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1 Introduction

Plane domains whose boundaries consist of piecewise-smooth curves occur in
applications to electronics circuit design, airfoil modelling in computational
fluid dynamics, computer vision and various other problems of engineering
and science [21, 22, 23, 27, 30, 32]. In order to specify the shape of the
domain we assume that the domain is bounded and that there are either
one or two simple (and nonintersecting) boundary curves. The domain is
then either simply or doubly connected. For the mathematical modelling of
these domains it is usually convenient to map the domains conformally onto
“canonical domains” as simple as possible: the unit diskD = {2z € C: |z| < 1}
or the annulus {z € C : r < |2z| < 1}. Sometimes a rectangle is more
preferable than the unit disk as a canonical domain. The existence of these
canonical conformal mappings is guaranteed by classical results of geometric
function theory but the construction of this mapping in a concrete application
case is usually impossible. Therefore one has to resort to numerical conformal
mapping methods for which there exists an extensive literature [17, 23, 26,
30]. The Schwarz-Christoffel (SC) Toolbox of Driscoll [16], based on the
software of Trefethen [34], is in wide use for numerical conformal mapping
applications.

In the doubly connected case, one might be interested in only knowing the
inner radius r of the canonical annulus. For instance this occurs if we wish
to compute the electric resistance of a ring condenser. In this situation the
conformal mapping itself is not needed if we are able to find the inner radius
r by some other method. It is a classical fact that the inner radius r can
be obtained in terms of the solution of the Dirichlét problem for the Laplace
equation in the original domain with the boundary value 0 on one boundary
component and the boundary value 1 on the other one. This fact is just one
way of saying that the modulus of a ring domain is conformally invariant:
for the canonical annulus {z € C : r < |z| < 1} the modulus is equal to
log(1/r). This idea reduces the problem of computing the number r to the
problem of numerical approximation of the solutions of Laplace equation in
ring domains. In the paper [9] this method was applied to several concrete
examples of ring domains for which numerical results were reported, too.

We next consider the case of simply connected plane domains. For such
a domain D and for a quadruple {zi, 29, 23, 24} of its boundary points we
call (D; z1, 2, 23, 24) a quadrilateral if 21, 29, 23, 24 occur in this order when
the boundary curve is traversed in the positive direction. The points zy, k =
1,..,4, are called the vertices and the part of the oriented boundary between
two successive vertices such as z; and 2 is called a boundary arc (21, 22) . The
modulus M(D; z1, 22, 23, 24) of the quadrilateral (D; z1, 2, 23, 24) is defined to
be the unique A > 0 for which there exists a conformal mapping of D onto
the rectangle with vertices 1 4 ¢h,2h,0,1 such that the points 21, 29, 23, 24
correspond to the vertices in this order. This conformal mapping is called
the canonical conformal mapping associated with the quadrilateral. As in the
case of doubly connected domains discussed above, it is well-known that the



computation of the modulus h of the quadrilateral may be reduced to solving
the Dirichlét-Neumann boundary value problem in the original domain D
with the Dirichlét boundary values 1 on the boundary arc (21, z2) and 0 on
the arc (z3,2;) and Neumann boundary values 0 on the arcs (z3,24) and
(24, 21) -

