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AB TEKNILLINEN KORKEAKOULU

TEKNISKA HÖGSKOLAN

HELSINKI UNIVERSITY OF TECHNOLOGY

TECHNISCHE UNIVERSITÄT HELSINKI

UNIVERSITE DE TECHNOLOGIE D’HELSINKI





Helsinki University of Technology Institute of Mathematics Research Reports

Espoo 2009 A571

COMPUTATIONAL METHODS FOR STOCHASTIC

RELATIONS AND MARKOVIAN COUPLINGS

Lasse Leskelä
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1 Introduction

Comparison techniques based on stochastic orders [12, 13, 14] are key to
obtaining upper and lower bounds for complicated random variables and
processes in terms of simpler random elements. Consider for example two er-
godic discrete-time Markov processes X and Y with stationary distributions
µX and µY , taking values in a common ordered state space, and denote by
≤st the corresponding stochastic order. Then the upper bound

µX ≤st µY (1)

can be established [6] without explicit knowledge of µX by verifying that the
corresponding transition probability kernels PX and PY satisfy

x ≤ y =⇒ PX(x, ·) ≤st PY (y, ·). (2)

Analogous conditions for continuous-time Markov processes on countable
spaces have been derived by Whitt [15] and Massey [11], and later extended
to more general jump processes by Brandt and Last [2].

Less stringent sufficient conditions for obtaining (1) have recently been
found using a new theory stochastic relations [9]. Two random variables are
stochastically related, denoted by X ∼st Y , if there exists a coupling (X̂, Ŷ )
of X and Y such that X̂ ∼ Ŷ almost surely, where ∼ denotes some relation
between the state spaces of X and Y . The main motivation for this definition
is that (2) is by no means necessary for (1); a less stringent sufficient condition
is that

x ∼ y =⇒ PX(x, ·) ∼st PY (y, ·) (3)

for some, not necessarily symmetric or transitive, nontrivial subrelation of the
underlying order relation. Another advantage of the generalized definition is
that X and Y are no longer required to take values in the same state space,
leading to greater flexibility in the search for bounding random elements Y .
For example, to study whether f(X) ≤st g(Y ) for some given real functions
f and g defined on the state spaces of X and Y , we may define a relation
x ∼ y by the condition f(x) ≤ g(y) [3].

The rest of the paper is outlined as follows. After recalling the basic
definitions, Section 2 presents a numerical algorithm for verifying stochastic
relations between finite spaces, together with an analysis of computational
complexity. Section 3 recalls how a recursive subrelation algorithm may be
used to find Markovian couplings preserving a given relation. In Section 4,
a new truncation approach is presented that allows to precisely compute
truncated outcomes of the subrelation algorithm for infinite-state Markov
processes with locally bounded jumps. Section 5 discusses applications to
loss networks and parallel queues, and Section 6 concludes the paper.
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2 Stochastic relations

2.1 General definitions

We shall here recall the definitions of stochastic relations between countable
spaces. Probability measures µ on a countable state space S shall be viewed
as a probability vectors via identifying µ(x) = µ({x}). For a treatment on
more general spaces, see [9].

A relation between S1 and S2 is subset of S1 × S2. Given a nontrivial
(R 6= ∅) relation R between S1 and S2, we write

x ∼ y,

if (x, y) ∈ R. The relation R may equivalently be viewed as a matrix so that
R(x, y) = 1 if x ∼ y and R(x, y) = 0 otherwise. A coupling of probability
vectors µ on S1 and ν on S2 is a probability vector λ on S1×S2 with marginals
µ and ν, that is,

∑

y∈S2

λ(x, y) = µ(x) for all x ∈ S1,

∑

x∈S1

λ(x, y) = ν(y) for all y ∈ S2.

For probability vectors µ on S1 and ν on S2 we denote

µ ∼st ν,

and say that µ is stochastically related to ν, if there exists a coupling λ of µ
and ν such that

∑

(x,y)∈R

µ(x, y) = 1.

The relation Rst = {(µ, ν) : µ ∼st ν} is called the stochastic relation gener-
ated by R. Observe that two Dirac masses satisfy δx ∼st δy if and only if
x ∼ y. In this way the stochastic relation Rst may be regarded as a natural
randomization of the underlying relation R.

