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Mika Juntunen: Finite element methods for parameter dependent problems;
Helsinki University of Technology Institute of Mathematics Research Reports A573
(2009).

Abstract: This thesis develops finite element methods for parameter depen-
dent equations. The interest lies in cases where the nature of the problem
and the numerical methods used change with the parameters. The studied
examples are the reaction-diffusion problem, the Robin boundary condition,
which generalizes the Dirichlet and Neumann conditions, and the Brinkman
equation, which generalizes the Stokes and the Darcy equations.

The developed methods depend continuously on the problem parameters
and work even for the limiting values. A posteriori estimates are derived for
all the proposed methods, taking into account the parameters.

Significant parts of this work are the implementation of the proposed
methods and the numerical verfication of the developed theory.

AMS subject classifications: 65N30

Keywords: finite element method, boundary conditions, Nitsche’s method, a
posteriori estimation, Stokes equation, Darcy equation, Brinkman equation

Mika Juntunen: Elementtimenetelmiä parametririippuville tehtäville

Tiivistelmä: Tässä väitöskirjassa on kehitetty menetelmiä parametririip-
puville tehtäville. Erityisesti tarkastellaan sellaisia tapauksia joissa tehtävän
luonne ja käytetyt numeeriset menetelmät selkeästi muuttuvat parametrien
mukaan. Tarkasteltavia tehtäviä ovat reaktio-diffuusio ongelma, Robinin reu-
naehdot, jotka muuttuvat Dirichletin ehdoista Neumanin ehdoiksi, ja Brink-
manin yhtälö, joka käyttäytyy joko Stokesin tai Darcyn tehtävän tapaan.

Työssä kehitetyt menetelmät riippuvat jatkuvasti tehtävän parametreis-
ta ja ovat voimassa myös parametrien raja-arvoilla. Lisäksi menetelmille on
johdettu a posteriori virhe-estimaattorit joissa riippuvuus tehtävän paramet-
reistä otetaan huomioon.

Merkittävä osa työtä ovat numeeristen menetelmien toteutus ja esitetyn
teorian numeerinen testaus.

Avainsanat: elementtimenetelmä, reunaehdot, Nitschen menetelmä, a posteriori
arviointi, Stokesin yhtälö, Darcyn yhtälö, Brinkmanin yhtälö



Acknowledgement

I am especially grateful to my advisor Prof. Rolf Stenberg for his invaluable
guidance. He has been very approachable and supporting, always.

I thank Prof. Peter Hansbo for inviting me to Chalmers University of Tech-
nology in the fall 2007; the three months ’working holiday’ was extremely
fruitful, and an educational experience. The conversations with Dr. Harri
Hakula (usually during the early morning coffee breaks) have motivated me
and given me different and refreshing views on the academia, and on the life
in general. I thank all my colleagues at the Department of Mathematics,
especially the ’finite element family’.

Finally, I give warm thanks to my parents for encouraging me to study.

Financial support from the ’Teknillisen mekaniikan tutkijakoulu’ graduate
school (4 year position), the TKK (researcher training scholarship, year
2005), and the Emil Aaltonen foundation (incentive grant) is gratefully ack-
owledged.

Vantaa, June 2009 Mika Juntunen

4



List of included publications

References

[A] Mika Juntunen, Rolf Stenberg. On a mixed discontinuous Galerkin
method. Electronic Transactions on Numerical Analysis, 32 (2008),
17–32.

[B] Mika Juntunen, Rolf Stenberg. Nitsche’s method for general boundary
conditions. Mathematics of Computation, 78, 267 (2009), 1353–1374.
doi:10.1090/S0025-5718-08-02183-2

[C] Peter Hansbo, Mika Juntunen. Weakly imposed Dirichlet
boundary conditions for the Brinkman model of porous media
flow. Applied Numerical Mathematics, 59 (2008), 1274–1289.
doi:10.1016/j.apnum.2008.07.003

[D] Mika Juntunen, Rolf Stenberg. A residual based a posteriori estimator
for the reaction–diffusion problem. C. R. Acad. Sci. Paris, Ser. I 347
(2009), 555–558. doi:10.1016/j.crma.2009.03.010

[E] Mika Juntunen, Rolf Stenberg. Analysis of finite element methods for
the Brinkman problem. Helsinki University of Technology Institute of
Mathematics Research Report A557 (2009).

[F] Antti Hannukainen, Mika Juntunen, Rolf Stenberg. Computations with
finite element methods for the Brinkman problem. Helsinki University
of Technology Institute of Mathematics Research Report A569 (2009).