An outline of the structure of this paper now follows. First, in Section 2
we describe the methods used in this paper. In Section 3 we discuss in detail
the various FEM methods used here, in particular the Ap-method which was
implemented and applied to generate some of the results reported below.
Another method we use is the h-adaptive software package AFEM of K.
Samuelsson, which implements an adaptive FEM method and which was
previously used in [9]. In the present paper we use the AFEM method to
compute the modulus of a quadrilateral whereas in [9] it was used merely for
the computation of the moduli of ring domains. In Section 4 a test problem
for quadrilaterals is described together with its analytic solution, following
[20]. This analytic solution requires, however, an application of a numerical
root finding program. Accordingly, this formula is analytic-numeric in its
character. In Section 5 we check several methods against this analytic formula
in a test involving a family of convex quadrilaterals. The methods discussed
are the analytic formula from [20], the Schwarz-Christoffel Toolbox of [16, 17],
the AFEM method of Samuelsson [9] and the present hp-method. On the
basis of these experiments, an accuracy ranking of the methods is given in
Section 5. In Section 6 the more general case of polygonal quadrilaterals is
investigated, in particular L-shaped domains, and the results are compared
to the literature. A general observation about the literature seems to be
that reported numerical values of the moduli of concrete quadrilaterals (or
ring domains) are hard to find in the literature. Perhaps the longest list of
numerical results is given in [9] where pointers to earlier literature may be
found. The recent book [26] lists also many such numerical values. In our
opinion a catalogue of these numerical values in the simplest cases would be
desirable for instance for reference purposes. The book [30] and the paper
[27, p. 127] list certain engineering formulas which have been applied in VLSI
circuit design.

2 Methods

The following problem is known as the Dirichlét-Neumann problem. Let D be
a region in the complex plane whose boundary 0D consists of a finite number
of regular Jordan curves, so that at every point, except possibly at finitely
many points, of the boundary a normal is defined. Let 0D = A U B where
A, B both are unions of Jordan arcs. Let 14,1 g be a real-valued continuous
functions defined on A, B, respectively. Find a function u satisfying the
following conditions:

1. w is continuous and differentiable in D.



2. u(t) = a(t), for all t € A.

3. If 9/0n denotes differentiation in the direction of the exterior normal,

then

0
%u(t) = (1), for all t € B.

2.1. Modulus of a quadrilateral and Dirichlét integrals. One can ex-
press the modulus of a quadrilateral (D; 21, 29, 23, 24) in terms of the solution
of the Dirichlét-Neumann problem as follows. Let «;,7 = 1,2,3,4 be the
arcs of 0D between (zy, 21) , (21, 22) , (29, 23) , (23, 24), respectively. If u is the
(unique) harmonic solution of the Dirichlét-Neumann problem with bound-
ary values of u equal to 0 on 72, equal to 1 on 74 and with du/dn = 0 on
7 U~s, then by [1, p. 65/Thm 4.5]:

M(D;z1722,23,24):/ |Vul? dm. (2.2)
D

2.3. Modulus of a ring domain and Dirichlét integrals. Let £ and
F be two disjoint compact sets in the extended complex plane C. Then one
of the sets E, F is bounded and without loss of generality we may assume
that it is E. If both £ and F are connected and the set R = C\ (EUF)
is connected, then R is called a ring domain. In this case R is a doubly
connected plane domain. The capacity of R is defined by

CapR:inf/ |Vul? dm,
“ JR

where the infimum is taken over all nonnegative, piecewise differentiable func-
tions v with compact support in RUFE such that u = 1 on E. It is well-known
that the harmonic function on R with boundary values 1 on £ and 0 on F
is the unique function that minimizes the above integral. In other words,
the minimizer may be found by solving the Dirichlét problem for the Laplace
equation in R with boundary values 1 on the bounded boundary compo-
nent F and 0 on the other boundary component F'. A ring domain R can be
mapped conformally onto the annulus {z : e™ < |2| < 1}, where M = M(R)
is the conformal modulus of the ring domain R . The modulus and capacity
of a ring domain are connected by the simple identity M(R) = 27 /cap R. For
more information on the modulus of a ring domain and its applications in
complex analysis the reader is referred to [1, 21, 22, 26].

In [26, Chapter 3] N. Papamichael describes so called domain decompo-
sition method for the computation of the modulus of a quadrilateral which
is designed to the case of elongated quadrilaterals and applies e.g. to polyg-
onal quadrilaterals that can be decomposed into simple pieces whose moduli
can be estimated. As an example he considers a spiraling quadrilateral that
can be decomposed into a "sum” of 13 trapezoids and reports results that
are expected to be correct up to 7 decimal places. Therefore, this method
seems very attractive for the computation of the modulus of a special class



of quadrilaterals. A key feature of the method is that it reduces the numer-
ical difficulties caused by the crowding phenomenon for this special class of
quadrilaterals.