The following result in [9], which is rephrased here for ease of reference,
provides an analytical method to check whether a pair of probability measures
are stochastically related.

Theorem 1. [9] Two probability vectors µ and ν are stochastically related
with respect to R if and only if

∑

x∈U

µ(x) ≤
∑

y∈S2

(

max
x∈U

R(x, y)

)

ν(y) (4)

for all finite U ⊂ S1, or equivalently, if and only if

∑

y∈V

ν(y) ≤
∑

x∈S1

(

max
y∈V

R(x, y)

)

µ(x) (5)

for all finite V ⊂ S2.
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A random variable X is stochastically related to a random variable Y ,
denoted by X ∼st Y , if the distribution of X is stochastically related to the
distribution of Y . Observe that X and Y do not need to be defined on the
same probability space. Recall that a coupling of random variables X and Y
is a bivariate random variable whose distribution couples the distributions of
X and Y . Hence X ∼st Y if and only if there exists a coupling (X̂, Ŷ ) of X
and Y such that X̂ ∼ Ŷ almost surely.

Example 1. If ≤ is an order (reflexive and transitive) relation on a space
S, then the corresponding stochastic relation ≤st is called a stochastic order.
Using Strassen’s classical theorem [12], we see that X ≤st Y if and only if
E f(X) ≤ E f(Y ) for all positive increasing functions f on S.

2.2 Stochastic relations between finite spaces

Let R be a relation between finite spaces S1 and S2, and denote by Rst the
corresponding stochastic relation. Then Theorem 1 may be used to determine
whether µ ∼st ν. However, this requires to check the inequality (4) for all
subsets of S1, which is computationally infeasible unless the spaces are small.
The following result shows that less checks may be sufficient. We shall denote
the support of a probability vector µ by Uµ = {x : µ(x) > 0}. Moreover, we
denote by F (U, Z2) the set of vectors with components in {0, 1} indexed by
elements of U , which may also be identified as the set of all subsets of U .

Theorem 2. Two probability vectors µ and ν with supports Uµ and Uν are
stochastically related with respect to R if and only if

∑

x∈Uµ

f(x) µ(x) ≤
∑

y∈Uν

max
x∈Uµ

[f(x)R(x, y)] ν(y) (6)

for all f ∈ F (Uµ, Z2), or equivalently, if and only if

∑

y∈Uν

g(y) ν(y) ≤
∑

x∈Uµ

max
y∈Uν

[R(x, y)g(y)] µ(x) (7)

for all g ∈ F (Uν , Z2).

Proof. In light of Theorem 1, it suffices to show the equivalence of (4) and (6),
and the equivalence of (5) and (7). Observe that (4) directly implies (6),
because the members of F (Uµ, Z2) may be identified with the indicator func-
tions of subsets of Uµ. To prove the converse, assume that (6) holds, and let
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U be an arbitrary subset of S1. Define f(x) = 1(x ∈ U ∩ Uµ). Then

∑

x∈U

µ(x) =
∑

x∈Uµ

f(x)µ(x)

≤
∑

y∈Uν

max
x∈Uµ

[f(x)R(x, y)] ν(y)

=
∑

y∈S2

(

max
x∈Uµ∩U

R(x, y)

)

ν(y)

≤
∑

y∈S2

(

max
x∈U

R(x, y)

)

ν(y).

Hence (4) holds. Proving the equivalence of (5) and (7) is completely analo-
gous.

Algorithm 1 Determining whether µ ∼st ν.

