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1 Introduction

File-sharing networks are distributed systems used to disseminate informa-
tion among a subset of the nodes of the Internet (overlay network). The
general simple principle is the following: once a node of the system has re-
trieved a file it becomes a server for this file. The advantage of this scheme is
that it disseminates information in a very efficient way as long as the number
of servers is growing rapidly. The growth of the number of servers is not
necessarily without bounds since a node having this file may stop being a
server after some time. These schemes have been used for some time now in
peer-to-peer systems such as BitTorrent or Emule, for example to distribute
large files over the Internet.

An improved version of this principle consists in splitting the original file
into several pieces (called “chunks”) so that a given node can retrieve simul-
taneously several chunks of the same file from different servers. In this case,
the rate to get a given file may thus increase significantly. At the same time,
the global capacity of the file-sharing system is also increased since a node
becomes a server of a chunk as soon as it has retrieved it and not only when
it has the whole file. This improvement has interesting algorithmic implica-
tions since each node has to establish a matching between chunks and servers.
Strategies to maximize the global efficiency of the file sharing systems have
to be devised. See for instance Massoulié and Vojnović [12], Bonald et al. [4]
and Massoulié and Twigg [11].

The efficiency of these systems can be considered from different points of
view.

Transient behavior A new file is owned by one node, given there are po-
tentially N other nodes interested by it, how long does it take so that
a given node retrieves it ? significant fraction α ∈ (0, 1] of the N nodes
retrieve it ? See Yang and de Veciana [26] and Simatos et al. [22]. See
also Robert and Simatos [19].

Stationary behavior A constant flow of requests enters, is the capacity of
the file-sharing system sufficient to cope with this flow ?

In this paper, the stationary behavior is investigated in a stochastic context:
arrival times are random as well as chunk transmission times. In this setting
mathematical studies are quite scarce, see Qiu and Srikant [17], Simatos et
al. [22], Susitaival et al. [24] and references therein. A simple strategy to
disseminate chunks is considered: chunks are retrieved sequentially and a
given node can be the server of only the last chunk it got. See Massoulié and
Vojnović [12] and Parvez et al. [16] for a detailed motivation of this situation.

In this paper, the sequential scheme for disseminating a file that is divided
into n chunks is analyzed. New requests arrive according to a Poisson process
at rate λ, and become downloaders of chunk 1. Users who have obtained
chunks 1, . . . , k act simultaneously as uploaders of chunk k and downloaders
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of chunk k + 1, and the users who have all the chunks leave the network
at rate ν. The transmission rate of chunk k is denoted by µk, and xk is
the number of users having obtained chunks 1, . . . , k. In this way, the total
transmission rate of chunk k in the network is µkxk. The flow of users can
be modeled as the linear network depicted in Figure 1.

λ
x0 · · ·

µixi
xi

µi+1xi+1
· · ·

µnxn
xn

νxn

Figure 1: Transition rates of the linear network outside boundaries.

The main problem analyzed in the paper is the determination of a con-
stant λ∗ such that if λ < λ∗ [resp. λ > λ∗], then the associated Markov process
is ergodic [resp. transient]. As it will be seen, the constant λ∗ may be infinite
in some cases so that the file-sharing network is always stable independently
of the value of λ. The main technical difficulty to prove stability/instability
results for this class of stochastic networks is that, except for the input, the
Markov process has unbounded jump rates, in fact proportional to one of
the coordinates of the current state. Note that loss networks have also this
characteristic but in this case, the stability problem is trivial since the state
space is finite. See Kelly [8].

Fluid limits for file-sharing networks. Classically, to analyze the stabil-
ity properties of stochastic networks, one can use the limits of a scaling of the
Markov process, the so-called fluid limits. The scaling consists in speeding
up time by the norm ‖x‖ of the initial state x, by scaling the state vector by
1/‖x‖ and by letting ‖x‖ go to infinity. See Bramson [5], Chen and Yao [6]
and Robert [18] for example. This scaling is, however, better suited to “lo-
cally additive” processes, that is, Markov processes that behave locally as
random walks. Since the transition rates are unbounded, it may occur that
the corresponding fluid limits have discontinuities; this complicates a lot the
analysis of a possible limiting dynamical system. Roughly speaking, this is
due to the fact that, because of the unbounded transition rates, events occur
on the time scale t 7→ t log ‖x‖ instead of t 7→ ‖x‖t. See the case of the
M/M/∞ queue in Chapter 9 of Robert [18], and Simatos and Tibi [23] for a
discussion of this phenomenon in a related context.

A “fluid scaling” is nevertheless available for file-sharing networks. A
possible description for a possible candidate (xi(t)) for this limiting picture
would satisfy the following differential equations,





ẋ0(t) = λ − µ1x1(t),

ẋi(t) = µixi(t) − µi+1xi+1(t), 1 ≤ i ≤ n − 1,

ẋn(t) = µnxn(t) − νxn(t).

(1)

For the sake of simplicity the behavior at the boundaries {x : xi = 0}, i ≥ 1
is ignored in the above equations. This has been, up to now, one of the main
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tools to investigate mathematical models of file-sharing networks. See Qiu
and Srikant [17], Núñez-Queija and Prabhu [15] for example. In the context
of loss networks, an analogous limiting picture can be rigorously justified
when the input rates and buffer sizes are scaled by some N and the state
variable by 1/N . This scaling is not useful here, since the problem is precisely
of determining the values of λ for which the associated Markov is ergodic
whereas in the above scaling λ is scaled. From this point of view Equations (1)
are therefore quite informal. They can nevertheless give some insight into the
qualitative behavior of these networks but they cannot apparently be used to
prove stability results. Their interpretation near boundaries is in particular
not clear.

Interacting branching processes. Since scaling techniques do not apply
here, one needs to resort to different techniques to study stability: coupling
the linear file-sharing network with interacting branching processes is a key
idea. For i ≥ 1, without the departures the process (Xi(t)) would be a
branching process where individuals give birth to one child at rate µi. This
description of such a file-sharing system as a branching process is quite nat-
ural. It has been used to analyze the transient behavior of these systems.
See Yang and de Veciana [26], Dang et al. [7] and Simatos et al. [22]. A
departure for (Xi(t)) can be seen as a death of an individual of class i and
at the same time as a birth of an individual of class i+1. The file-sharing
network can thus be described as a system of interacting branching processes
with a constant input rate λ.

To tackle the general problem of stability, several key ingredients are
used in this paper: Lyapunov functions, coupling arguments and precise es-
timations of the growth of a branching process killed by another branching
process. As it will be seen, several results used come from the branching
process formulation of the stochastic model. In particular Section 3 is de-
voted to the derivation of results concerning killed branching processes. The
stability properties of networks with a single-chunk file are analyzed in detail
in Section 2. In Section 4, file-sharing networks with n chunks are studied
and the case n = 2 is investigated thoroughly.

Acknowledgements.

This paper has benefited from various interesting discussions with S. Borst,
I. Norros, R. Núñez-Queija, B.J. Prabhu, and H. Reittu.

2 Analysis of the single-chunk network

This section is devoted to the study of a class of two-dimensional Markov
jump processes (X0(t), X1(t)), the corresponding Q-matrix Ωr is given, for
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x = (x0, x1) ∈ N
2, by





Ωr[(x0, x1), (x0 + 1, x1)] = λ,

Ωr[(x0, x1), (x0 − 1, x1 + 1)] = µr(x0, x1)(x1 ∨ 1)1{x0>0},

Ωr[(x0, x1), (x0, x1 − 1)] = νx1,

(2)

where x 7→ r(x), referred to as the rate function, is some fixed function on
N

2 with values in [0, 1] and n ∨ m denotes max(n,m) for n, m ∈ N
2. This

corresponds to a more general model than the linear file-sharing network of
Figure 1 in the case n = 1, where for the sake of simplicity µ1 is noted µ in
this section.

From a modeling perspective, this Markov process describes the following
system. Requests for a single file arrive with rate λ, the first component
X0(t) is the number of requests which did not get the file, whereas the second
component is the number of requests having the file and acting as servers until
they leave the file-sharing network. The constant µ can be viewed as the file
transmission rate, and ν as the rate at which servers having all chunks leave.
The term r(x0, x1) describes the interaction of downloaders and uploaders in
the system. The term x1 ∨ 1 can be interpreted so that there is one server
permanent server in the network, which is contacted if there are no other
uploader nodes in the system. A related system where there is always one
permanent server for the file can be modeled by replacing the term x1 ∨ 1 by
x1 + 1. See the remark at the end of this section.