2.4. Classification of methods for numerical computing. For the com-
putation of the modulus of a quadrilateral or of a ring domain there are two
natural approaches

(1) methods based on the definition of the modulus and on the use of a
conformal mapping onto a canonical rectangle or annulus,

(2) methods that give only the modulus, not the canonical conformal map.

In some sense, methods of class (1) give a lot of extra information, namely
the conformal mapping — all we want is a single real number. Methods of
class (2) rely on solving the Dirichlét-Neumann boundary value problem or
Dirichlét problem for the Laplace equation as described above.

In this paper we will mainly use methods of type (2) that make use of
adaptive FEM methods for solving the Laplace equation.

2.5. Review of the literature on numerical conformal mapping. With
the exception of a few special cases, both of the above methods lead to exten-
sive numerical computation. For both classes of methods there are several
options in the literature, see for instance the bibliography of [9]. Various
aspects of the theory and practice of numerical conformal mapping are re-
viewed in the monographs [17, 26, 23, 30]. See also the authoritative surveys
[19, 25, 35, 36].

Recently numerical conformal mappings have been studied from various
points of view and in various applications by many authors, see e.g. [2, 6,
12, 13, 14, 24, 28, 29].

2.6. Crowding phenomenon. The so called crowding phenomenon is a
well-documented difficulty in numerical conformal mapping discussed by sev-
eral authors. The underlying difficulties become clear when considering the
conformal mapping of an elongated rectangle onto the unit disk. The difficul-
ties are so severe that the total failure of the numerical procedure may result.
For example, considering the quadrilateral (Q; 1+ ih,ih,0,1) and its confor-
mal map f onto the unit disk with f(1+:h) = —f(0), f(ih) = — f(1) we have
that the minimal distance of the image points f(1 4 ih), f(ih), f(0), f(1) is
less than 3.4 - 1076 for h = 1/24 by [26, p. 132]. Due to the constraints of
the floating point arithmetic, it is difficult to even sort the image points in
the right order.

Very recently, L. Banjai [6] has devised some methods to alleviate the
difficulties caused by the crowding at least in some cases.



3 p-, and hp-finite element method

In the paper [9] the modulus of a ring domain was computed with the help
of the software package AFEM of K. Samuelsson, based on an h-adaptive
finite element method. It may be easily applied to compute the modulus of a
quadrilateral, too, and some results will be reported below. Here the AFEM
package will be adopted also to compute the modulus of a quadrilateral.

In this section we describe the high-order p-, and hp-finite element meth-
ods and report the results of numerical computation of the moduli of a num-
ber of quadrilaterals. The paper of Babuska and Suri [5] gives an accessible
overview of the method, for a more detailed exposition we refer to Schwab
[31], and for those familiar with engineering approach the book by Szabo and
Babuska [5] is recommended.

In the h-version or standard finite element method, the unknowns or
degrees of freedom are associated with values at specified locations of the
discretization of the computational domain, that is, the nodes of the mesh.
In the p-method, the unknowns are coefficients of some polynomials that are
associated with topological entities of the elements, nodes, sides, and interior.
Thus, in addition to increasing accuracy through refining the mesh, we have
an additional refinement parameter, the polynomial degree p.

Let us next define a p-type quadrilateral element. The construction of
triangles is similar and can be found from the references given above.

3.1. Shape functions. Many different selections of shape functions are pos-
sible. We follow Szabo and Babuska [33] and present the so-called hierarchic
shape functions.