Uµ ← {x ∈ S1 : µ(x) > 0}
Uν ← {y ∈ S2 : ν(y) > 0}
if #Uµ > #Uν then

flip µ↔ ν, Uµ ↔ Uν , S1 ↔ S2

end if

b← true
for i = 1, . . . , 2#Uµ do

f ← i-th vector in F (Uµ, Z2)
vl ←

∑

x∈Uµ
f(x) µ(x)

vr ←
∑

y∈Uν

[

maxx∈Uµ
f(x)R(x, y)

]

ν(y)
if vl > vr then

b← false
break

end if

end for

return b

Algorithm 1 describes how Theorem 2 can be applied to numerically de-
termine whether µ ∼st ν. The interchange of the variables in the beginning
corresponds to using (6) if the support of µ is smaller than ν, and (7) other-
wise. Inspection of Algorithm 1 shows that the computational complexity of
determining whether µ ∼st ν is of the order

O(max(n′
1, n

′
2)2

min(n′

1
,n′

2
)),

where n′
1 and n′

2 denote the cardinalities of the supports of µ and ν. The
algorithm is very slow when both state spaces are large and µ and ν have
positive mass in all states. However, in many applications related to struc-
tured Markov chains we may assume that the µ and ν have small supports
(see Section 5).
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Remark 1. The verification of µ ∼st ν can be carried out faster, if the
underlying relation R has some structure that can be employed. For example,
for the natural order on S = {1, . . . , n}, µ ≤st ν can be verified in O(n2) time
by checking whether µK ≤ νK holds coordinatewise, where K is the n-by-n
lower triangular matrix such that K(i, j) = 1(i ≥ j) [1].

3 Markov processes

3.1 Markovian couplings

All state spaces in the following shall be assumed finite or countably infi-
nite. The keep the presentation short, all results shall be formulated for
continuous-time Markov processes, which without further mention shall be
assumed nonexplosive. For a Markov process X with values in S we denote
by X(x, t) the value of the process at time t given that was started at state x.
A Markov process X̂ = (X̂1, X̂2) taking values in S1×S2 is called a Markovian
coupling of X1 and X2 if X̂(x, t) couples X1(x1, t) and X2(x2, t) for all t and
all x = (x1, x2). A common approach for showing that the time-dependent
distributions of two Markov processes X1 and X2 are stochastically ordered,
is to find a Markovian coupling X̂ = (X̂1, X̂2) of X1 and X2 such that

x1 ≤ x2 =⇒ X̂1(x1, t) ≤ X̂2(x2, t) (8)

almost surely for all t [12]. Observe that if (8) holds, then for all t and all
increasing functions f ,

E f(X1(x1, t)) = E f(X̂1(x1, t))

≤ E f(X̂2(x2, t)) = E f(X2(x2, t)),

whenever x1 ≤ x2. Hence X1(x1, t) ≤st X2(x2, t). If both X1 and X2 have
unique stationary distributions, it follows by taking limits that the stationary
distributions are stochastically ordered.

Observe that (8) is not necessary for the stochastic ordering of the sta-
tionary distributions of X1 and X2. To formulate a less stringent sufficient
condition, we shall use the following definitions. Let R be a relation between
S1 and S2. A pair of Markov processes X1 in S1 and X2 in S2 is said to
stochastically preserve the relation R, if

x1 ∼ x2 =⇒ X1(x1, t) ∼st X2(x2, t) for all t ≥ 0.

Moreover, a set B is called invariant for a Markov process X if x ∈ B implies
X(x, t) ∈ B for all t almost surely. The following results was proved in [9],
which we rephrase here for convenience.

Theorem 3. [9] The following are equivalent:

(i) X1 and X2 stochastically preserve the relation R.
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(ii) There exists a Markovian coupling of X1 and X2 for which R is invari-
ant.

Assume now that X1 and X2 are Markov processes with values in an
ordered space S, and assume R is a subrelation of the order that is stochas-
tically preserved by X1 and X2. Then X1(x1, t) ≤st X2(x2, t) for all x1 ∼ x2.
Especially, if X1 and X2 have unique stationary distributions, then a suffi-
cient condition for the stochastic ordering of the stationary distributions is
that X1 and X2 stochastically preserve some nontrivial subrelation of the
order relation.

3.2 Subrelation algorithm

Recall that a matrix Q with entries Q(x, y), x, y ∈ S is called a rate matrix,
if Q(x, y) ≥ 0 for all x 6= y and Q(x, x) = −

∑

y 6=x Q(x, y) for all x. If X is a
Markov process with rate matrix Q, then Q(x, y) is the transition rate of X
from state x into y, and we denote by q(x) = −Q(x, x) the total transition
rate of X out of state x.