Several related examples of this class of models have been recently inves-
tigated. The case

r(x0, x1) =
x0

x0 + x1

is considered in Núñez-Queija and Prabhu [15] and Massoulié and Vojnović [12];
in this case the downloading time of the file is neglected. Susitaival et al. [24]
analyzes the rate function r(x)

r(x0, x1) = 1 ∧

(
α

x0

x1

)

with α > 0 and a ∧ b denotes min(a, b) for a, b ∈ R. This model allows to
take into account that a request cannot be served by more than one server.
See also Qiu and Srikant [17].

With a slight abuse of notation, for 0 < δ ≤ 1, the matrix Ωδ will refer to
the case when the function r is identically equal to δ. Note that the boundary
condition x1 ∨ 1 for departures from the first queue prevents the second
coordinate from ending up in the absorbing state 0. Other possibilities are
discussed at the end of this section. In the following (Xr(t)) = (Xr

0(t), X
r
1(t))

[resp. (Xδ(t))] will denote a Markov process with Q-matrix Ωr [resp. Ωδ].

Free process. For δ > 0, Qδ denotes the following Q-matrix




Qδ[(y0, y1), (y0 + 1, y1)] = λ,

Qδ[(y0, y1), (y0 − 1, y1 + 1)] = µδ(y1 ∨ 1),

Qδ[(y0, y1), (y0, y1 − 1)] = νy1.

(3)
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The process (Y δ(t)) = (Y δ
0 (t), Y δ

1 (t)), referred to as the free process, will
denote a Markov process with Q-matrix Qδ. Note that the first coordinate
Y δ

0 may become negative. The second coordinate (Y δ
1 (t)) of the free process

is a classical birth-and-death process. It is easily checked that if ρδ defined
as δµ/ν is such that ρδ < 1, then (Y δ

1 (t)) is an ergodic Markov process
converging in distribution to Y δ

1 (∞) and that

λ∗(δ)
def.
= νE(Y δ

1 (∞)) = µE(Y δ
1 (∞) ∨ 1) =

δµ

(1 − ρδ)(1 − log(1 − ρδ))
. (4)

When ρδ > 1, then the process (Y δ(t)) converges almost surely to infinity.
In the sequel λ∗(1) is simply denoted λ∗.

In the following it will be assumed, Condition (C) below, that the rate func-
tion r converges to 1 as the first coordinate goes to infinity; as will be seen,
the special case r ≡ 1 then plays a special role, and so before analyzing the
stability properties of (Xr(t)), one begins with an informal discussion when
the rate function r is identically equal to 1. Since the departure rate from the
system is proportional to the number of requests/servers in the second queue,
a large number of servers in the second queue gives a high departure rate,
irrespectively of the state of the first queue. The input rate of new requests
being constant, the real bottleneck with respect to stability is therefore when
the first queue is large. The interaction of the two processes (X1

0 (t)) and
(X1

1 (t)) is expressed through the indicator function of the set {X1
0 (t) > 0}.

The second queue (X1
1 (t)) locally behaves like the birth-and-death process

(Y 1
1 (t)) as long as (X1

0 (t)) is away from 0. The two cases ρ1 > 1 and ρ1 < 1
are considered.

If ρ1 > 1, i.e., µ > ν, the process (X1
1 (t)) is a transient process as long as

the first coordinate is non-zero. Consequently, departures from the second
queue occur faster and faster. Since, on the other hand, arrivals occur at a
steady rate, departures eventually outpace arrivals. The fact that the second
queue grows when (X0(t)) is away from 0 stabilizes the system independently
of the value of λ, and so the system should be stable for any λ > 0.

If ρ1 < 1, and as long as (X0(t)) is away from 0, the coordinate (X1
1 (t))

locally behaves like the ergodic Markov process (Y 1
1 (t)). Hence if (X1

0 (t))
is non-zero for long enough, the requests in the first queue see in average
E(Y 1

1 (∞)∨1) servers which work at rate µ. Therefore, the stability condition
for the first queue should be

λ < µE(Y 1
1 (∞) ∨ 1) = λ∗

where λ∗ = λ∗(1) is defined by Equation (4). Otherwise if λ > λ∗, the system
should be unstable.

Markovian notations. In the following, one will use the following conven-
tion, if (U(t)) is a Markov process, the index u of Pu((U(t)) ∈ ·) will refer to
the initial condition of this Markov process.
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Transience and recurrence criteria for (Xr(t)).

Proposition 2.1 (Coupling). If Xr(0) = Y 1(0) ∈ N
2, there exists a coupling

of the processes (Xr(t)) and (Y 1(t)) such that the relation

Xr
0(t) ≥ Y 1

0 (t) and Xr
1(t) ≤ Y 1

1 (t), (5)

holds for all t ≥ 0 and for any sample path.

For any 0 ≤ δ ≤ 1, if

τδ = inf{t ≥ 0 : r(Xr(t)) ≤ δ} and σ = inf{t ≥ 0 : Xr
0(t) = 0},

and if X1(0) = Y δ(0) ∈ N
2 then there exists a coupling of the processes

(Xr(t)) and (Y δ(t)) such that, for any sample path, the relation

Xr
0(t) ≤ Y δ

0 (t) and Xr
1(t) ≥ Y δ

1 (t) (6)

holds for all t ≤ τδ ∧ σ.

Proof. Let Xr(0) = (x0, x1) and Y 1(0) = (y0, y1) be such that x0 ≥ y0 and
x1 ≤ y1, one has to prove that the processes (Xr(t)) and (Y 1(t)) can be
constructed such that Relation (5) holds at the time of the next jump of
one of them. See Leskelä [10] for the existence of couplings using analytical,
nonconstructive techniques.

The arrival rates in the first queue are the same for both processes. If
x1 < y1, a departure from the second queue for (Y 1(t)) or (Xr(t)) preserves
the order relation (5) and if x1 = y1, this departure occurs at the same rate
for both processes and thus the corresponding instant can be chosen at the
same (exponential) time. For the departures from the first to the second
queue, the departure rate for (Xr(t)) is µr(x0, x1)(x1 ∨ 1)1{x0>0} ≤ µ(y1 ∨ 1)
which is the departure rate for (Y 1(t)), hence the corresponding departure
instants can be taken in the reverse order so that Relation (5) also holds at
the next jump instant. The first part of the proposition is proved.

The rest of the proof is done in a similar way: The initial states Xr(0) =
(x0, x1) and Y δ(0) = (y0, y1) are such that x0 ≤ y0 and x1 ≥ y1. With the
killing of the processes at time τδ∧σ one can assume additionally that x0 6= 0
and that the relation r(x0, x1) ≥ δ holds; Under these assumptions one can
check by inspecting the next transition that (6) holds. The proposition is
proved.

Proposition 2.2. Under the condition µ < ν, the relation

lim inf
t→+∞

Xr
0(t)

t
≥ λ − λ∗

holds almost surely. In particular, if µ < ν and λ > λ∗, then the process
(Xr(t)) is transient.
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Proof. By Proposition 2.1, one can assume that there exists a version of
(Y 1(t)) such that Xr

0(0) = Y 1
0 (0) and the relation Xr

0(t) ≥ Y 1
0 (t) holds for

any t ≥ 0. From Definition (3) of the Q-matrix of (Y 1(t)), one has, for t ≥ 0,

Y 1(t) = Y 1(0) + Nλ(t) − A(t),

where (Nλ(t)) is a Poisson process with parameter λ and (A(t)) is the number
of arrivals (jumps of size 1) for the second coordinate (Y 1

1 (t)): in particular

E(A(t)) = µE

(∫ t

0

Y 1
1 (s) ∨ 1 ds

)
.

Since (Y 1
1 (t)) is an ergodic Markov process under the condition µ < ν, the

ergodic theorem in this setting gives that

lim
t→+∞

1

t
A(t) = lim

t→+∞

1

t
E(A(t)) = µE

(
Y 1

1 (∞) ∨ 1
)

= λ∗,

by Equation (4), hence (Y 1
0 (t)/t) converges almost surely to λ − λ∗. The

proposition is proved.