Legendre polynomials of degree n can be defined using a recursion formula
(n+1)Pya(x) — 2n+ DaP,(z) + nP,_1(z) =0, F(z)=1. (3.2

The derivatives can similarly be computed using a recursion
(1 —2*)P!(x) = —naP,(z) + nP,_1(z). (3.3)

For our purposes the central polynomials are the integrated Legendre

polynomials
2n —1 (¢
On(§) =1/ n2 /Pn_l(t)dt, n=2,3,... (3.4)
—1

which can be rewritten as linear combinations of Legendre polynomials

1
bu(§) = m (Pu(§) — Pu2(§)), n=2,3,... (3.5)

The normalizing coefficients are chosen so that

b dgi(€) de; () . »




We can now define the shape functions for a quadrilateral reference el-
ement. The shape functions are divided into three categories: nodal shape
functions, side modes, and internal modes.

3.7. Nodal shape functions. There are four nodal shape functions.

Ni(n) = 11— (1~ )

No(6m) = (1 +€)(1 = 7).

Ny(6.n) = 1+ )1+,

Ni(n) = 70— )1 +1)

Taken alone, these shapes define the standard four-node quadrilateral finite
element.

3.8. Side shape functions. There are 4(p — 1) side modes associated with
the sides of a quadrilateral (p > 2).

1

N6 =51 =0)di©), i=2....p,

1
NP m) = 51+ O, i=2....p,

NP(e,n) = %(1 +n)ei(n), i=2,...,p,

NO(E ) = 50 -06(6), i=2...p

3.9. Internal shape functions. For the internal modes we have two op-
tions. The so-called trunk space has (p — 2)(p — 3)/2 shapes

NQ(Em) = di(€)¢s(m), 1,522, i+i=45,....p, (3.10)
whereas the full space has (p — 1)(p — 1) shapes
N]S(f’n) :¢Z(€)¢](n)’ /L.:27"'7p7 j:27"'7p7 (3'11)

where in both cases the index k& depends on the chosen convention. In this
paper we always use the full space. The internal shape functions are often
referred to as bubble-functions.

3.12. Parity problem. The Legendre polynomials have the property P,(—x) =
(=1)"P,(x). In 2D all internal edges of the mesh are shared by two different
elements. We must ensure that each edge has the same global parameteriza-
tion in both elements. This additional book-keeping is not necessary in the
standard h-FEM.



3.13. Resource requirements. We have seen that the number of unknowns
in a p-type quadrilateral is (p+2)(p+3)/2 or 4p+(p—1)? if the internal modes
are from trunk or full space, respectively. To compensate this, the number
of elements is naturally taken to be as small as possible. Indeed, when the
mesh is adapted in a suitable way, the dimension of the overall linear system
can be significantly lower than in the corresponding h-method. However, the
matrices tend to be denser in the p-method, so the space requirements in
relation to the dimension of the linear system are greater for the p-method.

3.14. Proper grading of the meshes For a certain class of problems it
can be shown that if the mesh and the elemental degrees have been set
optimally, we can obtain exponential convergence. A geometric mesh is such
that each successive layer of elements changes in size with some geometric
factor, scaling factor «, toward some point of interest. In this case, the points
of interest are always corner points.

The following theorem is due to Babuska and Guo [7]. Note that con-
struction of appropriate spaces is technical. For rigorous treatment of the
theory involved see Schwab [31], Babuska and Guo [8] and references therein.

3.15 Theorem. Let ) C R? be a polygon, v the FEM-solution, and let the
weak solution ug be in a suitable countably normed space where the derivatives
of arbritarily high order are controlled. Then

inf || ue — v|| g < C exp(—bV/'N),

where C' and b are independent of N, the number of degrees of freedom. Here
v 1s computed on a proper geometric mesh, where the orders of individual
elements depend on their originating layer, such that highest layers have
smallest orders.

Result also holds for constant polynomaial degree distribution.

Let us denote the number of highest layer with v, the nesting level. Using
this notation we can refer to geometric meshes as (o, v)-meshes.

In Figure 1 we show a geometric mesh template for a non-convex quadri-
lateral. Here we require that each node lies at the end point of an edge and
so are content if the lines follow the guidelines of the geometric meshes.