Given Markov processes X1 and X2 with rate matrices Q1 and Q2, define
the relation-to-relation mapping MQ1,Q2

by

MQ1,Q2
(R) = {(x, y) ∈ R : (µx,y, νx,y) ∈ Rst}, (9)

where the probability measures µx,y and νx,y are defined by

µx,y(u) = q−1
x,yQ1(x, u) + δx(u), (10)

νx,y(v) = q−1
x,yQ2(y, v) + δy(v), (11)

and where qx,y = 1 + q1(x) + q2(y). When there is no risk of confusion, we
denote MQ1,Q2

= M . Moreover, define recursively the sequence Mk(R) by
setting M0(R) = R, Mk(R) = M(Mk−1(R)) for k ≥ 1, and denote the limit
of the sequence by

M∗(R) = ∩∞
k=0M

k(R).

Theorem 4. [9] The relation M∗(R) is the maximal subrelation of R that is
stochastically preserved by X1 and X2. Especially:

(i) X1 and X2 stochastically preserve R if and only if M(R) = R.

(ii) X1 and X2 stochastically preserve a nontrivial subrelation of R if and
only if M∗(R) 6= ∅.

When the state spaces S1 and S2 are finite, Algorithm 2 describes how
to numerically compute M(R), and Algorithm 3 describes the computation
of M∗(R). Observe that for finite state spaces, Algorithm 3 computes the
apparently infinite intersection ∩∞

k=0M
k(R) in finite time, because as long as

Mk(R) and Mk−1(R) are not equal, they differ by at least one element, and
the sequence Mk(R) is decreasing.
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Algorithm 2 Computation of R′ = M(R).

R′ ← n1-by-n2 zero matrix
for (x, y) ∈ R do

q ← 1 + q(1)(x) + q(2)(y)
µ← q−1Q(1)(x, ·) + δx(·)
ν ← q−1Q(2)(y, ·) + δy(·)
Check whether µ ∼st ν (use Algorithm 1)
if µ ∼st ν then

R′(x, y)← 1
end if

end for

Algorithm 3 Computation of R∗ = ∩∞
n=0M

k(R).

R′ ←M(R) (use Algorithm 2)
while R′ 6= R do

R← R′

R′ ←M(R) (use Algorithm 2)
end while

R∗ ← R′

4 Truncation approach

4.1 Truncation of Markov processes

If Q is a rate matrix of a Markov process on a countably infinite space S,
and Sn is a finite subset of S, we define the truncation of Q into Sn by

Qn(x, y) =











Q(x, y), x 6= y, x, y ∈ Sn,

−
∑

y∈Sn,y 6=x

Q(x, y), x = y, x ∈ Sn. (12)

We shall later approximate Q by Qn and use the finite subrelation algorithm
applied to Qn. To understand the approximation error, we need to study
how the untruncated process may escape the set Sn. Given a rate matrix
Q on a countable space S, we say that an increasing sequence of finite sets
Sn ⊂ S is a truncation sequence for Q, if ∪∞

n=0Sn = S, and

{y : Q(x, y) > 0} ⊂ Sn+1 (13)

for all x ∈ Sn.

Example 2. Let Q be the rate matrix of a Markov process on Z+ that is skip-
free to the right, so that Q(i, j) = 0 for all j > i + 1. Then Sn = Z+ ∩ [0, n]
is truncation sequence for Q.

The next result shows that truncation sequences can be constructed for
most Markov processes encountered in applications. We say that a Markov
process X with rate matrix Q has locally bounded jumps, if the set {y :
Q(x, y) > 0} is finite for all x.
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Lemma 1. Any rate matrix Q of a Markov process with locally bounded
jumps possesses a truncating sequence.

Proof. Because S is countable, we may choose an increasing sequence of finite
sets Kn such that ∪∞

n=0Kn = S. Using this sequence we may recursively define
the sets Sn by setting S0 = K0, and

Sn+1 = Sn ∪Kn ∪ J(Sn), n ≥ 0,

where
J(Sn) = {y : Q(x, y) > 0 for some x ∈ Sn}

denotes the set of states that are reachable from Sn by one jump. Then
∪∞

n=0Sn = S, because Kn ⊂ Sn+1 for all n ≥ 0. Moreover, J(Sn) ⊂ Sn+1

implies that (13) holds for all n, and induction shows that the sets Sn are
finite, because Q has locally bounded jumps.