The next result establishes the ergodicity result of this section.

Proposition 2.3. If the rate function r is such that, for any x1 ∈ N,

lim
x0→+∞

r(x0, x1) = 1, (C)

and if µ ≥ ν, or if µ < ν and λ < λ∗ with

λ∗ =
µ

(1 − ρ)(1 − log(1 − ρ))
, (7)

and ρ = µ/ν, then (Xr(t)) is an ergodic Markov process.

Note that Condition (C) is satisfied for the functions r considered in the
models considered by Núñez-Queija and Prabhu [15] and in Susitaival et
al. [24]. See above.

Proof. If x = (x0, x1) ∈ R
2, |x| denotes the norm of x, |x| = |x0| + |x1|. The

proof uses Foster’s criterion as stated in Robert [18, Theorem 9.7]. If there
exist constants K0, K1, t0, t1 and η > 0 such that, for x = (x0, x1) ∈ N

2,

E(x0,x1)(|X
r(t1)| − |x|) ≤ −t1, if x1 ≥ K1, (8)

E(x0,x1)(|X
r(t0)| − |x|) ≤ −ηt0, if x0 ≥ K0 and x1 < K1, (9)

then the Markov process (Xr(t)) is ergodic.
Relation (8) is straightforward to establish: if x1 ≥ K1, one gets, by

considering only K1 of the x1 initial servers in the second queue and the
Poisson arrivals, that

E(x0,x1)(|X
r(1)| − |x|) ≤ λ − K1(1 − e−ν),
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hence it is enough to take t1 = 1 and K1 = (λ + 1)/(1 − e−ν) to have
Relation (8).

One has therefore to establish Inequality (9). Let τδ and σ be the stopping
times introduced in Proposition 2.1, one first proves an intermediate result:
for any t > 0 and any x1 ∈ N,

lim
x0→+∞

P(x0,x1)(σ ∧ τδ ≤ t) = 0. (10)

Fix x1 ∈ N and t ≥ 0: for ε > 0, there exists D1 such that

Px1

(
sup

0≤s≤t

Y 1
1 (s) ≥ D1

)
≤ ε,

from Proposition 2.1, this gives the relation valid for all x0 ≥ 0,

P(x0,x1)

(
sup

0≤s≤t

Xr
1(s) ≥ D1

)
≤ ε.

By Condition (C), there exists γ ≥ 0 (that depends on x1) such that r(x0, x1) ≥
δ when x0 ≥ γ. As long as (Xr(t)) stays in the subset {(y0, y1) : y1 ≤ D1},
the transition rates of the first component (Xr

0(t)) are uniformly bounded.
Consequently, there exists K such that, for x0 ≥ K,

P(x0,x1)

[
sup
s≤t

Xr
0(s) ≤ γ, sup

s≤t

Xr
1(s) ≤ D1,

]
≤ ε.

Relation (10) follows from the last two inequalities and the identity

P(x0,x1)(σ ∧ τδ ≤ t) ≤ P(x0,x1)

(
sup
s≤t

Xr
0(s) ≤ γ

)
.

One returns to the proof of Inequality (9). By definition of the Q-matrix
of the process (Xr(t)),

E(x0,x1)(|X
r(t|) − |x|) = λt − ν

∫ t

0

E(x0,x1)(X
r
1(u))du, x ∈ N

2, t ≥ 0.

For any x ∈ N
2, there exists a version of (Y δ(t)) with initial condition Y δ(0) =

Xr(0) = x, and such that Relation (6) holds for t < τδ ∧ σ, in particular

Ex(X
r
1(t)) ≥ Ex(X

r
1(t); t < τδ ∧ σ)

≥ Ex(Y
δ
1 (t); t < τδ ∧ σ) = Ex(Y

δ
1 (t)) − Ex(Y

δ
1 (t); t ≥ τδ ∧ σ).

Cauchy-Schwarz inequality shows that for any t ≥ 0 and x ∈ N
2

∫ t

0

Ex(Y
δ
1 (u); τδ ∧ σ ≤ u) du ≤

∫ t

0

√
Ex

[(
Y δ

1 (u)
)2]√

Px(τδ ∧ σ ≤ u) du

≤
√

Px(τδ ∧ σ ≤ t)

∫ t

0

√
Ex

[(
Y δ

1 (u)
)2]

du,

10



by gathering these inequalities, and by using the fact that the process (Y δ
1 (t))

depends only on x1 and not x0, one finally gets the relation

1

t
Ex(|X(t)| − |x|) ≤ λ−

ν

t

∫ t

0

Ex1
(Y δ

1 (u)) du + c(x1, t)
√

Px(τδ ∧ σ ≤ t) (11)

with

c(x1, t) =
ν

t

∫ t

0

√
Ex1

[(
Y δ

1 (u)
)2]

du.

Two cases are considered:

1. If µ > ν, if δ < 1 is such that δµ > ν, the process (Y δ
1 (t)) is transient,

so that

lim
t→+∞

1

t

∫ t

0

Ex1
(Y δ

1 (u)) du = +∞,

for each x1 ≥ 0.

2. If µ < ν, one takes δ = 1, or if µ = ν, one takes δ < 1 close enough to
1 so that λ < λ∗(δ). In both cases, λ < λ∗(δ) and the process (Y δ

1 (t))
converges in distribution, hence

lim
t→+∞

1

t

∫ t

0

Ex1
(Y δ

1 (u)) du = νE
(
Y δ

1 (∞)
)

= λ∗(δ) > λ

for each x1 ≥ 0.

Consequently in both cases, there exist constants η > 0, δ < 1 and t0 > 0
such that for any x1 ≤ K1,

λ − ν
1

t0

∫ t0

0

Ex1
(Y δ

1 (u))du ≤ −η, (12)

with Relation (11), one gets that if x1 ≤ K1 then

1

t0
Ex(|X(t0)| − |x|) ≤ −η + c∗

√
Px(τδ ∧ σ ≤ t0),

where c∗ = max(c(n, t0), 0 ≤ n ≤ K1). By Identity (10), there exists K0 such
that, for all x0 ≥ K0 and x1 ≤ K1, the relation

c∗
√

P(x0,x1)(τδ ∧ σ ≤ t0) ≤
η

2

holds. This relation and the inequalities (12) and (11) give Inequality (9).
The proposition is proved.

Another boundary condition. The boundary condition x1 ∨ 1 in the
transition rates of (X(t)), Equation (2), prevents the second coordinate from
ending up in the absorbing state 0. It amounts to suppose that a permanent
server gets activated when no node may offer the file. Another way to avoid
this absorbing state is to suppose that a permanent node is always active,
which gives transition rates with x1 +1 instead. This choice was for instance
made in Núñez-Queija and Prabhu [15]. All our results apply for this other
boundary condition: the only difference that is when ν > µ, the value of the
threshold λ∗ of Equation (4) is given by the quantity λ∗ = µν/(ν − µ).
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3 Yule processes with deletions

This section introduces the tools which are necessary in order to generalize
the results of the previous section to the multi-chunk case n ≥ 2. A Yule
process (Y (t)) with rate µ > 0 is a Markovian branching process with Q-
matrix

qY (x, x + 1) = µx, ∀x ≥ 0. (13)

An individual gives birth to a child, or equivalently splits into two particles,
with rate µ. Let (σn) be the split times of a Yule process started with one
particle, it is not difficult to check that, for n ≥ 1,

σn
dist.
=

n∑

ℓ=1

Eµ
ℓ

ℓ
dist.
= max(Eµ

1 , . . . , Eµ
n),

where (Eµ
ℓ ) are i.i.d. exponential random variables with parameter µ. If

λ > µ then, by using Fubini’s Theorem,

E

(
+∞∑

ℓ=1

e−λσℓ

)
= E

(
+∞∑

ℓ=1

∫ +∞

0

λe−λx
1{σℓ≤x} dx

)
=

∫ +∞

0

λe−λx

+∞∑

ℓ=1

P(σℓ ≤ x) dx

=

∫ +∞

0

λe−λx 1 − e−µx

e−µx
dx =

µ

λ − µ
< +∞. (14)

In this section one considers some specific results on variants of this stochastic
model when some individuals are killed. In terms of branching processes, this
amounts to prune the tree, i.e., to cut some edges of the tree, and the subtree
attached to it. This procedure is fairly common for branching processes,
in the Crump-Mode-Jagers model for example, see Kingman [9]. See also
Neveu [14] or Aldous and Pitman [1]. Two situations are considered: the
first one when the deletions are part of the internal dynamics, so that each
individual dies out after an exponential time, and the other when killings are
given by an exogenous process and occur at fixed (random or deterministic)
epochs.