In Figure 2 a sequence of real p-type meshes is shown. The template
mesh serves also as a pure p-type mesh where the approximation properties
are changed only by varying the polynomial degree. In the following two
meshes the number of elements is the same because the nesting level is the
same, only the scaling factor changes.

3.16. Generating geometric meshes. Here we consider generation of
geometric meshes in polygonal domains. We use the following two-phase
algorithm:

(1) Generate a minimal mesh (triangulation) where the corners are isolated
with a fixed number of triangles depending on the interior angle, 6:



Figure 1: Geometric mesh for a general quadrilateral

Figure 2: Graded meshes: Effect of the scaling factor. From left to right,
template mesh, (a,v) = (1/2,3), (a,v) = (1/6,3).

e 0 < 7/2: one triangle,
e 7/2 <6 < m: two triangles, and

e 71 < 6: three triangles.

(2) Every triangle attached to a corner is replaced by a refinement, where
the edges incident to the corner are split as specified by the scaling
factor a. This process is repeated recursively until the desired nesting
level v is reached. Note that the mesh may include quadrilaterals after
refinement.

In Figure 3 three minimal meshes and in Figure 4 one final mesh are
shown.

4 Convex quadrilateral

In this section our goal is to introduce a test problem, whose solution is
determined by a transcendental equation. This equation can be numerically
solved to the desired accuracy and we will use this to check the validity of the
numerical methods we use as well as to obtain an experimental estimate for
their accuracy. The test problems we consider are convex polygonal quadri-
laterals. The simplest such quadrilateral consists of the four vertices and the

10



. B 50

Figure 3: Three sample meshes used in numerical experiments below. Note
the triangles isolating the corners.

Figure 4: Final geometric or (0.15,12)-mesh. Due to small « only first two
levels are visible.

line segments joining the vertices. Let z1, 29, 23, 24 € C be distinct points and
suppose that the polygonal line that results from connecting these points by
segments in the order 21, 29, 23, 24, 21 forms the positively oriented boundary
of a domain @. For simplicity, we denote by QM(z1, 22, 23, z4) the modulus
M(Q; 21, 22, 23, z4). Then the modulus is a conformal invariant in the follow-
ing sense: If f: ) — fQ is a conformal mapping onto a Jordan domain f(Q),
then f has a homeomorphic extension to the closure @ (also denoted by f)
and

M(Q; 21, 22, 23, 22) = M(fQ; f(21), f(22), f(23), f(24)) .-
It is clear by geometry that the following reciprocal identity holds:

M(Q;21,22723,24)M(Q;Z2,Z3,Z4721) =L (4-1)

If h: C — C is a translation, rotation, or stretching, then the piecewise
linear nature of the boundary is preserved and we can write the conformal
invariance simply as

QM (21, 22, 23, 24) = QM(f(21), f(22), f(23), f(24)) -

There are two particular cases, where we can immediately give QM(z1, 29, 23, 24).
The first cases occurs, when all the sides are of equal length (i.e. the quadri-
lateral is a rhombus) and in this case the modulus is 1, see [20]. In the second
case (Q; 21, 22, 23, 24) 18 (Q; 1+ih,th,0,1), h > 0, and QM(1+ih,ih,0,1) = h.

11



4.2. Basic identity. In [20, 2.11] some identities satisfied by the function
QM(a, b,0,1) were pointed out. We will need here the following one, which
is the basic reciprocal identity (4.1) rewritten for the expression QM :

QM(a,b,0,1) - QM((b—1)/(a—1),1/(1 —a),0,1) =1.  (4.3)

We shall consider here the following particular cases of this reciprocal
identity: (a) parallelogram, (b) trapezoid with angles (7/4,37/4,7/2,7/2),
and (c) a convex polygonal quadrilateral. Note that for the cases (a) and (b)
the formula is less complex than for the general case (c).