Author’s contribution

The author of the thesis has written all of the articles, except [C], in collab-
oration with Prof. Rolf Stenberg. The article [C] is written in collaboration
with Prof. Peter Hansbo (Chalmers University of Technology). M.Sc.(Tech.)
Antti Hannukainen (TKK, Department of Mathematics and Systems Analy-
sis) is the main developer of the Matlab code used in [F].

5



1 Introduction

The analysis of the Stokes equations assumes that the viscosity has a positive
lower bound. This assumption is perfectly sound for the Stokes flow but in
the closely related Brinkman problem, also known as the Darcy-Stokes flow,
this assumption is not necessary. In the limit of vanishing viscosity the
Brinkman problem simply becomes the Darcy problem. The transition from
the Stokes problem to the Darcy problem has various consequences; solution
spaces, boundary conditions, and applied elements change, to name a few.
The mathematical framework needs to take all these changes into account.
One of the main items of this thesis is the finite element analysis of the
Brinkman equation. The results are highligted in Section 4.

Another main item of this thesis is enforcing the Robin boundary con-
dition. The classical application of the Robin boundary condition couples
the problem parameter and the mesh size. This leads to an ill-conditioned
system. In addition, the a rate of convergence is not optimal uniformly with
respect to the problem parameter. Section 2 shows how applying the bound-
ary conditions weakly with Nitsche’s method improves the situation.

The boundary conditions are also studied in the case of singularly per-
turbed problems. Here the difficulty is that the essential boundary condition
becomes the natural condition in the limit. Section 3 shows how the transi-
tion is naturally incorporated into the weak form with Nitsche’s method.

Error analysis plays a prominent role in this thesis. The focus is on the
residual based a posteriori error estimates that are readily computable once
the solution is available. Especially the effect of the problem parameters
on the a posteriori indicators is thoroughly studied. Section 5 extracts the
a posteriori results derived in the included publications and highlights the
main points and similarities.

The finite element method is a numerical method. This is a luxury that
needs to be exploited in the analysis. That is to say, the derived theory can,
and must, be tested computationally. All the methods and theorems derived
in this thesis have passed numerous computational tests and the results are
well in line with the theory, see the included publications.

Finally, Section 6 relates the included publications to the course of this
thesis and draws conclusions.

2 The Robin boundary condition

Consider the Poisson problem with the Robin boundary condition

−∆u = f in Ω ⊂ R
N , (1)

ǫ∂nu + u = 0 on ∂Ω, (2)

where ∂n denotes the normal derivative and the parameter 0 ≤ ǫ ≤ ∞.
The limiting values of ǫ yield the pure Dirichlet and Neumann boundary
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conditions respectively:

ǫ = 0 ⇒ u = 0 on ∂Ω, (3)

ǫ → ∞ ⇒ ∂nu = 0 on ∂Ω. (4)

Assume a shape regular partitioning Ch of the domain Ω, where h denotes
the maximum size of the elements. The solution space for the problem is

Vh = {v ∈ H1(Ω) | vK ∈ Pk(K) ∀K ∈ Ch}, (5)

where Pk denotes the polynomials of order k and K denotes an element in
the partitioning. The classical finite element formulation of this problem is:
Find uh ∈ Vh such that

(∇uh,∇v) + ǫ−1 〈uh, v〉 = (f, v) ∀v ∈ Vh, (6)

where (·, ·) denotes the L2-inner product in Ω and 〈·, ·〉 that on the boundary
∂Ω.

In the above formulation the parameter ǫ and the mesh size h are coupled.
If ǫ → 0 the weak form and the discrete system become ill-conditioned [3].
This affects the accuracy of the method. For a smooth solution the a priori
error estimate for the problem is [8]

‖∇(u − uh)‖0 + ǫ−1/2‖u − uh‖0,∂Ω ≤ Chk(1 + ǫ−1/2h
1/2

∂Ω
), (7)

where h∂Ω denotes the size of the largest element on ∂Ω. Thus, the a priori
estimate is not optimal until the mesh length is of the order of ǫ, that is, until
h∂Ω ≤ Cǫ. Above and in what follows the constants C and Ci are generic
constants independent of the mesh size and the problem parameters.

