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1 Introduction

In this paper we study the symmetries of some well-known, in fact, al-
most classical Banach spaces. We denote the closed unit ball of a Banach
space X by BX and the unit sphere of X by SX. A Banach space X is
called transitive if for each x ∈ SX the orbit GX(x)

·
= {T (x)| T : X →

X is an isometric automorphism} = SX. If GX(x) = SX (resp. conv(GX(x)) =
BX) for all x ∈ SX, then X is called almost transitive (resp. convex-transitive).
These concepts are motivated by the Banach-Mazur rotation problem appear-
ing in [2, p.242], which remains unsolved. We refer to [5] and [8] for a survey
and discussion on the matter.

The known concrete examples of convex-transitive spaces are scarce, and
the ultimate aim of this paper is to provide more examples by establishing the
convex-transitivity of some vector-valued function spaces and other natural
spaces. It was first reported by Pelczynski and Rolewicz [18] in 1962 that the
space Lp is almost transitive for p ∈ [1,∞) and convex-transitive for p = ∞
(see also [20]). Later, Wood [23] characterized the spaces CR

0 (L) whose norm
is convex-transitive (see Preliminaries). Greim, Jamison and Kaminska [14]
proved that if X is almost transitive and 1 ≤ p < ∞, then the Lebesgue-
Bochner space Lp(X) is also almost transitive. Recently, an analogous study
of the spaces C0(L,X) was done by Aizpuru and Rambla [1], and some related
spaces were studied by Talponen [22]. For some other relevant contemporary
results, see [7], [16] and [19].

We will extend these investigations into the vector-valued convex-transitive
setting, which differs considerably in many respects from the scalar-valued
almost transitive one. For this purpose we will introduce a new concept which
is (formally) stronger than convex-transitivity and weaker than almost transi-
tivity, called uniform convex-transitivity. With the aid of this class of Banach
spaces we produce new natural examples of convex-transitive vector-valued
function spaces. The main results of this paper are the following:

• Characterization of locally compact Hausdorff spaces L such that CR

0 (L)
is uniformly convex-transitive.

• If X is a uniformly convex-transitive Banach space, then so is L∞
K

(X).

• If X and CR

0 (L) are uniformly convex-transitive, then so is CK

0 (L,X).

Preliminaries

The scalar field of a Banach space X is denoted by K and whenever there
are several Banach spaces under discussion, then K is the scalar field of the
space denoted by X. The open unit ball of X is denoted by UX. The group of
rotations GX of X consists of isometric automorphisms T : X → X, the group
operation being the composition of the maps and the neutral element being
the identity map I : X → X. We will always consider GX equipped with the
strong operator topology (SOT). An element x ∈ SX is called a big point if
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convG(x) = BX. Thus X is convex-transitive if and only if each x ∈ SX is a
big point.

Recall that a topological space is totally disconnected if each connected
component of the space is a singleton. In what follows L is a locally compact
Hausdorff space and K is a compact Hausdorff space, unless otherwise stated.
In [23] Wood characterized convex-transitive CR

0 (L) spaces. Namely, CR

0 (L)
is convex-transitive if and only if L is totally disconnected and for every
regular probability measure µ on L and t ∈ L there exists a net {γα}α of
homeomorphisms on L such that the net {µ ◦ γα}α is ω∗-convergent to the
Dirac measure δt. The above mapping µ◦γα is given by µ◦γα(A) = µ(γα(A))
for Borel sets A ⊂ L.

We refer to [17] for background information on measure algebras and
isometries of Lp-spaces and to [11] for a suitable source to Banach spaces in
general. In what follows Σ is the completed σ-algebra of Lebesgue measurable
sets on [0, 1] and we denote by m : Σ → R the Lebesgue measure. Define an
equivalence relation

m
∼ on Σ by setting A

m
∼ B if m((A ∪B) \ (A ∩B)) = 0.

Recall that a rotationR on the space CK

0 (L,X) is said to be of the Banach-
Stone type, if R can be written as

R(f)(t) = σ(t)(f ◦ φ(t)), f ∈ CK

0 (L,X),

where φ : L → L is a homeomorphism and σ : L → GX is a continuous map.
A Banach space Y is said to be contained almost isometrically in a Banach
space X if for each ε > 0 there is a linear map ψ : Y → X such that

||y||Y ≤ ||ψ(y)||X ≤ (1 + ε)||y||Y for y ∈ Y.

2 Uniform convex-transitivity

Provided that the space X under discussion is understood, we denote

Cn(x) =

{
n∑

i=1

aiTi(x)| T1, . . . , Tn ∈ GX, a1, . . . , an ∈ [0, 1],
n∑

i=1

ai = 1

}

for n ∈ N and x ∈ SX. We call a Banach space X uniformly convex-transitive
if for each ε > 0 there exists n ∈ N satisfying the following condition: For all
x ∈ SX and y ∈ BX it holds that dist(y, Cn(x)) ≤ ε, that is

lim
n→∞

sup
x∈SX,y∈BX

dist(y, Cn(x)) = 0.