4.4. The hypergeometric function and complete elliptic integrals.
Given complex numbers a,b, and ¢ with ¢ # 0,—1,—2,..., the Gaussian
hypergeometric function is the analytic continuation to the slit plane C\[1, co)
of the series

F(a,b;c;z):2F1(a,b;c;z):ZW%, |z| < 1. (4.5)

n=0 ! n)

Here (a,0) = 1 for a # 0, and (a,n) is the shifted factorial function or the
Appell symbol
(a,n)=ala+1)(a+2)---(a+n—1)

for n € N\ {0}, where N = {0,1,2,...} and the elliptic integrals K(r),K'(r)
are defined by

K(r) = gF(1/2, 1/2;1;7%), K'(r) =%XK(r'"), and ' = V1 —r2.
Some basic properties of these functions can be found in [4].
4.6. Parallelogram. For ¢ € (0,7) and h > 0 let
g(t,h) = QM(1 + he, he™,0,1).

An analytic expression for this function has been given in [3, 2.3]:

g(t7 h) - K/(Tt/ﬂ)/g{(rt/w)a (47)
where .
-1 N
= P E— f <1/2 4.
Ta = U, <2sin(7ra)>’ or0<a<1/2 (4.8)

and the decreasing homeomorphism p,: (0,1) — (0, 00) is defined by

T Fla,1—a;1;1—1r?%)
2sin(ma)  F(a,1 —a;1;7?)

a(r) = (4.9)

4.10 Theorem. [20] Let 0 < a,b < 1, max{a + b,1} < ¢ < 1 + min{a, b},

and let Q be the quadrilateral in the upper half plane HH = {z € C : Im z > 0}
with vertices 0,1, A and B, the interior angles at which are, respectively,

12



bre, (c = b)m, (1 —a)w and (1 4+ a — ¢)w. Then the conformal modulus of Q) is
given by
QM(A, B,0,1) = M(Q) = X(r')/K(r),

where r € (0,1) satisfies the equation

LT’Q(C_G_b)F(C —a,c—bjc+1—a—b; r’z)
F(a,b;c;r?) 7

A-1= (4.11)

say, and

B(c—b,1—a) plb+1-c)im
B(b,c — ) '

For a fixed complex number b with Im (b) > 0 define the following function
g(xz,y) = QM(x + 7 - y,b,0,1) for z € R, y > 0. This is well-defined only
if the polygonal domain with vertices « + ¢ -y, b, 0, 1 is positively oriented.
This holds e.g. if Re(b) < 0 and = > 0. It is a natural question to study
the level sets of the function ¢g. This function tells us how the modulus of a
polygonal quadrilateral changes when three vertices are kept fixed and the
fourth one is moving. For instance, it was shown in [18] that the function
decreases when we move the fourth vertex into certain directions.

4.12. Trapezoid (Burnside [11]). In [9, pp. 237-239] so called square
frame, the domain between two concentric squares with parallel sides, was
considered. Such a domain can be split into 8 similar quadrilaterals, and we

shall study here one such quadrilateral with vertices 1 + hi, (h — 1)i, 0, and
1, h > 1. When h > 1 we have by [10, pp. 103-104], [11]

M(Q; 1 + hi, (h — 1)i,0,1) = M(h) = K(r)/K (") (4.13)

L =

where

2
. tl_tQ S| m _ ., —1 e —
T_(t1+t2)’ h=rif(z) o t=mp (). =21

Therefore, the quadrilateral can be conformally mapped onto the rectangle
1+ iM(h), iM(h), 0, 1, with the vertices corresponding to each other. It
is clear that h — 1 < M(h) < h. The formula (4.11) has the following
approximative version

M(h)=h+c+0(™),  c¢=—1/2—1log2/m ~ —0.720636,

given in [27]. As far as we know there is neither an explicit nor asymptotic
formula for the case when the angle /4 of the trapezoid is replaced by an
angle equal to a € (0,7/2).