4.2 Truncation of stochastic relations

Let R be a relation between countably infinite state spaces S1 and S2. If S ′
i

is a finite subset of Si, i = 1, 2, we define the truncation of R by

R′ = R ∩ (S ′
1 × S ′

2) (14)

The corresponding stochastic relation R′
st, a relation between probability

measures on the finite spaces S ′
1 and S ′

2, is called the truncation of Rst into
S ′

1 × S ′
2.

If µi is probability measure on Si having all its mass on S ′
i, we may regard

µi as a probability measure µ′
i on S ′

i by identifying subsets of S ′
i as subsets

of Si.

Lemma 2. Let µi be a probability measure on Si such that µi(S
′
i) = 1,

i = 1, 2. Then (µ1, µ2) ∈ Rst if and only if (µ′
1, µ

′
2) ∈ R′

st.

Proof. The claim follows using [9, Lemma 5.2], after observing that R′ is
the relation induced from R by the pair (φ1, φ2), where φi is the natural
embedding of S ′

i into Si, and µ′
i = µi ◦ φi.

4.3 Truncated subrelation algorithm

Given a pair of Markov processes X1 and X2 with rate matrices Q1 and Q2,
and a relation R between S1 and S2, Algorithm 3 describes how to recursively
calculate R∗ = M∗

Q1,Q2
(R) as the limit of the sequence Rk = Mk

Q1,Q2
(R). If

the state spaces are infinite, Rk cannot be computed using finite time and
memory. Nevertheless, when the processes have locally bounded jumps, the
truncations TN(Rk) of Rk into suitable truncation sets S1,N × S2,N can be
computed precisely, as shall be shown next.

For any relation R between S1,n and S2,n, let Mn(R) = MQ1,n,Q2,n
(R) be

the relation given by Algorithm 2 applied to R using the truncations Q1,n

and Q2,n of Q1 and Q2 as defined in (13). Moreover, denote by M∞ = MQ1,Q2

the corresponding untruncated mapping.
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Lemma 3. For any pair of Markov processes with locally bounded jumps, the
truncation of M∞(R) to S1,n × S2,n satisfies

Tn(M∞(R)) = Tn(Mn+1(Tn+1(R))) for all n.

Proof. Observe that Tn(M∞(R)) equals the set of points (x, y) ∈ Tn(R) such
that the measures µx,y and νx,y defined in (10) and (11) are stochastically
related with respect to R. Because S1,n and S2,n are truncating sequences
for Q1 and Q2, we know that µx,y and νx,y have supports in S1,n+1 and
S2,n+1, respectively. Hence by Lemma 2, Tn(M∞(R)) equals the set of points
(x, y) ∈ Tn(R) such that µx,y and νx,y are stochastically related with respect
to Tn+1(R). Because for (x, y) ∈ Tn(R), the measures µx,y and νx,y remain
the same, if we replace Q1 and Q2 by Q1,n+1 and Q2,n+1 in (10) and (11), the
claim follows.

Theorem 5. For any pair of Markov processes with locally bounded jumps,
the truncation of Rk = Mk

∞(R) to S1,n × S2,n satisfies

Tn(Rk) = Tn(Mn+1Tn+1) · · · (Mn+kTn+k)(R).

Proof. Apply Lemma 3 and induction.

Algorithm 4 describes how Theorem 5 can be used to compute Tn(Rk) in
finite time and memory.

Algorithm 4 Computation of R′ = TN(MK(R)).

R′ ← TN+K(R)
for k = 1, . . . , K do

n← N + K + 1− k
Q1,n ← truncation of Q1 into S1,n

Q2,n ← truncation of Q2 into S2,n

R′ ← Tn(R′)
R′ ← Algorithm 2 applied to (Q1,n, Q2,n, R′)

end for

R′ ← TN(R′)

The following result is a necessary condition for finding a subrelation of
R that is stochastically preserved by a pair of Markov processes.