We denote by Kε the least integer n, which satisfies the above inequality
involving ε and such Kε is called the constant of uniform convex transitivity
of X associated to ε. We call x ∈ SX a uniformly big point if

lim
n→∞

sup
y∈BX

dist(y, Cn(x)) = 0.

4



Clearly almost transitive spaces are uniformly convex-transitive, and uni-
formly convex-transitive spaces are convex-transitive. It is well-known that
CC(S1) is a convex-transitive, non-almost transitive space, and it is easy to
see (see e.g. the subsequent Theorem 2.4) that it is even uniformly convex-
transitive. Unfortunately, we have not been able so far to find an example of
a convex-transitive space which is not uniformly convex-transitive. However,
we suspect that such examples exist and we note that the absence of such
a complicated space would make some proofs regarding convex-transitive
spaces much more simple. Observe that the canonical unit vectors ek ∈ ℓ1

are far from being uniformly big points:

lim
n→∞

sup
y∈B

ℓ1

dist(y, Cn(ek)) = 1,

even though they are big points, i.e. conv(Gℓ1(ek)) = Bℓ1 for k ∈ N. In any
case, we will provide examples of uniformly convex-transitive spaces, most of
which are not previously known to be even convex-transitive.

We note that if X is convex-transitive and there exists a uniformly big
point x ∈ SX, then each y ∈ SX is a uniformly big point. This does not
mean, a priori, that X should be uniformly convex-transitive. Next we give an
equivalent condition to uniform convex transitivity, which is more applicable
in calculations than the condition introduced above.

Proposition 2.1. Let X be a Banach space. The following condition of X
is equivalent to X being uniformly convex-transitive: For each ε > 0 there is
Nε ∈ N such that for each x ∈ SX and y ∈ BX there are T1, . . . , TNε

∈ GX

such that ∣∣∣
∣∣∣y − 1

Nε

∑Nε

i=1 Ti(x)
∣∣∣
∣∣∣ ≤ ε. (1)

Proof. It is clear that (1) implies uniform convex transitivity, even for the
value Kε = Nε for each ε > 0. Towards the other direction, let X be a
uniformly convex-transitive Banach space, ε > 0 and x ∈ SX, y ∈ BX. Let
K be the constant of uniform convex-transitivity of X associated to ε

4
. Then

there are a1, . . . , aK ∈ [0, 1],
∑

i ai = 1 and T1, . . . , TK ∈ GX such that

∣∣∣
∣∣∣y −

∑K
i=1 aiTi(x)

∣∣∣
∣∣∣ ≤ ε

4
.

Put m = ⌈4K
ε
⌉ ∈ N, so that K · 1

m
≤ ε

4
. Next we define an m-uple

(S1, . . . , Sm) ⊂ GX as follows: For each j ∈ {1, . . . ,m} and i ∈ {1, . . . , K}
we put Sj = Ti if ⌈m

∑
n<i an⌉ < j ≤ ⌊m

∑
n≤i an⌋. (Here

∑
∅ an = 0.) By

applying the triangle inequality several times, we obtain that

∣∣∣
∣∣∣y − 1

m

∑m
j=1 Sj(x)

∣∣∣
∣∣∣ ≤ ε.

Hence it suffices to put Nε = m = ⌈4K
ε
⌉, where K depends only on the

Banach space X and the value of ε.
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In what follows, we will apply the constant Nε freely without explicit
reference to the previous proposition, and if there is no danger of confusion,
also without mentioning explicitly X and ε, either.

The following condition on the locally compact space L turns out to be
closely related to the uniform convex-transitivity of CK

0 (L):

(∗) For each ε > 0 there is Mε ∈ N such that for every non-empty open sub-
set U ⊂ L and compactK ⊂ L there are homeomorphisms φ1, . . . , φMε

: L→
L with

1

Mε

Mε∑

i=1

χφ−1
i (U)(t) ≥ 1 − ε for t ∈ K.

This condition should be compared with the conditions found by Cabello
(see [7, p.110-113], especially condition (g)), which characterize the convex
transitivity of C0(L). Next we will give this characterization the uniformly
convex-transitive counterpart. If L is a locally compact Hausdorff space,
by αL we denote its one-point compactification and if L is noncompact, we
denote such point by ∞. Prior to the theorem we need the following two
lemmas.

Lemma 2.2. ([19, Thm. 3.1]) Let T be a normal topological space with
dim T ≤ 1. If F ⊆ T is a closed subset and f : F → SC is a continuous
map, then f admits a continuous extension g : T → SC.

Lemma 2.3. Let L be a locally compact, Hausdorff, 0-dimensional space.
Then for every g ∈ BCR

0 (L) and k ∈ N there exist disjoint clopen sets C1, C2, . . . , C2k−1

such that the function h ∈ BCR
0 (L) defined by h =

∑2k−1
i=1

i−k
k
χCi

satisfies

‖h− g‖ ≤ 3
2k

.