4.14. Numerical computation of elliptic integrals. The computation
of the elliptic integrals is efficiently carried out by classical methods available
in most programming environments (see [4] for details.) The same holds true
for the hypergeometric functions. The numerical computation of ji1/2(r) and
its inverse function can be carried out by standard procedures. See e.g. [4,
3.22, 5.32] and [20, 2.11].
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5 Validation of algorithms: convex quadrilat-
erals

Validation of the algorithms for the modulus of a quadrilateral will be dis-
cussed in two main cases: convex quadrilaterals and the case of a general
polygonal quadrilateral. In this section the case of a convex quadrilateral
will be discussed for the following three algorithms: (a) the SC Toolbox in
MATLAB written by Driscoll [16], (b) the AFEM software due to Samuelsson
[9], (c) the hp-method of the present paper implemented in the Mathematica
language. The reference computation is carried out by the algorithm of [20],
implemented in [20] in the Mathematica language (the algorithm QM[A,B] im-
plementing the formula in Theorem 4.10). This implementation makes use
of multiple precision arithmetic for root finding of a transcendental equation
involving the hypergeometric function.

5.1. Setup of the validation test. All our tests were carried out in the
same fashion using the reciprocal identity (4.3) and considering a quadrilat-
eral with the vertices a, b, 0,1 with Ima > 0, Im b > 0, and the line segments
joining the vertices as the boundary arcs. The vertices b, 0, 1 were kept fixed
and the vertex a varied over a rectangular region in the complex plane. The
numerical value b = —0.2 + i - 1.2 was used and the lower left (upper right)
corner of the rectangular region was 0.5+ -0.2 (1.5 +¢-1.2).

5.2. The reference computation. We used the Mathematica script of [20]
for solving the equation in Theorem 4.10 for the computation of QM(a, b,0, 1)
in order to carry out the test. The conclusion was that the amplitude of the
error was roughly 107'7 i.e. there was practically no error. Note that the
quadrilateral here is not always convex. On the basis of numerical exper-
iments, it seems that the reference method does also work in non-convex
cases, but this has not been rigorously proved.

5.3. The SC Toolbox. This test was carried out by a test program and
the error was usually approximately 107 .

5.4. The AFEM package. This test was carried out by the test program
and the error was usually approximately 10710 .

5.5. The hp-FEM software. The test was based on the implementation
of the hp-method due to the first author. The error was usually 107 . for
p =28, 107 for p =13 and 107 for p = 20, using (0.15, 12)-meshes.

5.6. Ranking of the methods. The reference method gives by a clear
margin the least error in the test setup. The next is the Ap-method. The
AFEM method is nearly as effective as the SC Toolbox.
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Figure 5: Logarithm of errors over the domain [0.1, 2] x [0.1, 2], corresponding
to values of p = 8,13, 20 starting from above.

6 Validation: polygonal quadrilaterals

In this section we will consider the validation of the algorithms for the mod-
ulus of a quadrilateral in the case of polygonal domains with ¢ > 4 vertices.
In the case considered in the previous section there was a reference compu-
tational method, providing the reference value for the moduli. There is no
similar formula available for the general polygonal case.

6.1. Setup of the validation test. All our tests were carried out in the
same fashion as in the previous section, using the reciprocal identity (4.3).
We selected a quadruple of points {zi, 29, 23, 24} , which is a subset of the
set of vertices defining the polygon D, and assume that these are positively
oriented. Thus (D; z1, 29, 23, 24) is a quadrilateral to which the reciprocal
identity (4.3) applies.

6.2. The notation cmodu(w, k1, k2) and modu(w, k1, k2) . Suppose that
w is a vector of p complex numbers such that the points wy,...,wy, ¢ > 5,
are the vertices of a polygon D and that they define a positive orientation of
the boundary. Choose indices ki, ks € {1,...,p — 1} with k; < ks and set
21 = Wk, 22 = Wi, 41, 23 = Wy, 24 = Wky+1 - Lhen we define

cmodu(w, k1, ko) = M(D; 21, 29, 23, 24) ,  modu(w, k1, ko) = M(D; 29, 23, 24, 21) -
By the reciprocal relation (4.1) we have

cmodu(w, k1, ko) - modu(w, k1, ko) = 1. (6.3)
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6.4. L-shaped region. The L-shaped region:
L(a,b,c,d) =LiULy, Li={2€C:0<Re(z)<a,0<Im(z)<b},
Ly={2€C:0<Re(2)<d,0<Im(z)<c},0<d<a, 0<b<ec,

is a standard domain considered by several authors for various computational
tasks. In the context of computation of the moduli it was investigated by
Gaier [19] and we will compare our results to his results. In the test cases all
the vertices had integer coordinates in the range [1,4] .