To remedy the coupling above the Robin boundary condition is enforced
using Nitsche’s method [B]. In [15, 12, 17] this is done for the Dirichlet
boundary condition. For the Robin boundary the formulation is: Find uh ∈
Vh such that

Bh(uh, v) = (f, v) ∀v ∈ Vh, (8)

where

Bh(uh, v) = (∇uh,∇v) +
∑

E∈Γh

{

−
γhE

ǫ + γhE

(

〈∂nuh, v〉E + 〈∂nv, uh〉E
)

(9)

+
1

ǫ + γhE

〈uh, v〉E −
ǫγhE

ǫ + γhE

〈∂nuh, ∂nv〉E

}

.

Above Γh denotes a partitioning of the boundary ∂Ω and E denotes a bound-
ary element. For stability assume that the parameter γ > C−1

I . The constant
CI depends on the inequality

hE‖∂nv‖∂K ≤ CI‖∇v‖K ∀v ∈ Vh. (10)
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The above weak form is a generalization of the Dirichlet and Neumann
problems and the formulation reduces to these two cases; ǫ = 0 gives Nitsche’s
method for the Dirichlet boundary conditions

Bh(uh, v) = (∇uh,∇v) +
∑

E∈Γh

{

−
(

〈∂nuh, v〉E + 〈∂nv, uh〉E
)

(11)

+
1

γhE

〈uh, v〉E

}

and ǫ → ∞ gives the (almost) classical Neumann problem

Bh(uh, v) = (∇uh,∇v) +
∑

E∈Γh

{

− 〈∂nuh, ∂nv〉E

}

. (12)

The extra term above does not have effect on the solution. In the Neumann
case the data needs to satisfy f ∈ L2

0
(Ω).

In addition, γ = 0 yields the classical formulation (6).
The essential advantage of Nitsche’s method over the classical formula-

tion is that it decouples the mesh size and the parameter ǫ. Hence, neither
the weak form nor the discrete system become ill-conditioned even if the
parameter ǫ reaches the limiting values. The a priori estimate is optimal
independent of ǫ. For a smooth solution it holds

‖∇(u − uh)‖0 +
(

∑

E∈Γh

1

ǫ + hE

‖u − uh‖
2

0,E

)1/2

≤ Chk. (13)

3 Singular perturbations

Consider the reaction-diffusion problem

−ǫ2∆u + u = f in Ω, (14)

u = 0 on ∂Ω, (15)

with the parameter 0 ≤ ǫ ≤ C < ∞. The solution is sought in the space
ǫH1

0
(Ω) ∩ L2(Ω). Hence, the type of the boundary condition depends on

the parameter ǫ. For ǫ > 0 one has the homogenous Dirichlet boundary
condition. In the limit ǫ = 0, the solution is the L2-projection of the load f
and the boundary condition disappers.

In classical finite element methods removing the essential boundary con-
ditions is problematic since it requires altering the solution space. Using
Nitche’s method the boundary conditions are enforced in the bilinear form.
Thus, modifying the conditions equals simply modifying the weak form. The
proposed method is: Find uh ∈ Vh such that

(uh, v) + ǫ2

(

(∇uh,∇v) +
∑

E∈Γh

[

− 〈∂nuh, v〉E − 〈∂nv, uh〉E + γh−1

E 〈uh, v〉E

])

= (f, v) ∀v ∈ Vh. (16)
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For stability assume that γ > CI , see (10).
The factor ǫ2γh−1

E enforces the boundary conditions in the above formu-
lation. As long as ǫ ≪ h, the solution of Nitsche’s method adapts to the
L2-projection without the boundary conditions. As the ratio ǫ/h grows, the
boundary conditions are gradually forced into the system. See Figure 5 in [F]
for visualization of this behaviour.

Similar results are observed also for the Brinkman problem [C, E, F]
where the boundary condition changes from the essential Stokes condition to
the natural Darcy condition as the problem parameter vanishes.

4 The Brinkman problem

Consider the scaled problem

−t2∆u + u + ∇p = f in Ω, (17)

∇ · u = g in Ω, (18)

where the parameter 0 ≤ t ≤ C < ∞. In the limit t = 0, the equations yield
the Darcy problem, and for t ≈ 1 they are the Stokes problem. Hence, the
entire nature of the problem changes as the parameter reaches the limiting
values.

The problem stated above lacks the boundary conditions. Assume the
conditions are homogenous. For the Stokes problem, that is, for t > 0 they
are

essential: u = 0, (19)

natural: t2∂nu + pn = 0, (20)

where n is the outer unit normal and ∂nu = ∇u ·n. For the Darcy problem,
that is, in the limit t = 0 they are

essential: p = 0, (21)

natural: u · n = 0. (22)

The essential boundary conditions become the natural ones, and vice versa,
as t → 0. In addition, the problem is singularly perturbed.