Proof. We regard g as defined in αL. Consider i ∈ {−k,−k + 1, . . . , k − 1}
and let Ki = g−1[ i

k
, i+1

k
]. Every x ∈ Ki has a clopen neighbourhood Ax

such that g(Ax) ⊆ [2i−1
2k
, 2i+3

2k
]. By compactness there exist x1, . . . , xn such

that Ki ⊆
⋃n

j=1Axj

·
= Bi. Finally, define C0 = B0, C1 = B−k \ C0, . . . ,

Ck = B−1 \ (C0 ∪ · · · ∪ Ck−1), Ck+1 = B1 \ (C0 ∪ · · · ∪ Ck), . . . , C2k−1 =
Bk−1 \ (C0 ∪ · · · ∪ C2k−2). Note that the Ci’s are a partition of αL.

Now take h : L→ R given by h =
∑2k−1

i=1
i−k
k
χCi

. It is easy to check that
‖h− g‖ ≤ 3

2k
and h ∈ BCR

0 (L).

Theorem 2.4. Let L be a locally compact Hausdorff space. The space CR

0 (L)
is uniformly convex-transitive if and only if L is totally disconnected and sat-
isfies (∗). If the space CC

0 (L) is uniformly convex-transitive, then L satisfies
(∗). Moreover, if dim(αL) ≤ 1, then also the converse implication holds.

Before the proof we comment on the above assumptions.

Remark 2.5. The spaces CR(S1,R2) and CC(S1,C) are uniformly convex-
transitive, their rotations are of the Banach-Stone type, and clearly S1, GR2

and GC are not totally disconnected.
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Proof of Theorem 2.4. Let us first consider the only if directions. Since uni-
formly convex-transitive spaces are convex-transitive, we may apply Wood’s
characterization for convex-transitive CR

0 (L) spaces, and thus we obtain that
L must be totally disconnected. Let CK

0 (L), K ∈ {R,C}, be uniformly
convex-transitive. Next we aim to check that L satisfies (∗), so let U ⊂ L be
a non-empty open subset and K ⊂ L a compact subset. Fix x0 ∈ U . Since
αL is normal, there exist continuous functions f, g : αL → [−1, 1] satisfying
f(αL\U) = {0}, f(x0) = 1, g(K) = {1} and g(∞) = 0. Since both functions
vanish at infinity, we can consider that f, g ∈ SCK

0 (L).
Fix ε > 0 appearing in condition (∗). Let Nε be the associated constant

provided by the uniform convex-transitivity and condition (1). Then by
the definition of Nε and the Banach-Stone characterization of rotations of
CK

0 (L) we obtain that there are continuous functions σ1, . . . , σNε
: L → K

and homeomorphisms φ1, . . . , φNε
: L→ L such that

∣∣∣
∣∣∣g − 1

Nε

∑Nε

i=1 σi(f ◦ φi)
∣∣∣
∣∣∣ ≤ ε. (2)

In particular, this yields for each t ∈ K that

ε ≥ |1 − 1
Nε

∑Nε

i=1 σif(φi(t))| = | 1
Nε

∑Nε

i=1 1 − σif(φi(t))|

≥ 1
Nε

∑Nε

i=1 χL\φ−1
i (U)(t),

where we applied the fact that f vanishes outside U . This justifies (∗) for
Mε = Nε.

Let us see the if direction for CR

0 (L). Let k ∈ N, f ∈ SCR
0 (L) and g ∈

BCR
0 (L). We may assume max f = 1. Take h as in Lemma 2.3, i.e. h =

∑2k−1
i=1

i−k
k
χCi

with each Ci clopen and ‖h− g‖ ≤ 3
2k

.

Note that K
·
=

⋃2k−1
i=1 Ci is compact and apply (∗) to this K, the subset

U
·
= {t ∈ L : f(t) > 1 − k−1} and ε = 1

k
. Write M

·
= Mε. There exist

homeomorphisms φ1, . . . , φM such that if t ∈ K then 1
M

∑M
i=1 χφ−1

i (U)(t) ≥

1 − k−1. For each j ∈ {1, . . . , 2k − 1}, define Bj =
⋃2k−1

s=j Cs and let Tj

be the rotation on CR

0 (L) given by Tjx = (χBj
− χBc

j
) · x if j ≤ k and

Tjx = (χBj
− χBc

j
+ 2χL\K) · x if j > k. Now only a few calculations are

needed to see that
∣∣∣
∣∣∣g − 1

M(2k−1)

∑2k−1
j=1

∑M
i=1 Tj(f ◦ φi)

∣∣∣
∣∣∣ ≤ 6k−1

and thus CR

0 (L) is uniformly convex transitive.
In order to justify the last sentence in the theorem it is required to verify

that if L satisfies dim(αL) ≤ 1 and (∗), then CC

0 (L) is uniformly convex-
transitive. Let k ∈ N and let Mk be the corresponding constant in condition
(∗) associated to value k−1. Fix f ∈ SCC

0 (L) and g ∈ BCC
0 (L). We may assume

without loss of generality, possibly by multiplying f with a suitable complex
number of modulus 1, that f(t0) = 1 for a suitable t0 ∈ L. Let U

·
= {t ∈ L :

|1 − f(t)| < k−1} and K = {t ∈ L : |g(t)| ≥ k−1}. Let φ1, . . . , φMk
: L → L
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be homeomorphisms such that 1
Mk

∑Mk

i=1 χφ−1
i (U)(t) ≥ 1− k−1 for t ∈ K. This

means that the average

F
·
= 1

Mk

∑Mk

i=1 f ◦ φi ∈ BCC
0 (L) (3)

satisfies |1 − F (t)| ≤ 3k−1 for each t ∈ K.

