . , u

h
s )

T of system
(188) satisfies

uh
k ≥ 0 on Ω (k = 1, . . . , s). (192)

5.2 Linear elliptic systems

Maximum principles or nonnegativity preservation for linear elliptic systems
have attracted great interest, as mentioned in the introduction. Hence it
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is worthwile to derive the corresponding DMPs from the previous results.
Following [26], let us therefore consider linear elliptic systems of the form

−div (bk(x)∇uk) +
s
∑

l=1
Vkl(x)ul = fk(x) a.e. in Ω,

bk(x)
∂uk

∂ν
= γk(x) a.e. on ΓN ,

uk = gk(x) a.e. on ΓD























(k = 1, . . . , s)

(193)
where for all k, l = 1, . . . , s we have bk ∈ W 1,∞(Ω) and Vkl ∈ L∞(Ω).

Let Assumptions 3.1 hold (where in fact we do not need assumption (ii)).
Then (193) is a special case of (56), hence Corollary 3.2 holds, as well as the
analogous results mentioned in Remark 3.2. Here we formulate two of these
that follow the most studied CMP results:

Corollary 5.2 Let problem (193) satisfy Assumptions 3.1, let its FEM dis-
cretization satisfy the conditions of Theorem 3.1 and let h be sufficiently
small. If uh = (uh

1 , . . . , u
h
s )

T is the FEM solution of system (193), then the
following properties hold.

(1) If fk ≤ 0, γk ≤ 0 (k = 1, . . . , s) and max
k=1,...,s

max
ΓD

gh
k > 0, then

max
k=1,...,s

max
Ω

uh
k = max

k=1,...,s
max
ΓD

gh
k . (194)

(2) If fk ≥ 0, γk ≥ 0 and gk ≥ 0 (k = 1, . . . , s), then

uh
k ≥ 0 on Ω (k = 1, . . . , s). (195)

5.3 Nonsymmetric transport systems

The description of nonlinear transport processes for certain agents (pollu-
tants), involving diffusion, convection and reaction, often leads to systems of
the form

−bk∆uk + wk(x, u) · ∇uk + Pk(x, u1, ..., us) = fk(x) a.e. in Ω,

bk
∂uk

∂ν
= γk(x) a.e. on ΓN ,

uk = 0 a.e. on ΓD























(196)

(k = 1, . . . , s). We consider diffusion-dominated processes, i.e. when the
fixed numbers bk > 0 are comparable to the magnitude of the coefficients
wk. Here uk ≥ 0 are the concentrations of the agents. One expects any
numerical solution method to reproduce the nonnegativity of the solution.

Assumptions 5.3.

(i) The numbers bk and functions Pk, fk and γk satisfy Assumptions 5.1.

(ii) We have wk ∈ L∞(Ω × R) (k = 1, . . . , s).
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(iii) There exists µ > 0 such that

s
∑

l=1

∂Pk

∂ξl
(x, ξ) ≥ µ,

s
∑

l=1

∂Pl

∂ξk
(x, ξ) ≥ µ (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs).

(197)
Moreover,

µ >
‖w‖2

L∞(Ω)s

4m
(198)

where ‖w‖L∞(Ω)s := sup
k=1,...,s

(x,ξ)∈Ω×Rs

|wk(x, ξ)| and m := mink bk > 0 .

Systems of the form (196) typically arise from the time discretization of
the time-dependent transport system

∂uk

∂t
− bk∆uk + wk(x, u) · ∇uk +Rk(x, u1, ..., us) = gk(x, t) (199)

with the boundary conditions of (196) and an initial condition uk(x, 0) =
u0(x) (x ∈ Ω). Here wk(x, u) is the convective term, e.g. wind, and Rk is a
polynomial which characterizes the rate of the reactions involving the k-th
species, as in subsection 5.1. Here the Rk do not satisfy a condition like
(197), this will come instead from the numerical process below.

The standard numerical solution first uses a time discretization, resulting
in the following equations, where ui

k denotes the solution on the ith time level
ti:

ui
k − ui−1

k

τ
− bk∆u

i
k + wk(x, u

i) · ∇ui
k +Rk(x, u

i
1, ..., u

i
s) = gi

k(x) .

Rearranging this as

−bk∆u
i
k + wk(x, u

i) · ∇ui
k +

(

Rk(x, u
i
1, ..., u

i
s) +

1

τ
ui

k

)

= gi
k(x) +

1

τ
ui−1

k ,

we obtain a system for the unknown function ui
k in the form (196) with

coefficients

Pk(x, ξ1, ..., ξs) := Rk(x, ξ1, ..., ξs) +
1

τ
ξk (200)

and fk(x) := gi
k(x)+ 1

τ
ui−1

k (x). Then the strong uniform diagonal dominance
(197)–(198) can be ensured as follows. Assume that we have an estimate

inf
k=1,...,s

(x,ξ)∈Ω×Rs

s
∑

l=1

∂Rk

∂ξl
(x, ξ) ≥ −µ0, inf

k=1,...,s

(x,ξ)∈Ω×Rs

s
∑

l=1

∂Rl

∂ξk
(x, ξ) ≥ −µ0

for some µ0 ≥ 0, and let µ be a number satisfying (198). Then we can choose
the time-step τ to be small enough, namely, τ ≤ 1

µ0+µ
. In this case, using

(200), we obtain

s
∑

l=1

∂Pk

∂ξl
(x, ξ) ≥ −µ0 +

1

τ
≥ −µ0 + (µ0 + µ) = µ,
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and similarly for the other sum in (197).

Under the above conditions, system (196) is a special case of system
(171), hence we can apply Corollary 4.4. Here, as mentioned in subsection
5.1, Pk(x, 0) ≡ 0 on Ω for all k, further, we have homogeneous Dirichlet
boundary conditions. Hence the result has the following form:

Corollary 5.3 Let problem (196) satisfy Assumptions 5.3, and let its FEM
discretization satisfy the corresponding conditions of Theorem 4.3. If fk ≥ 0
and γk ≥ 0 (k = 1, . . . , s), then for sufficiently small h, the FEM solution
uh = (uh

1 , . . . , u
h
s )

T of system (196) satisfies

uh
k ≥ 0 on Ω (k = 1, . . . , s). (201)
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[25] Karátson, J., Korotov, S., Discrete maximum principles for finite ele-
ment solutions of nonlinear elliptic problems with mixed boundary conditions,
Numer. Math. 99 (2005), 669–698.
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Jyväskylä, GAKUTO Internat. Ser. Math. Sci. Appl., vol. 15, Gakkotosho,
Tokyo, 2001, 118–134.
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