In the following the boundary conditions on the whole ∂Ω are

u = 0 for t > 0, (23)

u · n = 0 for t = 0. (24)

For compatibility assume that g ∈ L2

0
(Ω) and to obtain a unique pressure

assume that p ∈ L2

0
(Ω).

Both Stokes and Darcy problems are saddle point problems, therefore the
norms and solution spaces have to be designed carefully taking into account
both limiting problems. The idea in the construction of the solution spaces
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is to first choose the norm and then define the space such that the norm is
finite. For the elliptic velocity part the energy norm is

‖v‖2

t = t2‖∇v‖2

0
+ ‖v‖2

0
. (25)

The solution space V , taking into account the boundary condition, is the
completion of [C∞

0
(Ω)]N with respect to the energy norm. Thus V = [tH1

0
(Ω)∩

L2(Ω)]N . Notice that the boundary condition disappers in the limit t = 0 as
the boundary condition changes from essential to natural.

The solution space for the pressure is

Q = {q ∈ L2

0
(Ω) | |‖q‖|t < ∞}, (26)

where the norm is

|‖q‖|t = sup
v∈V

〈v,∇q〉V ×V ∗

‖v‖t

. (27)

Above 〈·, ·〉V ×V ∗ denotes the duality pairing. For t = 0 the norm is |‖q‖|t =
‖∇q‖0, and for 0 < t ≤ C it holds

C1‖q‖0 ≤ |‖q‖|t ≤ C2t
−1‖q‖0. (28)

The practical interpretation of the space is Q = L2

0
(Ω) for t = 0 and Q =

H1(Ω) ∩ L2

0
(Ω) for t > 0.

The above definition of the norms and spaces ensures that Brezzi’s con-
ditions [7] hold, which implies that the saddle point problem is stable and
has a unique solution.

The requirements for the solution spaces change places as t → 0. For
the velocity the space grows from [H1

0
(Ω)]N to [L2(Ω)]N and for the pressure

the space reduces from L2

0
(Ω) to H1(Ω) ∩ L2

0
(Ω). This carries over to the

applicable finite elements. Consider the elements constructed of elementwise
Pk polynomials. In the sense of convergence rates, a balanced Stokes method
has Pk approximation for the velocity and Pk−1 for the pressure. In the Darcy
limit the balanced approximations are Pk for the pressure and Pk−1 for the
velocity. Therefore equal order approximations seem the best option for the
range 0 ≤ t ≤ C.

The saddle point nature of the Brinkman problem imposes requirements
on the finite elements; they need to satisfy Brezzi’s conditions as well. The
mathematical framework proposed above is closely related to the Stokes
framework. Thus, transferring well-known Stokes elements to Brinkman
framework appears to be a good way of designing elements. Using the
’Pitkäranta-Verfürth’-trick [16, 18] and the discrete counterpart of the pres-
sure norm (27)

|‖q‖|2t,h =
∑

K∈Ch

h2

K

t2 + h2

K

‖∇q‖2

0,K (29)

it is possible to show that the MINI element [2] is stable in the Brinkman
problem. Another way of designing stable equal order methods is to stabilize
the formulation [6, 14, 11, 10].
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5 A posteriori error analysis

The a posteriori estimators studied in this thesis are such that the error in
the energy norm is bounded with the sum of the elementwise indicators. The
elementwise indicators are readily computable and depend only on the finite
element solution and the given data.

It is also important that the estimator is accurate. For the indicators
shown below it holds that they are bounded with the sum of the error in the
energy norm and the possible data projection error. The constants Ci are
indepentent of the mesh size and the problem parameters. In this sense the
estimators are sharp.

For the Robin boundary condition (8) the elementwise indicator is

EK(uh)
2 = h2

K‖∆uh + f‖2

0,K + hK‖[[∂nuh]]‖
2

0,∂K\∂Ω
(30)

+
hK

(ǫ + γhK)2
‖ǫ∂nuh + uh‖

2

0,∂K∩∂Ω
.