Next we will define some auxiliary mappings. Put α : SC × [0, 1] →
SC; α(z, s) = −i2sz. Note that this is a continuous map, and α(z, 0) = −z,
α(z, 1) = z for z ∈ SC. Taking into account Lemma 2.2 with T = αL, let

βg : L→ SC be a continuous extension of the function g(·)
|g(·)|

defined on K.

For j ∈ {1, . . . , k} we define rotations on CC

0 (L) by putting eja(x)(t) =
βg(t) · x(t) and ejb(x)(t) = α(βg(t),min(1,max(0, k|g(t)| − j))) · x(t). The
main point above is that (eja + ejb)(F )(t) = 0 for (j, t) ∈ {1, . . . , k}×L such
that |g(t)| ≤ j

k
and (eja + ejb)(F )(t) = 2F (t)βg(t) for (j, t) ∈ {1, . . . , k} × L

such that g(t) ≥ j+1
k

. Thus, by using (3) we obtain that

∣∣∣
∣∣∣ |g(t)|βg(t) −

1
2k

∑k
j=1(eja + ejb)(F )(t)

∣∣∣
∣∣∣ ≤ 2k−1 for t ∈ L.

Here ||g(·)−|g(·)|βg(·)|| ≤ k−1, so that CC

0 (L) is uniformly convex-transitive.

Note that Theorem 2.4 yields the fact that if CR

0 (L) is uniformly convex-
transitive, then so is CC

0 (L). By the above reasoning one can also see that if
CK

0 (L) is convex-transitive and |L| > 1, then L contains no isolated points
and thus it follows that each non-empty open subset of L is uncountable (see
also [3, Thm. 1]). Cabello pointed out [7, Cor. 1] that locally compact spaces
L having a basis of clopen sets C such that L\C is homeomorphic to C, have
the property that CR

0 (L) is convex-transitive. Consequently, this provides a
route to the fact that the spaces L∞, ℓ∞/c0 and C(∆) over R, where ∆ is the
Cantor set, are convex-transitive. By applying Theorem 2.4 and following
Cabello’s argument with slight modifications, one arrives at the conclusion
that these spaces are in fact uniformly convex-transitive. When studying [7]
it is helpful to observe that each occurence of ’basically disconnected’ in the
paper must be read as totally disconnected, ([6]).

It is quite easy to verify that if L1, . . . , Ln, where n ∈ N, are totally
disconnected locally compact Hausdorff spaces satisfying (∗), then so is the
product L1×· · ·×Ln. It follows that the space CR

0 (L1×· · ·×Ln) (also known
as the injective tensor product CR

0 (L1)⊗̂ε . . . ⊗̂εC
R

0 (Ln), up to isometry) is
uniformly convex-transitive.

3 Uniform convex-transitivity of Banach-valued

function spaces

With a proof similar to that of lemma 2.3, we obtain the following:
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Lemma 3.1. Let L be a locally compact, Hausdorff, 0-dimensional space
and X a Banach space over K. Given g ∈ BCK

0 (L,X) and j ∈ N, there
exist nonzero x1, . . . , xn ∈ BX and disjoint clopen sets C1, C2, . . . , Cn ⊂ L
such that the function h ∈ BCK

0 (L,X) defined by h(t) =
∑n

i=1 χCi
(t)xi satisfies

‖h− g‖ < 1
j
.

Theorem 3.2. Let L be a locally compact Hausdorff space and X a Banach
space over K. Consider the following conditions:

(1) L is totally disconnected and satisfies (∗), i.e. CR

0 (L) is uniformly
convex-transitive.

(2) X is uniformly convex-transitive.

(3) CK

0 (L,X) is uniformly convex-transitive.

We have the implication (1) + (2) =⇒ (3). If the rotations of CK

0 (L,X)
are of the Banach-Stone type and dimK(X) ≥ 1, then (3) =⇒ (∗) + (2). If
additionally K = R and GX is totally disconnected, then (3) =⇒ (1) + (2).

Recall Remark 2.5 related to the last claim above.