6.5. Tests of (6.3) with AFEM. The error range was [—7.10-1071%, —1.80-
1019

6.6. Tests of (6.3) with SC Toolbox. The error range was [—1.37 -
10-%8,9.92 - 10-%] .

6.7. Tests of (6.3) with hp-method. The error ranges were for p = 12,
[4.0091 - 1071, 1.58978 - 1071Y], for p = 16, [8.03357 - 10713, 2.28306 - 10~12],
and for p = 20, [5.97744 - 10713,1.80145 - 107'?], using (0.15, 12)-meshes.

7 Ring domains

In this section, we compare hp-FEM with exact values and with AFEM in
certain ring domains. The reference values are from [9].

7.1. Square in square. We compute here the capacity of the ring domain
with plates E = [—a,a] x [—a,a] and F = Cy \ ((—1,1) x (=1,1)), 0 <a <
1. The results with AFEM and the hp-method with (0.15,12)-meshes are
summarized in Table 1. For computation of the capacity, the ring domain
is first split into four similar quadrilaterals. For the potential function, see
Figure 7. Note that in this case, the exact values of the potential are known,
see (4.13) and the related trapezoid type quadrilateral example.

7.2. Cross in square. Let Gy, = {(z,y) : |z < a,|y| < b} U {(z,y) : |z| <
b,ly| <a}. and G. = {(z,y) : |z] < ¢,|y| < ¢}, where a < ¢ and b < ¢. We
compute the capacity of the ring domain R = G, \ G4. The results with
AFEM and the hp-method with (0.15, 16)-meshes are summarized in Table
2. For computation of the capacity, the ring domain is again first split into
four similar quadrilaterals. The mesh for the quadrilaterals is given in Figure
6, and the potential function is given in Figure 7. The exact values are not
known in this case but results can be compared with AFEM.

Since the underlying mesh topology remains constant in both examples
above we have computed the results using exactly the same mesh template for
every subproblem, e.g. Figure 6 for Cross in square, a = 0.5,b = 1.2, ¢ = 1.5.
Thus, the results also measure the robustness of the method with respect to
element distortion. Also, in both cases due to symmetry we have graded the
mesh only to the reentrant corners of the domain.

Acknowledgments. The authors are indebted to Prof. N. Papamichael
for helpful comments on this paper.
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Figure 6: Meshing setup for cross in square

Figure 7: Potential functions: square in square and cross in square
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Table 1: Table for Square in Square, p = 16
a | Capacity Error Exact value
0.1 2.83978 | 1.7-107" | 2.8397774191
0.2 | 4.13449 |8.4-10'? | 4.1344870242
0.5 | 10.2341 | 3.1-107' | 10.2340925694
0.7 | 20.9016 | 1.4-10710|20.9015816794
0.8 | 34.2349 |5.6-1071% | 34.2349151988
0.9 | 74.2349 |5.9-10710 | 74.2349151988

Table 2: Table for cross in square, p = 16
a | b | ¢ | Capacity | Difference
0.5]1.2]1.5(21.9472192 | 1.5-1078
0.5|1.0 ] 1.5|14.0027989 | 1.0-107°
0.2 0.7 1.2 9.1869265 | 1.0-10~8
0.1]0.8]1.1]11.2565821 | 1.9-107®
0506 1.5 7.3232695 | 1.2-10°°
0.1]1.2]1.3]23.1386139 | 3.4-107®
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