Theorem 6. Let X1 and X2 be Markov processes with locally bounded jumps.
If Tn(Mk(R)) = ∅ for some k, then Tn(M∗(R)) = ∅. Especially, if for all n,
Tn(Mk(R)) = ∅ for some k, then X1 and X2 do not stochastically preserve
any nontrivial subrelation of R.

Proof. Because the sequence Mk(R) is decreasing, and because the trunca-
tion map is monotone with respect to set inclusion, the first claim follows.
For the second claim, observe that if Tn(R∗) = ∅ for all n, then because
∪n(S1,n × S2,n) = S, R∗ = ∅.
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5 Applications

5.1 Multilayer loss networks

5.1.1 Overflow routing

Consider a loss system with K customer classes and two layers of servers,
where layer 1 contains mk servers dedicated to class k, and layer 2 con-
sists of n servers capable of serving all customer classes. Arriving class-k
customers are routed to vacant servers in one of the layers, with prefer-
ence given to layer 1; or rejected otherwise. For analytical tractability, we
assume that the interarrival times and the service requirements of class-k
customers are exponentially distributed with parameters λk and µk, respec-
tively, and that all these random variables across all customer classes are
independent. For brevity, we denote m = (m1, . . . ,mK), λ = (λ1, . . . , λK),
and µ = (µ1, . . . , µK).

λ1 λ2 λ3

m1 m2 m3

n

Layer 1

Layer 2

Figure 1: Two-layer loss network with three customer classes (K = 3).

Denote by Xi,k(t) the number of class-k customers being served at layer i
at time t. The system is described by the Markov process X = (Xi,k) taking
values in

S1 =
{

x ∈ Z
K
+ × Z

K
+ : x1,k ≤ mk ∀k,

∑K

k=1 x2,k ≤ n
}

, (15)

and having the transitions

x 7→



















x + e1,k, at rate λk1(x1,k < mk),

x + e2,k, at rate λk1(x1,k = mk,
∑K

k=1 x2,k < n),

x− e1,k, at rate µkx1,k,

x− e2,k, at rate µkx2,k,

where ei,k denotes the unit vector in Z
K
+×Z

K
+ corresponding to the coordinate

direction (i, k).

5.1.2 Maximum packing

To approximate the original two-layer loss system, we consider a modification
of the system, where customers are redirected from layer 2 to layer 1 as

12



soon as servers become vacant. This corresponds to the so-called maximum
packing policy introduced by Everitt and Macfadyen [4]. Denote by Yk(t)
the total number of customers in the system with maximum packing. Then
t 7→ Y (t) = (Y1(t), . . . , YK(t)) is a Markov process (see [5]) with values in

S2 =
{

y ∈ Z
K
+ :

∑K

k=1(yk −mk)+ ≤ n
}

,

and having the transitions

y 7→

{

y + ek, at rate λk1(y + ek ∈ S2),

y − ek, at rate µkyk.

The structure of the above transition rates implies that the stationary dis-
tribution πY of Y is a product of Poisson distributions truncated to S2 [7],
so that

πY (y) = c

K
∏

k=1

(λk/µk)
yk

yk!
, y ∈ S2,

where the constant c can be solved from
∑

y∈S2
πY (y) = 1. This product

form structure allows for fast computation of stationary performance char-
acteristics of the maximum packing system.

5.1.3 Stochastic comparison

Table 1 illustrates the outcomes of the subrelation algorithm (computed us-
ing [8]) applied to various initial relations, where

Rsum = {(x, y) ∈ S1 × S2 :
∑

k(x1,k + x2,k) ≤
∑

k yk} ,

Rsum
1 = {(x, y) ∈ S1 × S2 :

∑

k x1,k ≤
∑

k(yk ∧mk)} ,

Rcoord
1 = {(x, y) ∈ S1 × S2 : x1,k ≤ yk ∧mk for all k} .

Note that Rsum
1 relates the state pairs (x, y) where the total number of layer-1

customers corresponding to x is less than that corresponding to y. Moreover,
Rcoord

1 relates the state pairs where the populations in layer 1 are coordinate-
wise ordered. The entry ”several” in Table 1 refers to running Algorithm 2
separately for several pseudorandom parameter combinations, and taking the
intersection of the produced relations as a final result.