Proof of Theorem 3.2. We begin by proving the implication (1) + (2) =⇒
(3). Fix k ∈ N. Then condition (∗) provides us with an integer Nk associated
to 1

4k
. Let f ∈ SCK

0 (L,X) and g ∈ BCK
0 (L,X). Take h and C1, . . . , Cn ⊂ L as in

Lemma 3.1 with j = 2k.
Let B =

⋃n
i=1Ci and K = {t ∈ L : ‖g(t)‖ ≥ k−1}. Note that B is a

compact clopen set and K ⊂ B. There are y ∈ SX and T1, . . . , TNk
∈ GCK

0 (L,X)

such that ∣∣∣
∣∣∣y −

(
1

Nk

∑Nk

i=1 Tif
)

(t)
∣∣∣
∣∣∣ < 1

k
, for t ∈ B. (4)

Indeed, observe that the continuous map L → R; t 7→ ||f(t)|| attains its
supremum, the value 1. Thus, let t0 ∈ L be such that ||f(t0)|| = 1 and let
y = f(t0) ∈ SX. Write V = {t ∈ L : ||f(t) − y|| < 1

2k
}. By using (∗) there

are homeomorphisms σ1, . . . , σNk
: L→ L such that

1
Nk

∑Nk

i=1 χV (σi(t)) ≥ 1 − 1
4k
, for t ∈ B. (5)

Let Ti ∈ GCK
0 (L,X) be given by (TiF )(t) = F (σi(t)) for 1 ≤ i ≤ Nk and

F ∈ CK

0 (L,X). Thus, for all t ∈ B we obtain by (5) and the definition of V
that

∣∣∣
∣∣∣y −

(
1

Nk

∑Nk

i=1 Tif
)

(t)
∣∣∣
∣∣∣

=
∣∣∣
∣∣∣ 1
Nk

∑Nk

i=1 y −
1

Nk

∑Nk

i=1 f(σi(t))
∣∣∣
∣∣∣ ≤ 1

Nk

∑Nk

i=1 ||y − f(σi(t))||

< (1 − 1
4k

) · 1
2k

+ 1
4k

· 2 < 1
k
.
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Since X is uniformly convex-transitive, there is an integer 2M = Nε

satisfying (1) for the value ε = k−1. Let S
(i)
1 , . . . , S

(i)
2M ∈ GX for 1 ≤ i ≤ n

such that ∣∣∣
∣∣∣xi −

1
2M

∑2M
l=1 S

(i)
l (y)

∣∣∣
∣∣∣ < k−1 for 1 ≤ i ≤ n. (6)

Then for each 1 ≤ l ≤ 2M we define a rotation on CK

0 (L,X) by

Rl(F )(t) = χL\B(t)(−1)lF (t) +
n∑

i=1

χCi
S

(i)
l (F (t)), F ∈ CK

0 (L,X), t ∈ L.

Indeed, this defines rotations, since the sets L \ B and Ci are clopen. It is
easy to see by combining (4) and (6) that

∣∣∣
∣∣∣g − 1

2M

∑2M
l=1Rl

1
Nk

∑Nk

i=1 Tif
∣∣∣
∣∣∣ < 2k−1.

This verifies the first implication.
Next we will prove the implication (3) =⇒ (∗)+(2) under the assumption

that the rotations are of the Banach-Stone type. In fact, the verification of
claim (3) =⇒ (∗) reduces to the analogous scalar-valued case, which was
treated in the proof of Theorem 2.4. Moreover, by using the Banach-Stone
representation of rotations and functions of type f ⊗ x, g ⊗ y ∈ SCK

0 (L,X) it is

easy to verify that the uniform convex-transitivity of CK

0 (L,X) implies that
of X.

Finally, let us prove the total disconnectedness of L in the case when GX

is totally disconnected and K = R. Assume to the contrary that L contains
a connected subset C, which is not a singleton. Pick t, s ∈ C, t 6= s, and
x ∈ SX. Let x∗ ∈ SX∗ with x∗(x) = 1. Let f, g ∈ SCR

0 (L) be functions
with disjoint supports and such that f(t) = g(s) = 1. Consider f ⊗ x, f ⊗
x − g ⊗ x ∈ SCR

0 (L,X). Since CR

0 (L,X) is convex-transitive we obtain that
f ⊗ x− g ⊗ x ∈ conv(GCR

0 (L,X)(f ⊗ x)).
It follows easily by taking into account the Banach-Stone representa-

tion of rotations of CR

0 (L,X) and by studying the convex combinations in
conv(GCR

0 (L,X)(f ⊗ x)) that there exists a continuous map σ : L → GX such
that

x∗(σ(t)(x)), x∗(−σ(s)(x)) > 0.

By using the facts that σ(t) 6= σ(s) and that GX is totally disconnected we
obtain that σ(C) is not connected. However, we have a contradiction, since
σ(C) is a continuous image of a connected set. This contradiction shows that
L must be totally disconnected.

By following the argument in the previous proof with slight modifications
one obtains an analogous result in the convex-transitive setting.

Theorem 3.3. If CR

0 (L) is convex-transitive and X is a convex-transitive
space over K, then CK

0 (L,X) is convex-transitive.