Constant death rate and regeneration. Let (Z(t)) be the birth-and-
death process whose Q-matrix QZ is given by, for µZ > 0 and ν > 0,

qZ(z, z + 1) = µZ(z ∨ 1) and qZ(z, z − 1) = νz. (15)

The lifetime of an individual is exponentially distributed with parameter ν,
and the process restarts with one individual after some time when it hits 0.
This process can be described equivalently as a time-changed M/M/1 queue
or as a sequence of independent branching processes. As it will be seen these
two viewpoints are complementary.

In the rest of this part, µZ and ν are fixed, (Z(t)) is the Markov process
with Q-matrix QZ , (σn) is the sequence of times of its positive jumps, the
birth instants, and (Bσ(t)) is the corresponding counting process of (σn), for
t ≥ 0,

Bσ(t) =
∑

i≥1

1{σi≤t}.
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Proposition 3.1 (Queueing Representation). If Z(0) = z ∈ N, then

(Z(t), t ≥ 0)
dist.
= (L(C(t)), t ≥ 0) , (16)

where (L(t)) is the process of the number of jobs of an M/M/1 queue with in-
put rate µZ and service rate ν and with L(0) = z and C(t) = inf {s > 0 : A(s) > t},
where

A(t) =

∫ t

0

1

1 ∨ L(u)
du.

Proof. It is not difficult to check that the process (M(t))
def.
= (L(C(t))) has

the Markov property. Let QM be its Q-matrix. For z ≥ 0,

P(L(C(h)) = z + 1 | L(0) = z) = µZE(C(h)) + o(h) = µZ(z ∨ 1)h + o(h),

hence qM(z, z +1) = µZ(z∨ 1). Similarly qM(z, z− 1) = νz. The proposition
is proved.

Corollary 3.1. For any γ > (µZ − ν) ∨ 0 and z = Z(0) ∈ N,

Ez

(
+∞∑

n=1

e−γσn

)
< +∞. (17)

Proof. Proposition 3.1 shows that, in particular, the sequences of positive
jumps of (Z(t)) and of (L(C(t))) have the same distribution. Hence, if
NµZ

= (tn) is the arrival process of the M/M/1 queue, a Poisson process
with parameter µZ , then, with the notations of the above proposition, the
relation

(σn)
dist.
= (A(tn))

holds. By using standard martingale properties of stochastic integrals with
respect to Poisson processes, see Rogers and Williams [20], one gets for t ≥ 0,

Ez

(
∑

n≥1

e−γA(tn)

)
= Ez

(∫ ∞

0

e−γA(s)NµZ
(ds)

)
= µZEz

(∫ ∞

0

e−γA(s) ds

)

= µZ

∫ ∞

0

e−γu
Ez (Z(u) ∨ 1) du, (18)

where Relation (16) has been used for the last equality. Kolmogorov’s equa-
tion for the process (Z(t)) gives that

φ(t)
def.
= Ez(Z(t)) = µZ

∫ t

0

Ez (Z(u) ∨ 1) du − ν

∫ t

0

Ez (Z(u)) du

≤ (µZ − ν)

∫ t

0

φ(u) du + µZt,

therefore, by Gronwall’s Lemma,

φ(t) ≤ φ(0) + µZ

∫ t

0

ue(µZ−ν)u du ≤ z +
µZ

µZ − ν
te(µZ−ν)t.

13



From Equation (18), one concludes that

Ez

(
∑

n

e−γσn

)
= Ez

(
∑

n

e−γA(tn)

)
< +∞.

The proposition is proved.

A branching process. Before hitting 0, the Markov process (Z(t)) whose Q-
matrix is given by Relation (15) can be seen a Bellman-Harris branching
process. Its Malthusian parameter is given by α = µZ − ν. See Athreya
and Ney [3]. In this setting, it describes the evolution of a population of

independent particles, at rate λ
def.
= µZ +ν each of these particles either splits

into two particles with probability p
def.
= µZ/(µZ +ν) or dies. These processes

will be referred to as (p, λ)-branching processes in the sequel.
A (p, λ)-branching process survives with positive probability only when

p > 1/2, in which case the probability of extinction q is equal to q = (1 −
p)/p = ν/µZ . The main (and only) difference with a branching process is
that Z regenerates after hitting 0. When it regenerates, it again behaves as
a (p, λ)-branching process (started with one particle), until it hits 0 again.

Proposition 3.2 (Branching Representation). If Z(0) = z ∈ N and (Z̃(t))

is a (p, λ)-branching process started with z ∈ N particles and T̃ its extinction
time, then

(Z(t), 0 ≤ t ≤ T )
dist.
= (Z̃(t), 0 ≤ t ≤ T̃ ),

where T = inf{t ≥ 0 : Z(t) = 0} is the hitting time of 0 by (Z(t)).

Corollary 3.2. Suppose that µZ > ν. Then Pz-almost surely for any z ≥ 0,
there exists a finite random variable Z(∞) such that,

lim
t→+∞

e−(µZ−ν)tZ(t) = Z(∞) and Z(∞) > 0.

Proof. When µZ > ν, the process (Z(t)) couples in finite time with a super-

critical (p, λ)-branching process (Z̃(t)) conditioned on non-extinction; this
follows readily from Proposition 3.2 (or see the Appendix for details). Since

for any supercritical (p, λ)-branching process, (exp(−(µZ − ν)t)Z̃(t)) con-

verges almost surely to a finite random variable Z̃(∞), positive on the event
of non-extinction (see Nerman [13]), one gets the desired result.

Due to its technicality, the proof of the following result is postponed to
the Appendix; this result is used in the proof of Proposition 3.5.

Proposition 3.3. Suppose that µZ > ν, if

η∗(x) =
2 − x −

√
x(4 − 3x)

2(1 − x)
, 0 < x < 1, (19)

then for any 0 < η < η∗(ν/µZ),

sup
z≥0

[
Ez

(
sup
t≥σ1

(
eη(µZ−ν)tBσ(t)−η

))]
< +∞.

14



A Yule process killed at fixed instants. In this part, it is assumed that,
provided that it is non-empty, at epochs σn, n ≥ 1, an individual is removed
from the population of an ordinary Yule process (Y (t)) with rate µW starting
with Y (0) = w ∈ N individuals. It is assumed that (σn) is some fixed non-
decreasing sequence. It will be shown that the process (W (t)) obtained by
killing one individual of Y (t)) at each of the successive instants (σn) survives
with positive probability when the series with general term (exp(−µW σn))
converges.

In the following, a related result will be considered in the case where the
sequence (σn) is given by the sequence of birth times of the process (Z(t))
introduced above. See Alsmeyer [2] and the references therein for related
models.

One denotes

κ = inf{n ≥ 1 : W (σn) = 0}.

The process (W (t)) can be represented in the following way

W (t) = Y (t) −
κ∑

i=1

Xi(t)1{σi≤t}, (20)

where, for 1 ≤ i ≤ κ and t ≥ σi, Xi(t) is the total number of children at time
t in the original Yule process of the ith individual killed at time σi. In terms
of trees, (W (t)) can be seen as a subtree of (Y (t)): for 1 ≤ i ≤ κ, (Xi(t)) is
the subtree of (Y (t)) associated with the ith particle killed at time σi.

It is easily checked that (Xi(t − σi), t ≥ σi) is a Yule process starting
with one individual and, since a killed individual cannot have one of his
descendants killed, that the processes

(X̃i(t)) = (Xi(t + σi), t ≥ 0), 1 ≤ i ≤ κ,

are independent Yule processes.
For any process (U(t)), one denotes

(MU(t))
def.
=
(
e−µW tU(t)

)
. (21)

If (X̃(t)) is a Yule process with rate µW , the martingale (M eX(t)) converges
almost surely and in L2 to a random variable M eX(∞) with an exponential

distribution with mean X̃(0), and by Doob’s Inequality

E

(
sup
t≥0

M eX(t)2

)
≤ 2 sup

t≥0
E
(
M eX(t)2

)
< +∞.