From Table 1, we can make several conclusions on the behavior of the
subrelation algorithm:

• The pair (X1, X2) appears to stochastically preserve Rsum
1 for all pa-

rameter combinations (same parameters in both systems). This fact is
in fact not hard to verify analytically.

• When µ1 = µ2, the pair (X1, X2) stochastically preserves a nontrivial
subrelation of Rsum. The maximal subrelation of Rsum preserved may
depend on the model parameters.
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R (λ1, λ2) (µ1, µ2) M∗(R)

Rsum (1, 1) (1, 1) Rsum ∩Rsum
1 ∩Rmin

1

Rsum several (1, 1) Rsum ∩Rcoord
1

Rsum several several ∅
Rsum

1 (1, 1) (1, 1) Rsum
1

Rsum
1 several (1, 1) Rcoord

1

Rsum
1 several several Rcoord

1

Rcoord
1 several several Rcoord

1

Table 1: Outcomes of the subrelation algorithm for a network with m1 =
1,m2 = 1, n = 2.

• Rsum ∩Rcoord
1 appears to be a subrelation of Rsum that is stochastically

preserved for all parameter choices, as long as µ1 = µ2 (Figure 3). This
fact is proved in [5].

• When the system is symmetric (λ1 = λ2, µ1 = µ2 and m1 = m2), a
larger relation Rsum ∩ Rsum

1 ∩ Rmin
1 ⊃ Rsum ∩ Rcoord

1 is stochastically
preserved (Figure 2).

• When µ1 6= µ2, Rsum in general does not have a nontrivial subrelation
preserved by the pair. This fact is also reflected in [5, Example 5.2.1],
where it was found that the stationary distributions are not in general
stochastically ordered with respect to Rsum.

As an illustration, the limiting relations Rsum∩Rsum
1 ∩Rmin

1 and Rsum∩Rcoord
1

(filled circles), together with the initial relation Rsum (filled + unfilled circles)
are plotter in Figures 2 and 3, respectively.
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Figure 2: Relations Rsum and M∗(Rsum) for a system with m1 = 1,m2 =
1, n = 2, for λ = (1, 1) and µ = (1, 1).
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Figure 3: Relations Rsum and M∗(Rsum) for a system with m1 = 1,m2 =
1, n = 2, for various λ and fixed µ = (1, 1).

5.2 Parallel queues

Consider a system of two queues in parallel, where customers of queue k
have arrival rate λk and service rate µk. Assuming that all interarrival and
service times are independent and exponential, the queue length process X =
(X1, X2) is a Markov process in Z

2
+ with transitions

x 7→

{

x + ek, at rate λk,

x− ek, at rate µk1(xk > 0).

We shall also consider a modification of the system, where load is balanced by
routing incoming traffic to the shortest queue, modeled as a Markov process
XLB = (XLB

1 , XLB
2 ) in Z

2
+ with transitions

x 7→



















x + e1, at rate (λ1 + λ2)1(x1 < x2) + λ11(x1 = x2),

x + e2, at rate (λ1 + λ2)1(x1 > x2) + λ21(x1 = x2),

x− e1, at rate µ11(x1 > 0),

x− e2, at rate µ21(x2 > 0).

Common sense suggests that load balancing decreases the number of cus-
tomers in the system in some sense. The validity of this comparison property
can be numerically studied using Algorithm 4. Denote the rate matrix of XLB

by Q1 and the rate matrix of X by Q2, and let Sn = Z
2
+ ∩ [0, n− 1]2, n ≥ 1.

Then Sn is a truncation sequence for both Q1 and Q2.
Figure 4 illustrates five iterations of the subrelation algorithm (computed

using [8]) truncated to S3 applied to the coordinatewise order

Rcoord =
{

(x, y) ∈ Z
2
+ × Z

2
+ : x1 ≤ y1, x2 ≤ y2

}

,

with the parameters λ1, λ2, µ1, µ2 all equal to one. Because T3(R
4) = T3(R

5) =
∅, we conjecture that there exists no nontrivial subrelation of Rcoord stochas-
tically preserved by (XLB, X) (see Theorem 6).
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Figure 4: Truncated subrelation algorithm applied to Rcoord.