It is a generalization of the Dirichlet and Neumann estimators; for ǫ = 0 this
yields the estimator of Nitsche’s method for the Dirichlet conditions

EK(uh)
2 = h2

K‖∆uh + f‖2

0,K + hK‖[[∂nuh]]‖
2

0,∂K\∂Ω
+ h−1

K ‖uh‖
2

0,∂K∩∂Ω
(31)

and for ǫ → ∞ the indicator becomes

EK(uh)
2 = h2

K‖∆uh + f‖2

0,K + hK‖[[∂nuh]]‖
2

0,∂K\∂Ω
+ hK‖∂nuh‖

2

0,∂K∩∂Ω
, (32)

which is the usual indicator for the Neumann problem.
For the reaction-diffusion problem (14)-(15), without Nitsche’s method,

the elementwise indicator is

EK(uh)
2 =

h2

K

ǫ2 + h2

K

‖ǫ2∆uh − uh + f‖2

0,K +
hK

ǫ2 + h2

K

‖[[ǫ2∂nuh]]‖
2

0,∂K\∂Ω
(33)

and in the limit ǫ = 0 it reduces to

EK(uh)
2 = ‖ − uh + f‖2

0,K (34)

which is the indicator of the L2-projection.
For the Brinkman problem (17)-(18) with boundary conditions (23)-(24)

the indicator is

EK(uh, ph)
2 =

h2

K

t2 + h2

K

‖t2∆uh − uh −∇ph + f‖2

0,K

+ (t2 + h2

K)‖∇ · uh − g‖2

0,K (35)

+
hK

t2 + h2

K

‖[[t2∂nuh]]‖
2

0,∂K\∂Ω
+

t2 + h2

K

hK

‖uh · n‖2

0,∂K∩∂Ω
.

This is a generalization of the Stokes and Darcy indicators. In the Darcy
limit t = 0 it reduces to the usual Darcy indicator

EK(uh, ph)
2 = ‖ − uh −∇ph + f‖2

0,K + h2

K‖∇ · uh − g‖2

0,K (36)

+ hK‖uh · n‖2

0,∂K∩∂Ω
.
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For t > 0 the boundary condition is uh = 0 on ∂Ω thus the last term can be
neglected. For t ≈ 1 the indicator is

EK(uh, ph)
2 ≈ h2

K‖t2∆uh − uh −∇ph + f‖2

0,K + ‖∇ · uh − g‖2

0,K

+ hK‖[[t2∂nuh]]‖
2

0,∂K\∂Ω
, (37)

which, in turn, is the usual Stokes indicator.

6 Conclusions

[A] The article is a continuation of the authors master’s thesis on solv-
ing contact problems with Nitsche’s method. It studies the mixed
discontinuous Poisson problem where the continuity is enforced using
Nitsche’s method. The analysed method is the stabilized Bassi-Rebay
(SBR) method [4, 5]. The given analysis of the SBR method is simpler
and more straightforward. Particularly interesting is the application of
the Helmholtz decomposition [1, 9, 13] in the proof of the a posteriori
estimator. The advantage of the Helmholtz decomposition is that the
saturation assumption is not needed. In addition, one can use the well
known Clément interpolation, even though the method is discontinous.

[B] The article was developed simultaneously with [A]. It studies enforcing
the Robin boundary condition in a weak sense using Nitsche’s method.
The proposed method generalizes enforcing the Dirichlet and Neumann
conditions and this generalization carries over to the error analysis.
The main advantage over the classical approach is that in the proposed
method the mesh size and the problem parameter are not coupled.

[C] The article was written while the author was visiting Prof. Peter
Hansbo at the Chalmers University of Technology. It discusses solving
the Brinkman equation with a stabilized low order method. The article
focuses on a posteriori analysis and on studying how Nitsche’s method
enhances the solution close to the boundaries near the Darcy limit.

[D] The article derives an a posteriori estimate for the reaction-diffusion
problem. The proposed elementwise indicator depends continuously on
the diffusion coefficient. This article is a spin-off of the studies on the
Brinkman problem and the results are expanded in [E].

[E] The article continues the studies on the Brinkman problem started
in [C]. The article gives a complete finite element analysis of the
Brinkman problem; applicable in both the Stokes and Darcy limits.
The analysis contains not only a novel mathematical framework but
also the a priori and a posteriori error analysis. The studied finite el-
ements are the generalized MINI element [2] and the stabilized equal
order methods [6, 14, 11, 10].
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[F] The article completes the analysis of [E] with extensive numerical com-
putations. The results suggest that the equal order methods, such as
the MINI element and the stabilized methods, give good approximation
to the Brinkman problem in both the Stokes and Darcy limits. The
article also continues the studies on applying boundary conditions with
Nitsche’s method in sigularly perturbed problems, which started in [C].
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[15] J.A. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Prob-
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