See Athreya and Ney [3]. Consequently

e−µW tW (t) = MY (t) −
κ∑

i=1

e−µW σiM eXi
(t − σi)1{σi≤t},
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and for any t ≥ 0,

κ∑

i=1

e−µW σiM eXi
(t − σi)1{σi≤t} ≤

κ∑

i=1

e−µW σi sup
s≥0

M eXi
(s).

Assume now that
∑

i≥1 e−µW σi < +∞: then the last expression is integrable,
and Lebesgue’s Theorem implies that (MW (t)) = (exp(−µW t)W (t)) con-
verges almost surely and in L2 to

MW (∞) = MY (∞) −
κ∑

i=1

e−µW σiM eXi
(∞).

Clearly, for some w∗ large enough and then for any w ≥ w∗, one has

Ew(MW (∞)) ≥ w −
+∞∑

i=1

e−µW σi > 0,

in particular Pw(MW (∞) > 0) > 0 and Pw(W (t) ≥ 1,∀t ≥ 0) > 0. If
Y (0) = w < w∗ and σ1 > 0, then Pw(Y (σ1) ≥ w∗ + 1) > 0 and therefore,
by translation at time σ1, the same conclusion holds when the sequence
(exp(−µW σi)) has a finite sum. The following proposition has thus been
proved.

Proposition 3.4. Let (W (t)) be a process growing as a Yule process with
rate µW and for which individuals are killed at non-decreasing instants (σn)
with σ1 > 0. If

+∞∑

i=1

e−µW σi < +∞,

then as t gets large, and for any w ≥ 1, the variable (exp(−µW t)W (t))
converges Pw-almost surely and in L2 to a finite random variable MW (∞)
such that Pw(MW (∞) > 0) > 0.

The previous proposition establishes the minimal results needed in Sec-
tion 4. However, Kolmogorov’s Three-Series, see Williams [25], can be used
in conjunction with Fatou’s Lemma to show that (W (t)) dies out almost
surely when the series with general term (exp(−µW σn)) diverges.

A Yule process killed at the birth instants of a Bellman-Harris pro-

cess. In this subsection, one considers a Yule process (Y (t)) with parameter
µW with Q-matrix defined by Relation (13) and an independent Markov pro-
cess (Z(t)) with Q-matrix defined by Relation (15). In particular µZ − ν is
the Malthusian parameter of (Z(t)). A process (W (t)) is defined by killing
one individual of (Y (t)) at each of the birth instants (σn) of (Z(t)). As be-
fore (Bσ(t)) denotes the counting process association to the non-decreasing
sequence (σn),

Bσ(t) =
∑

i≥1

1{σi≤t}.
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Proposition 3.5. Assume that µZ − ν > µW , and let H0 be the extinction
time of (W (t)), i.e.,

H0 = inf{t ≥ 0 : W (t) = 0},

then the random variable H0 is almost surely finite and:

(i) Z(H0) − Z(0) ≤ eµW H0M∗
Y where

M∗
Y = sup

t≥0
e−µW tY (t).

(ii) There exists a finite constant C such that for any z ≥ 0 and w ≥ 1,

E(w,z)(H0) ≤ C (log(w) + 1) . (22)

Note that the subscript (w, z) refers to the initial state of the Markov process
(W (t), Z(t)).

Proof. Define α = µZ − ν. Concerning the almost sure finiteness of H0,
note that Equation (20) entails that W (t) ≤ Y (t) − Bσ(t) for all t ≥ 0
on the event {H0 = +∞}. As t goes to infinity, both exp(−µW t)Y (t) and
exp(−αt)Bσ(t) converge almost surely to positive and finite random variables
(see Nerman [13]), which implies, when α = µZ − ν > µW , that W (t) con-
verges to −∞ on {H0 = +∞}, and so this event is necessarily of probability
zero.

The first point (i) of the proposition comes from Identity (20) at t = H0:

Z(H0) − Z(0) ≤ Bσ(H0) ≤ Y (H0) ≤ eµW H0M∗
Y . (23)

By using the relation exp(x) ≥ x, Equation (22) follows from the following
bound: for any η < η∗(ν/µZ) (recall that η∗ is given by Equation (19)),

sup
w≥1,z≥0

[
w−η

E(w,z)

(
eη(α−µW )H0

)]
< +∞. (24)

So all is left to prove is this bound. Under P(w,z), (Y (t)) can be represented
as the sum of w i.i.d. Yule processes, and so M∗

Y ≤ M∗
Y,1 + · · · + M∗

Y,w with
(M∗

Y,i) i.i.d. distributed like M∗
Y under P(1,z); Inequality (23) then entails that

e(α−µW )H0 ≤

(
w∑

i=1

M∗
Y,i

)
× sup

t≥σ1

(
eαt/Bσ(t)

)
.

By independence of (M∗
Y,i) and (Bσ(t)), Jensen’s inequality gives for any

η < 1

E(w,z)

(
eη(α−µW )H0

)
≤ wη

(
E
(
M∗

Y,1

))η
Ez

(
sup
t≥σ1

(
eηαtBσ(t)−η

))
,

hence the bound (24) follows from Proposition 3.3.
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One concludes this section with a Markov chain which will be used in
Section 4. Define recursively the sequence (Vn) by, V0 = v and

Vn+1=

An(Vn)∑

k=1

Ik, n ≥ 0, (25)

where (Ik) are identically distributed integer valued random variables inde-
pendent of Vn and An(Vn), and such that E(I1) = p for some p ∈ (0, 1). For
v > 0, An(v) is an independent random variable with the same distribution
as Z(H0) under P(1,v), i.e., with the initial condition (W (0), Z(0)) = (1, v).

The above equation (25) can be interpreted as a branching process with
immigration, see Seneta [21], or also as an autoregressive model.

Proposition 3.6. Under the condition µZ − ν > µW , if (Vn) is the Markov
chain defined by Equation (25) and, for K ≥ 0,

NK = inf{n ≥ 0 : Vn ≤ K},

then there exist γ > 0 and K ∈ N such that

E(NK |V0 = v) ≤
1

γ
log(1 + v), ∀v ≥ 0. (26)

The Markov chain (Vn) is in particular positive recurrent.

Proof. For V0 = v ∈ N, Jensen’s Inequality and Definition (25) give the
relation

Ev log

(
1 + V1

1 + v

)
≤ E(1,v) log

[
1 + pZ(H0)

1 + v

]
. (27)

From Proposition 3.5 and by using the same notations, one gets that, under
P(1,v),

Z(H0) ≤ v + eµW H0M∗
Y ,

where (Y (t)) is a Yule process starting with one individual. By looking at
the birth instants of (Z(t)), it is easily checked that the random variable H0

under P(1,v) is stochastically bounded by H0 under P(1,0). The integrability of
H0 under P(1,0) (proved in Proposition 3.5) and of M∗

Y give that the expression

log

(
1 + p(v + eµW H0M∗

Y )

1 + v

)

bounding the right hand side of Relation (27) is also an integrable random
variable under P(1,0). Lebesgue’s Theorem gives therefore that

lim sup
v→+∞

[
Ev log

(
1 + V1

1 + v

)]
≤ log p < 0.

Consequently, one concludes that v 7→ log(1 + v) is a Lyapunov function for
the Markov chain (Vn), i.e., if γ = −(log p)/2, there exists K such that for
v ≥ K,

Ev log (1 + V1) − log (1 + v) ≤ −γ.

Foster’s criterion, see Theorem 8.6 of Robert [18], implies that (Vn) is indeed
ergodic and that Relation (26) holds.
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4 Analysis of the multi-chunk network

In this section it is assumed that a file of n chunks is distributed by the file-
sharing network within the following framework, corresponding to Figure 1.
Chunks are delivered in the sequential order, and, for k ≥ 1, requests with
chunks 1, . . . , k provide service for requests with one less chunk.