10



Proof. The proof of Theorem 3.2 has the convex-transitive counterpart with
convex combinations of rotations in place of averages of rotations. Indeed,
in the equation (4) one uses the convex-transitivity of CR

0 (L) and the corre-
sponding Banach-Stone type rotations applied on CK

0 (L,X). After equation
(4) the argument proceeds similarly. Note that in the convex-transitive set-
ting there does not exist, a priori, an upper bound M depending only on
ǫ.

Recall that the Lebesgue-Bochner space Lp(X) consists of strongly mea-
surable maps f : [0, 1] → X endowed with the norm

||f ||pLp(X) =

∫ 1

0

||f(t)||pX dt, for p ∈ [1,∞)

and ||f ||L∞(X) = ess sup
t∈[0,1]

||f(t)||X . We refer to [10] for precise definitions

and background information regarding the Banach-valued function spaces
appearing here.

Recall that L∞ is convex-transitive (see [18] and [20]). Greim, Jamison
and Kaminska proved that Lp(X) is almost transitive if X is almost tran-
sitive and 1 ≤ p < ∞, see [14, Thm. 2.1]. We will present the analogous
result for uniformly convex-transitive spaces, that is, if X is uniformly convex-
transitive, then Lp(X) are also uniformly convex-transitive for 1 ≤ p ≤ ∞.

Theorem 3.4. Let X be a uniformly convex-transitive space over K. Then
the Bochner space Lp

K
(X) is uniformly convex-transitive for 1 ≤ p ≤ ∞.

We will make some preparations before giving the proof. Suppose that
(An)n∈N is a countable measurable partition of the unit interval and (xn)n∈N ⊂
X. We will use the short-hand notation F =

∑
n χAn

xn for the function
F ∈ L∞(X) defined by F (t) = xn for a.e. t ∈ An for each n ∈ N. The
following two auxiliary observations are obtained immediately from the fact
that the countably valued functions are dense in L∞(X) and the triangle
inequality, respectively.

Fact 3.5. Consider F =
∑

n χAn
xn, where (An) is a measurable partition of

[0, 1] and (xn) ⊂ BX. Functions F of such type are dense in BL∞(X).

Fact 3.6. Let X be a Banach space and T1, ..., Tn ∈ GX, n ∈ N. Assume that
x, y, z ∈ X satisfy ||y − 1

n

∑
i Ti(x)|| = ε ≥ 0 and ||x − z|| = δ ≥ 0. Then

||y − 1
n

∑
i Ti(z)|| ≤ ε+ δ.

Proof of Theorem 3.4. We mainly concentrate on the case p = ∞. Fix k ∈ N,
x ∈ SX, (xn), (yn) ⊂ BX and measurable partitions (An) and (Bn) of the unit
interval. Let Nk be the integer provided by the uniform convex transitivity
of X associated to the value ε = 1

k
. Write

F =
∑

n

χAn
xn and G =

∑

n

χBn
yn.

11



We assume additionally that ||F || = 1.

For each n ∈ N there are isometries {T
(n)
i }i≤Nk

⊂ GX such that
∣∣∣
∣∣∣ 1
Nk

∑Nk

i=1 T
(n)
i (x) − yn

∣∣∣
∣∣∣ < 1

k
for n ∈ N. (7)

Observe that one obtains rotations on L∞(X) by putting

Ri(f)(t) =
∑

n

χBn
T

(n)
i (f(t))

for a.e. t ∈ [0, 1], where f ∈ L∞(X), i ≤ Nk, and the above summation
is understood in the sense of pointwise convergence almost everywhere. We
define a convex combination of elements of GL∞(X) by

A1(f) = 1
Nk

∑Nk

i=1Ri(f), f ∈ L∞(X).

Condition (7) implies that

||G− A1(χ[0,1]x)|| <
1

k
. (8)

By the definition of F one can find n0 ∈ N such that m(An0) > 0 and

||xn0 ||X > 1 −
1

k
. (9)

Put ∆n = [1 − 2−n, 1 − 2−(n+1)] for n ≤ k. By composing suitable bijective
transformations one can construct measurable mappings gn : [0, 1] → [0, 1]
and ĝn : [0, 1] → [0, 1] such that

gn(An0)
m
∼ [0, 1] \ ∆n and gn([0, 1] \ An0)

m
∼ ∆n, (10)

the measure µn(·)
·
= m(gn(·)) : Σ → R is equivalent to m (11)

and
ĝn ◦ gn(t) = t for a.e. t ∈ [0, 1] (12)

for each n ≤ k.
Next we will apply some observations which appear e.g. in [13] and [12].

Denote by Σ\m the quotient σ-algebra of Lebesgue measurable sets on [0, 1]
formed by identifying the m-null sets with ∅. Note that (11) gives in partic-
ular that the map φn : Σ\m → Σ\m determined by φn(A)

m
∼ gn(A) for A ∈ Σ

is a Boolean isomorphism for each n ≤ k. Observe that ĝn(A)
m
∼ φ−1

n (A) for
A ∈ Σ and n ≤ k.