Let us next study another order on Z
2
+, defined by

Rsum =
{

(x, y) ∈ Z
2
+ × Z

2
+ : x1 + y1, x2 + y2

}

.

Figure 5 illustrates five iterations of the subrelation algorithm (computed us-
ing [8]) truncated to S3 applied to R0 = Rsum with the parameters λ1, λ2, µ1, µ2

all equal to one. The observation that T3(R
k) remains unchanged from k = 1

onwards suggests that some nontrivial subrelation of Rsum might be stochas-
tically preserved by (XLB, X). Indeed, it has been analytically shown [9] that
whenever µ1 = µ2, the untruncated subrelation algorithm converges to the
relation

R∗ = {(x, y) : x1 + x2 ≤ y1 + y2 and x1 ∨ x2 ≤ y1 ∨ y2} .

As a consequence of Theorem 4, the pair (XLB, X) stochastically preserves
the relation R∗, which may be identified as the weak majorization order on
Z

2
+ [10]. Especially,

XLB
1 (t) + XLB

2 (t) ≤st X1(t) + X2(t),

XLB
1 (t) ∨XLB

2 (t) ≤st X1(t) ∨X2(t),

for all t, whenever the initial states XLB(0) and X(0) satisfy the same in-
equalities.
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Figure 5: Truncated subrelation algorithm applied to Rsum.

6 Conclusions

This paper presented computational methods for verifying stochastic rela-
tions and finding relation-invariant couplings of continuous-time Markov pro-
cesses on finite and countably infinite state spaces. A key point of the paper
is that the stochastic relationship between two probability measures can be
quickly numerically checked, if one of the measures has small support (The-
orem 2). This result allows the development of a truncation approach for
finding relations stochastically preserved by pairs of Markov processes with
locally bounded jumps. The truncated subrelation algorithm (Algorithm 4)
allows to numerically find candidates for a subrelation of a given relation
that is stochastically preserved by a pair of Markov processes. It remains an
interesting open problem for future research to study how the truncated sub-
relation algorithm behaves for structured Markov processes with for example
shift-invariant transition rate matrices.
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A558 José Igor Morlanes, Antti Rasila, Tommi Sottinen

Empirical evidence on arbitrage by changing the stock exchange

December 2008

A557 Mika Juntunen, Rolf Stenberg

Analysis of finite element methods for the Brinkman problem

April 2009



HELSINKI UNIVERSITY OF TECHNOLOGY INSTITUTE OF MATHEMATICS

RESEARCH REPORTS

The reports are available at http://math.tkk.fi/reports/ .

The list of reports is continued inside the back cover.

A570 Janos Karatson, Sergey Korotov

Discrete maximum principles for FEM solutions of nonlinear elliptic systems

May 2009

A569 Antti Hannukainen, Mika Juntunen, Rolf Stenberg

Computations with finite element methods for the Brinkman problem

April 2009

A568 Olavi Nevanlinna

Computing the spectrum and representing the resolvent

April 2009

A567 Antti Hannukainen, Sergey Korotov, Michal Krizek

On a bisection algorithm that produces conforming locally refined simplicial

meshes

April 2009

A566 Mika Juntunen, Rolf Stenberg

A residual based a posteriori estimator for the reaction–diffusion problem

February 2009

ISBN 978-951-22-9958-4 (print)

ISBN 978-951-22-9959-1 (PDF)

ISSN 0784-3143 (print)

ISSN 1797-5867 (PDF)


	Introduction
	Stochastic relations
	General definitions
	Stochastic relations between finite spaces

	Markov processes
	Markovian couplings
	Subrelation algorithm

	Truncation approach
	Truncation of Markov processes
	Truncation of stochastic relations
	Truncated subrelation algorithm

	Applications
	Multilayer loss networks
	Overflow routing
	Maximum packing
	Stochastic comparison

	Parallel queues

	Conclusions
	Acknowledgments