For 0 ≤ k < n and t ≥ 0, the variable Xk(t) denotes the number of
requests downloading the (k+1)st chunk; for k = n, Xn(t) is the number of
requests having all the chunks. When taking into account the boundaries in
the transition rates described in Figure 1, one gets the following Q-matrix
for the (n+1)-dimensional Markov process (Xk(t), 0 ≤ k ≤ n):

Q(f)(x) = λ[f(x+e0)−f(x)]+
n∑

k=1

µk(xk∨1)[f(x+ek−ek−1)−f(x)]1{xk−1>0}

+ νxn[f(x − en) − f(x)],

where x ∈ N
n+1, f : N

n+1 → R+ is a function and for, 0 ≤ k ≤ n, ek ∈ N
n+1

is the kth unit vector. Note that, as before, to avoid absorbing states, it is
assumed that there is a server for the kth chunk when xk = 0. The first
section corresponds to the case n = 2 in a more general setting.

It is first shown in Proposition 4.1 that the network is stable for sufficiently
small input rate λ. Proposition 4.2 studies the analog of the two-dimensional
case with µ > ν, i.e., when µ1 > · · · > µn−1 > µn − ν > 0, it is proved that
the network is stable for any input rate λ. When this condition fails, it is
shown that for n = 2 the network can only accommodate a finite input rate.

Proposition 4.1. Under the condition

n∑

k=1

λ

µk

< 1, (28)

the Markov process (X(t)) is ergodic for any ν > 0.

Condition (28) is obviously not sharp as can be seen in the case n = 1
analyzed in Section 2. But the proposition shows that there is always a
positive threshold λ∗ such that the system is stable when λ < λ∗.

Proof. For x ∈ N
n+1 and (αk) ∈ R

n+1, define f(x) = α0x0 + · · ·+ αnxn, then

Q(f)(x) = λα0 −
n∑

k=1

(αk−1 − αk)µk(xk ∨ 1)1{xk−1>0} − νxnαn.

For ε > 0, one can choose (αk) so that α0 = 1 and

αk−1 − αk =
λ

µk

+ ε, 1 ≤ k ≤ n,
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hence

αn = 1 −

(
nε +

n∑

i=1

λ

µk

)
,

so that, for ε small enough, the αk’s, 0 ≤ k ≤ n are decreasing and positive
under the condition of the proposition; in particular the set {x : f(x) ≤ K}
is finite for any K ≥ 0.

Take K = (1 + λ)/ν, then if x ∈ N
n+1 is such that f(x) ≥ K, either

xk > 0 for some 0 ≤ k ≤ n−1 and in this case

Q(f)(x) ≤ λ − µk+1(αk − αk+1) = −εµk+1 < 0,

or xn ≥ K so that
Q(f)(x) ≤ λ − νK = −1 < 0.

A Lyapunov function criteria for Markov processes shows that this implies
that the Markov process (X(t)) is ergodic. See Proposition 8.14 of Robert [18]
for example.

Decreasing service rates. The analog of the “good” case µ > ν is proved
in the next proposition.

Proposition 4.2. Under the condition µ1 > µ2 > · · · > µn−1 > µn − ν > 0,
the Markov process (X(t)) = (Xk(t), 0 ≤ k ≤ n) describing the linear file-
sharing network is ergodic for any λ ≥ 0.

Proof. The proof proceeds in two steps: first coupling arguments with Yule
processes allow to prove (30); then one can use the same technique as in the
proof of Proposition 2.3, see Robert [18, Theorem 9.7].

Step 1 (coupling). Let (Wn(t)) be the process with Q-matrix defined by
Relation (15) with µZ = µn and starting at Wn(0) = wn ≥ 1. Since µn > ν,
the process (exp(−(µn−ν)t)Wn(t)) converges almost surely to a finite and
positive random variable MWn

(∞) by Corollary 3.2. Moreover, since µn−1 >
µn − ν > 0, Corollary 3.1 entails that the birth instants (σn

ℓ ) of this process
are such that ∑

ℓ≥1

e−µn−1σn
ℓ < +∞, almost surely.

Let (Yn−1(t)) be an independent Yule process with parameter µn−1 with initial
condition Yn−1(0) = wn−1 ≥ 1 and (Wn−1(t)) the resulting process when its
individuals are killed at the instants (σn

ℓ ) of births of (Wn(t)): the previous
equation and Proposition 3.4 show that (Wn−1(t)) can survive forever with
a positive probability.

Let (Yn−2(t)) be an independent Yule process starting from wn−2 ≥ 1 with
parameter µn−2. Define (Wn−2(t)) the resulting process when the individuals
of (Yn−2(t)) are killed at the birth instants (σn−1

ℓ ) of (Wn−1(t)). Since µn−2 >
µn−1, the birth instants (σ̃n−1

ℓ ) of (Yn−1(t)) satisfy

+∞∑

ℓ=1

e−µn−2eσn−1

ℓ < +∞
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almost surely by Equation (14) (which still holds for a Yule process starting
with more than one particle). Since the birth instants (σn−1

ℓ ) of (Wn−1(t))
are a subsequence of (σ̃n−1

ℓ ), the same relationship holds for (σn−1
ℓ ), and

therefore, with a positive probability, the three processes (e−(µn−ν)tWn(t)),
(e−µn−1tWn−1(t)) and (e−µn−2tWn−2(t)) converge simultaneously to positive
and finite random variables MWn

(∞), MWn−1
(∞) and MWn−2

(∞), respec-
tively. This construction can be repeated inductively to give the existence
of n processes (Wk(t), k = 1, . . . , n) such that (σk

ℓ ) is the sequence of birth
times of Wk, Wn is the birth-and-death process with Q-matrix (15), Wk for
1 ≤ k ≤ n − 1 is a Yule process with parameter µk killed at (σk+1

ℓ ), and the
event E = {MW1

(∞) > 0, . . . ,MWn
(∞) > 0} has a positive probability. On

this event, Wk(t) ≥ 1 for all t ≥ 0 and 1 ≤ k ≤ n − 1, and

lim
t→+∞

Wn(t) = +∞.

For 0 ≤ k ≤ n − 1, one defines (XS
k (t)) = (XS

k,n−k(t), . . . , X
S
k,n(t)), the kth

saturated system, as the (k+1)-dimensional Markov process with generator

QS
k (f)(x) = µn−k(xn−k ∨ 1)[f(x + en−k) − f(x)]

+
k∑

ℓ=1

µn−k+ℓ(xn−k+ℓ ∨ 1)[f(x + en−k+ℓ − en−k+ℓ−1) − f(x)]1{xn−k+ℓ−1>0}

+ νxn[f(x − en) − f(x)], (29)

where x ∈ N
k+1 and f : N

k+1 → R+ is an arbitrary function. Compared with
the process (Xℓ(t), 1 ≤ ℓ ≤ n) with generator Q, it amounts to look at the
k+1 last queues (Xn−k(t), . . . , Xn(t)) under the assumption that the queue
n−k−1 is saturated, i.e., Xn−k−1(t)≡ + ∞ for all t ≥ 0.

Note that for any 0 ≤ k ≤ n − 1, the transition rates of the Markov
processes (Wn−ℓ(t), 0 ≤ ℓ ≤ k) and (XS

k,n−ℓ(t), 0 ≤ ℓ ≤ k) are identical as long
as no coordinate hits 0; one thus concludes that, with positive probability,
the relation

lim
t→+∞

XS
k,n(t) = +∞

holds when XS
k,n−ℓ(0) ≥ 1, ℓ = 0, . . . , k. Consequently, since the set (N −

{0})k+1 can be reached with positive probability from any initial state in
N

k+1 by (XS
k (t)), then

lim
t→+∞

E(XS
k,n(t)) = +∞. (30)

Step 2 (Foster’s criterion). We use Foster’s criterion as stated in Theorem 9.7
of Robert [18]. First we inspect the case when Xn(0) is large, then the case
when Xn(0) is bounded and Xn−1(0) is large, etc. . . The key idea is that when
Xn−k−1(0) is large, then the process (Xn−k(t), . . . , Xn(t)) essentially behaves
as the process (XS

k (t)), for which Relation (30) ensures that the output rate
is arbitrarily large.
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Let X(0) = x = (xk) ∈ N
n+1, since the last queue serves at rate ν each

request, for t ≥ 0,

E(‖X(t)‖) ≤ ‖x‖ + λt − xn

(
1 − e−νt

)
,

where ‖x‖ = x0 + · · ·+ xn for x = (x0, . . . , xn) ∈ N
n+1. Define tn = 1 and let

Kn be such that λtn − K1(1 − exp(−ν)) ≤ −1, so that the relation

Ex(‖X(tn)‖) − ‖x‖ ≤ −1,

holds when xn ≥ Kn.
From Equation (30) with k = 0, one gets that there exists some tn−1 such

that for any xn ≤ Kn,

ν

∫ tn−1

0

Exn

(
XS

0,n(u)
)

du ≥ λtn−1 + 2.