By (9) there are rotations {Ti}i≤Nk
⊂ GX such that

∣∣∣
∣∣∣x− 1

Nk

∑Nk

i=1 Ti(xn0)
∣∣∣
∣∣∣
X
< 2

k
. (13)

According to (12) we may define mappings Si : L
∞(X) → L∞(X) for n ≤ k

and i ≤ Nk by putting

S
(n)
i (F )(t) = Ti(F (ĝn(t))) for a.e. t ∈ [0, 1], F ∈ L∞(X).

12



By (11) we get that S
(n)
i ∈ GL∞(X) (see also [12, p. 467-468]).

The function χ[0,1]x can be approximated by convex combinations as fol-
lows:

∣∣∣
∣∣∣χ[0,1]x−

1
k

∑k
n=1

1
Nk

∑Nk

i=1 S
(n)
i (F )

∣∣∣
∣∣∣
L∞(X)

≤ 1
k
(2 +

∑k−1
i=1 2k−1). (14)

Indeed, for n ≤ k and a.e. t ∈ [0, 1] \ ∆n it holds by (13) that

∣∣∣
∣∣∣x− 1

Nk

∑Nk

i=1 S
(n)
i (F )(t)

∣∣∣
∣∣∣
X

=
∣∣∣
∣∣∣x− 1

Nk

∑Nk

i=1 T
(n)
i (xn)

∣∣∣
∣∣∣
X
≤ 2

k
.

On the other hand, ||x − 1
Nk

∑Nk

i=1 S
(n)
i (F )(t)||X ≤ 2 for a.e. t ∈ ∆n. In (14)

we apply the fact that ∆n are pairwise essentially disjoint.
Denote A2 = 1

k

∑k
n=1

1
Nk

∑Nk

i=1 S
(n)
i ∈ conv(GL∞(X)). By combining the

estimates (8) and (14) we obtain by Fact 3.6 that

||G− A1A2(F )|| <
5

k
.

Observe that A1A2 is an average of NkNk many rotations on L∞(X). We
conclude by Fact 3.5 that L∞(X) is uniformly convex-transitive.

The case 1 ≤ p < ∞ is a straightforward modification of the proof of
[14, Thm. 2.1], where one replaces Uixi by suitable averages belonging to
conv(GX(xi)) for each i.

In fact it is not difficult to check the following fact: If the rotations of
L∞(X) are of the Banach-Stone type, then L∞(X) is convex-transitive if and
only if each x ∈ SX is a uniformly big point.

We already mentioned that ℓ∞/c0 is uniformly convex-transitive as a real
space. Next we generalize this result to the vector-valued setting.

Theorem 3.7. Let X be a uniformly convex-transitive Banach space over K.
Then ℓ∞(X)/c0(X) (over K) is uniformly convex-transitive.

Proof. Observe that the formula

T ((xn)n) = (Snxπ(n))n, (15)

where π : N → N is a bijection and Sn ∈ GX, n ∈ N, defines a rotation on
ℓ∞(X). Also note that such an isometry T restricted to c0(X) is a member
of Gc0(X).

If T ∈ Gℓ∞(X) is as in (15), then T̂ : x + c0(X) 7→ T (x) + c0(X), for
x ∈ ℓ∞(X), defines a rotation ℓ∞(X)/c0(X) → ℓ∞(X)/c0(X). Indeed, it is

clear that T̂ : ℓ∞(X)/c0(X) → ℓ∞(X)/c0(X) is a linear bijection. Moreover,

inf
z∈c0(X)

||x− z|| = inf
z∈c0(X)

||T (x) − T (z)|| = inf
z∈c0(X)

||T (x) − z||,

so that T̂ : ℓ∞(X)/c0(X) → ℓ∞(X)/c0(X) is an isometry.
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Fix u, v ∈ Sℓ∞(X)/c0(X). If x, y ∈ ℓ∞(X) are such that u = x + c0(X) and
v = y + c0(X), then

dist(x, c0(X)) = lim sup
n→∞

||xn|| = 1 = dist(y, c0(X)) = lim sup
n→∞

||yn||, (16)

since u, v ∈ Sℓ∞(X)/c0(X). Hence we may pick x, y ∈ Sℓ∞(X) such that u =
x+ c0(X) and v = y + c0(X).

Fix k ∈ N, e ∈ SX and let A = {n ∈ N : ||xn|| ≥ 1− 1
2k
}. Observe that A

is an infinite set by (16). Since X is uniformly convex-transitive, there exists

N(k) ∈ N such that for each n ∈ A there are T
(n)
1 , . . . , T

(n)
N(k)

∈ GX such that

∣∣∣
∣∣∣e− 1

N(k)

∑N(k)

l=1 T
(n)
l xn

∣∣∣
∣∣∣ < 1

k
. (17)

Fix j(k) ∈ N such that

1

j(k)

(2 + (j(k) − 1)(
1

k
)) <

2

k
. (18)

Denote by p1, . . . , pj(k)
∈ N the j(k) first primes. Let φ1, . . . , φj(k)