The two processes (XS
0 (t)) and (X(t)) can be built on the same probability

space such that if they start from the same initial state, then the two processes
(XS

0,n(t)) and (Xn(t)) are identical as long as Xn−1(t) stays positive. Since
moreover the hitting time inf{t ≥ 0 : Xn−1(t) = 0} goes to infinity as xn−1

goes to infinity for any xn ≤ Kn, one gets that there exists Kn−1 such that
if xn−1 ≥ Kn−1 and xn < Kn, then the relation

Ex(‖X(tn−1)‖) − ‖x‖ = λtn−1 − ν

∫ tn−1

0

Ex(Xn(u)) du

≤ λtn−1 −

(
ν

∫ tn−1

0

Exn

(
XS

0,n(u)
)

du − 1

)
≤ −1

holds.
By induction, one gets in a similar way that there exist constants tn, . . . , t0

and Kn, . . . , K0 such that for any 0 ≤ ℓ ≤ n, if xn ≤ Kn, xn−1 ≤ Kn−1, . . . ,
xn−ℓ+1 ≤ Kn−ℓ+1 and xn−ℓ > Kn−ℓ, then

Ex(‖X(tn−ℓ)‖) − ‖x‖ ≤ −1.

Theorem 8.13 of Robert [18] shows that (X(t)) is an ergodic Markov process.
The proposition is proved.

Analysis of the two-chunk network. In this subsection, one investigates
the case when the monotonicity condition µ1 > · · · > µn−1 > µn − ν > 0
fails. In general we conjecture the existence of bottlenecks which implies that
the network can only accommodate a finite input rate. For instance, when
µn − ν < 0, then it is easily seen that the network is unstable for λ > λ∗

where λ∗ is defined in Equation (32) below.
The first non-trivial case occurs for n = 2, for which the monotonicity

condition breaks in two situations, either when µ2 − ν > µ1 or when µ2 < ν.
The latter case can be dealt in fact with the exact same arguments as before.
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See Proposition 4.4. The actual difficulty is when µ2 − ν > µ1: then the
stationary behavior of (X2(t)) is linked to the stationary behavior of the first
saturated model (XS

1 (t)) defined through its Q-matrix (29). The difficulty in
this case is that one needs to compare two processes which grow exponentially
fast.

Proposition 4.3. Assume that µ2 − ν > µ1, then the first saturated process
(XS

1 (t)) with Q-matrix defined by Equation (29) is ergodic.

Corollary 4.1. If µ2 − ν > µ1 and if

λ∗
2

def.
= νEπS

(
XS

1,2(0)
)
,

where πS is the invariant distribution of the Markov process (XS
1 (t)), then

the process (X(t)) = (Xk(t), k = 0, 1, 2) describing the linear file-sharing
network with parameters λ, µ1, µ2 and ν is ergodic for λ < λ∗

2 and transient
for λ > λ∗

2.

Sketch of Proof. The proof of the transience when λ > λ∗
2 follows similarly as

in Section 2: when X0(0) is large, the process (X1(t), X2(t)) can be coupled
for some time with the second saturated system (XS

1 (t)). Since the output
rate λ∗

2 of this system is smaller than the input rate λ, this implies that
(X0(t)) builds up, and it can indeed be shown that X0(t)/t converges almost
surely to λ − λ∗

2.
The ergodicity when λ < λ∗

2 is slightly more complicated, but it involves
the same arguments as the ones employed in the proof of Proposition 4.2.
The details are omitted.

Proof of Proposition 4.3. Denote (XS
1 (t)) = (XS

1,1(t), X
S
1,2(t)), then as long

as the first coordinate XS
1,1 is positive, the process (XS

1 (t)) has the same
distribution as (W (t), Z(t)) introduced in Section 3: (Z(t)) is a Bellman-
Harris process with Malthusian parameter µ2−ν and (W (t)) is a Yule process
with parameter µ1 killed at times of births of (Z(t)).

By Proposition 3.5 and since µ2 − ν > µ1, one has that (XS
1,1(t)) returns

infinitely often to 0. When (XS
1,1(t)) is at 0 it jumps to 1 after an exponen-

tial time with parameter µ1, one denotes by (Eµ1,n) the corresponding i.i.d.
sequence of successive residence times at 0. One defines the sequence (Sn)
by induction, S0 = 0 and then

Sn+1 = inf{t > Sn : XS
1,1(t) = 0} + Eµ1,n+1, n ≥ 0.

For n ≥ 1, XS
1,1(Sn) = 1 and for n ≥ 0, define Mn

def.
= XS

1,2(Sn). With the
notations of Proposition 3.5, (XS

1,1(t)) hits 0 after a duration of H0,n and at
that time (XS

1,2(t)) is at Z(H0,n) with the initial condition Z(0) = Mn; while
XS

1,1 is still at 0, the dynamics of XS
1,2 is simple, since it just empties. Finally,

at time Sn+1 = Sn +H0,n +Eµ1,n+1, (XS
1,1(t)) returns to 1 and at this instant

the location of (XS
1,2(t)) is given by

XS
1,2(Sn+1) = Mn+1 =

Z(H0,n)∑

i=1

1{Eν,i>Eµ1,n+1},
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where (Eν,i) are i.i.d. exponential random variables with parameter ν, the ith
variable being the residence time of the ith request in node 2. Consequently,
(Mn, n ≥ 1) is a Markov chain whose transitions are defined by Relation (25)
with p = ν/(ν + µ1); note that (Mn, n ≥ 0) has the same dynamics only
when XS

1,1(0) = 1.
Define for any K > 0 the stopping time TK

TK = inf{t ≥ 0 : XS
1,2(t) ≤ K,XS

1,1(t) = 1}.

The ergodicity of (XS
1 (t)) will follow from the finiteness of E(x1,x2)(TK) for

some K large enough and for arbitrary x = (x1, x2) ∈ N
2. The strong Markov

property of (XS
1 (t)) applied at time S1 gives

E(x1,x2)(TK) ≤ 2E(x1,x2)(S1) + E(x1,x2)

[
E(1,XS

1,2(S1))(TK)
]
,

and so one only needs to study TK conditioned on {XS
1,1(0) = 1} since

E(x1,x2)(S1) is finite in view of Proposition 3.5.
Then, on this event and with NK defined in Proposition 3.6, the identity

TK =

NK∑

i=0

(H0,i + Eµ1,i) (31)

holds. For i ≥ 0, the Markov property of (Mn, n ≥ 0) gives

E(x1,x2)

(
H0,i1{i≤NK}

)
= E(x1,x2)

(
E(1,Mi) (H0)1{i≤NK}

)

With the same argument as in the proof of Proposition 3.6, one has

E(1,Mi)(H0) ≤ E(1,0)(H0) < +∞,

with Equations (31) and (26) of Proposition (3.6), one gets that for some
γ > 0 and some K > 0,

E(x1,x2)(TK) ≤ 2E(x1,x2)(S1) + C
(
1 + E(x1,x2)

[
log
(
1 + XS

1,2(S1)
)])

with the constant C = (E(1,0)(H0) + 1/µ2)/γ. This last term is finite for any
(x1, x2) in view of Proposition 3.5, which proves the proposition.

Proposition 4.4. If ν > µ2 and

λ∗ def.
=

µ2

(1 − µ2/ν)(1 − log(1 − µ2/ν))
, (32)

then the Markov process (X(t)) = (Xk(t), k = 0, 1, 2) is transient if λ > λ∗

and ergodic if λ < λ∗.

Sketch of Proof. The result for transience comes directly from the fact that
the last coordinate is stochastically dominated by the birth-and-death process
(Y 1

1 (t)) of Section 2.
As before, the arguments employed in the proof of Proposition 4.2 to

prove ergodicity can also be used, for this reason they are only sketched.
One has in fact to consider the following situations:
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— If there are many customers in the last queue, then the total number
of customers instantaneously decreases.

— If there are many customers in the second queue, then the last queue
has time to get close to stationarity, the input rate is λ and the output
rate is λ∗.

— Finally, if there are many customers in the first queue, then it is easily
seen that the second queue builds up, since it grows like a Yule process
killed at times (σn) where the sequence (σn) essentially grows linearly
since the last queue is stable. Hence the second queue reaches high
values and the last queue offers an output rate of λ∗.

Hence when λ < λ∗, the Markov process (X(t)) is ergodic.

A Proof of Proposition 3.3

In this appendix the notations of Section 3 are used. Since the random
variable (Bσ(t) | Z(0) = 0) is stochastically smaller than (Bσ(t) | Z(0) = z)
for any z ∈ N, it is enough to show that for η < η∗(ν/µZ)

E0

[
sup
t≥σ1

(
eηαtBσ(t)−η

)]
< +∞,

where α = µZ − ν > 0.
Note that the process (Bσ(t + σ1), t ≥ 0) under P0 has the same dis-

tribution as (Bσ(t) + 1, t ≥ 0) under P1, and by independence of σ1, an
exponentially random variable with parameter µZ , and (Bσ(t + σ1), t ≥ 0),
one gets

E0

[
sup
t≥σ1

(
eηαtBσ(t)−η

)]
= E0 (eηασ1) E1

[
sup
t≥0

(
eηαt (Bσ(t) + 1)−η

)]
.

Since α < µZ and η∗(ν/µZ) < 1, then E0 (exp(ηασ1)) is finite, and all one
needs to prove is that the second term is finite as well.

Define τ as the last time Z(t) = 0:

τ = sup{t ≥ 0 : Z(t) = 0},

with the convention that τ = +∞ if (Z(t)) never returns to 0. Recall that,
because of the assumption µZ > ν, with probability 1, the process (Z(t))
returns to 0 a finite number of times.

Conditioned on the event {τ = +∞}, the process (Z(t)) is a (p, λ)-
branching process conditioned on survival, with λ = µZ + ν and p = µZ/λ.
Such a branching process conditioned on survival can be decomposed as Z =
Z(1)+Y , where (Y (t)) is a Yule process (Y (t)) with parameter α. See Athreya
and Ney [3]. Consequently, for any 0 < η < 1,

E1

[
sup
t≥0

(
eηαt (Bσ(t) + 1)−η

)
| τ = +∞

]
≤ E1

[
sup
t≥0

(
eηαtY (t)−η

)]
.
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Since the nth split time tn of (Y (t)) is distributed like the maximum of n
i.i.d. exponential random variables, Y (t) for t ≥ 0 is geometrically distributed
with parameter 1 − e−αt, hence,

sup
t≥0

[
eηαt

E1

(
1

Y (t)η

)]
= sup

t≥0

[
e−(1−η)αt

∑

k≥1

(1 − e−αt)k−1

kη

]

≤ sup
0≤u≤1

[
(1 − u)1−η

∑

k≥1

uk−1

kη

]
.

For 0 < u < 1, the relation

(1 − u)1−η
∑

k≥1

uk−1

kη
≤ (1 − u)1−η

∫ ∞

0

ux

(1 + x)η
dx,

=

(
1 − u

− log u

)1−η ∫ ∞

0

e−x

(x − log u)η
dx,

holds, hence

sup
t≥0

[
eηαt

E1

(
1

Y (t)η

)]
< +∞.

The process (e−αtY (t)) being a martingale, by convexity the process (eηαtY (t)−η)
is a non-negative sub-martingale. For any η ∈ (0, 1) Doob’s Lp inequality
gives the existence of a finite q(η) > 0 such that

E1

[
sup
t≥0

(
eηαtY (t)−η

)]
≤ q(η) sup

t≥0

[
eηαt

E1

(
1

Y (t)η

)]
< +∞.

The following result has therefore been proved.

Lemma A.1. For any 0 < η < 1,

E1

[
sup
t≥0

(
eηαt (Bσ(t) + 1)−η

)∣∣∣∣ τ = +∞

]
< +∞.

On the event {τ < +∞}, (Z(t)) hits a geometric number of times 0 and
then couples with a (p, λ)-branching process conditioned on survival. On this
event,

sup
t≥0

(
eηαt (Bσ(t) + 1)−η

)

= max

(
sup

0≤t≤τ

(
eηαt (Bσ(t) + 1)−η

)
, sup

t≥τ

(
eηαt (Bσ(t) + 1)−η

))

≤ eηατ

(
1 + sup

t≥0

(
eηαt (B′

σ(t) + 1)
−η
))
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where B′
σ(t) for t ≥ τ is the number of births in (τ, t] of a (p, λ)-branching

process conditioned on survival and independent of the variable τ , conse-
quently

E1

[
sup
t≥0

(
eηαt (Bσ(t) + 1)−η

)∣∣∣∣ τ < +∞

]
≤ E1 (eηατ | τ < +∞)

×

(
1 + E1

[
sup
t≥0

(
eηαt (Bσ(t) + 1)−η

)∣∣∣∣ τ = +∞

])
.

In view of Lemma A.1, the proof of Proposition 3.3 will be finished if one
can prove that

E1 (eηατ | τ < +∞) < +∞,

which actually comes from the following decomposition: under P1( · | τ <
+∞), the random variable τ can be written as

τ =
1+G∑

k=1

(Tk + EµZ ,k)

where G is a geometric random variable with parameter q = ν/µZ , (Tk) is an
i.i.d. sequence with the same distribution as the extinction time of a (p, λ)-
branching process starting with one particle and conditioned on extinction
and (EµZ ,k) are i.i.d. exponential random variables with parameter µZ .

Since q is the probability of extinction of a (p, λ)-branching process started
with one particle, G + 1 represents the number of times (Z(t)) hits 0 before
going to infinity. This representation entails

E1 (eηατ | τ < +∞) = E
(
γ(η)G+1

)
where γ(η) = E

(
eηα(T1+EµZ,1)

)
.

A (p, λ)-branching process conditioned on extinction is actually a (1 −
p, λ)-branching process. See again Athreya and Ney [3]. Thus T1 satisfies the
following recursive distributional equation:

T1
dist.
= Eλ + 1{ξ=2}(T1 ∨ T2),

where P(ξ = 2) = 1 − p and Eλ is an exponential random variable with
parameter λ. This equation yields

P(T1 ≥ t) ≤ e−λt + 2λ(1 − p)

∫ t

0

P(T1 ≥ t − u)e−λu du,

and Gronwall’s Lemma applied to the function t 7→ exp(λt)P(T1 ≥ t) gives
that

P(T1 ≥ t) ≤ e(λ−2λp)t = e(ν−µZ)t

hence for any 0 < η < 1,

E1(e
ηαT1) ≤

1

1 − η
.
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Since G is a geometric random variable with parameter q, E
(
γ(η)G

)
is finite

if and only if γ(η) < q. Since finally

γ(η) =
µZ

µZ − ηα
E
(
eηαT1

)
≤

µZ

(1 − η)(µZ − ηα)
,

one can easily check that γ(η) < q for η < η∗(ν/µZ) as defined by Equa-
tion (19), which concludes the proof of Proposition 3.3.
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[15] R. Núñez-Queija and B. J. Prabhu, Scaling laws for file dissemination
in P2P networks with random contacts, Proceedings of IWQoS, 2008.

[16] Nadim Parvez, Carey Williamson, Anirban Mahanti, and Niklas Carls-
son, Analysis of bittorrent-like protocols for on-demand stored media
streaming, SIGMETRICS ’08: Proceedings of the 2008 ACM SIGMET-
RICS international conference on Measurement and modeling of com-
puter systems (New York, NY, USA), ACM, 2008, pp. 301–312.

[17] Dongyu Qiu and R. Srikant, Modeling and performance analysis of
bittorrent-like peer-to-peer networks, SIGCOMM ’04: Proceedings of the
2004 conference on Applications, technologies, architectures, and proto-
cols for computer communications (New York, NY, USA), ACM, 2004,
pp. 367–378.

[18] Philippe Robert, Stochastic networks and queues, Stochastic Modelling
and Applied Probability Series, vol. 52, Springer, New-York, June 2003.

[19] Philippe Robert and Florian Simatos, Occupancy schemes associated to
Yule processes, Advances in Applied Probability 41 (2009), no. 2, To
Appear.

[20] L. C. G. Rogers and David Williams, Diffusions, Markov processes, and
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