: N → N be
permutations such that

φi(N \ A) ⊂ {pm
i | m ∈ N} for i ∈ {1, . . . , j(k)}. (19)

For l ∈ {1, . . . , N(k)} put Si,n,l = T
(φ−1

i (n))

l if φ−1
i (n) ∈ A and otherwise put

Si,n,l = I. Define a convex combination of rotations on ℓ∞(X) by letting

A1(z)|n = 1
j(k)

∑j(k)

i=1
1

N(k)

∑N(k)

l=1 Si,n,l(zφ−1
i (n)),

where (zn)n∈N ∈ ℓ∞(X). Consider A1 ∈ L(ℓ∞(X)) and e = (e, e, e, . . .) ∈
ℓ∞(X). We obtain that

||e− A1((xn))||ℓ∞(X) <
2

k
. (20)

Indeed, for each n ∈ N it holds for at least j(k) − 1 many indices i that

1
N(k)

∑N(k)

l=1 Si,n,l(xφ−1
i (n)) = 1

N(k)

∑N(k)

l=1 T
(φ−1

i (n))

l (xφ−1
i (n)),

where one uses the definition of Si,n,l, (19) and the fact that the sets {pm
i |m ∈

N}, {pm
j | m ∈ N} are mutually disjoint for i 6= j. Thus (17) and (18) yield

that ∣∣∣
∣∣∣e− 1

j(k)

∑j(k)

i=1
1

N(k)

∑N(k)

l=1 Si,n,l(xφ−1
i (n))

∣∣∣
∣∣∣ < 2

k

holds for all n ∈ N.
Next we will define another convex combination A2 of rotations on ℓ∞(X)

as follows. By using again the uniform convex transitivity of X we obtain
Tn,l ∈ GX, 1 ≤ l ≤ N(k), n ∈ N, such that

∣∣∣
∣∣∣yn − 1

N(k)

∑N(k)

l=1 Tn,le
∣∣∣
∣∣∣ < 1

k
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holds for n ∈ N. Define

A2(z)|n = 1
N(k)

∑N(k)

l=1 Tn,lzn.

Combining the convex combinations yields

||y − A2A1x||ℓ∞(X) <
3

k

according to Fact 3.6. Since the applied rotations induce rotations on ℓ∞(X)/c0(X),
we may consider the corresponding convex combinations in L(ℓ∞(X)/c0(X))
and thus

||v − Â2A1u||ℓ∞(X)/c0(X) <
3

k
.

Tracking the formation of the convex combinations reveals that Â2A1 can be
written as an average of N(k)j(k)N(k) many rotations on ℓ∞(X)/c0(X).

Since C(βN\N) is linearly isometric to ℓ∞/c0, an application of Theorem
3.2 yields that C(βN \ N,X) is uniformly convex-transitive if X is uniformly
convex-transitive. However, let us recall that this space is linearly isometric
to ℓ∞(X)/c0(X) if and only if X is finite-dimensional.

4 Roughness and projections

Let X be a Banach space. For each x ∈ SX we denote

η(X, x)
·
= lim sup

‖h‖→0

‖x+ h‖ + ‖x− h‖ − 2

‖h‖
.

Given ε > 0, the space X is said to be ε-rough if inf
x∈SX

η(X, x) ≥ ε. In addition,

2-rough spaces are usually called extremely rough.
We will denote the coprojection constant of X by

ρ(X) = sup
P

||I − P ||,

where the supremum is taken over all linear norm-1 projections P : X → Y.
A Banach space X is called uniformly non-square if there exists a ∈ (0, 1)

such that if x, y ∈ BX and ‖x − y‖ ≥ 2a then ‖x + y‖ < 2a. These spaces
were introduced in [15] by R. C. James, who also proved that this property
lies strictly between uniform convexity and reflexivity. Next we will illustrate
how the previous concepts are related.

Theorem 4.1. Let X be a Banach space. Then the following conditions are
equivalent:

(1) X contains ℓ1(2) almost isometrically.

(2) X is not uniformly non-square.
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(3) ρ(X) = 2.

Moreover, if supx∈SX
η(X, x) = 2, then ρ(X) = 2.

We will require some preparations before the proof. Recall that given
x, y ∈ X the function t 7→ ||x+ty||−||x||

t
is monotone in t and thus the limit

limt→0+
||x+ty||−||x||

t
exists and is finite.

Lemma 4.2. Let X be a Banach space and x, y ∈ X, x 6= 0. Then

limt→0+
||x+t(y+θx)||−||x||

t
= limt→0+

||x−t(y+θx)||−||x||
t

= limt→0+
||x+t(y+θx)||+||x−t(y+θx)||−2||x||

2t

for θ
·
= limt→0+

||x−ty||−||x+ty||
2t||x||

.

Proof. Observe that for all maps a : [0, 1] → R such that limt→0+ a(t) > 0 it
holds that

limt→0+
||a(t)x+ty||−||a(t)x||

t
= limt→0+

||a(t)x+
a(t)
a(t)

ty||−||a(t)x||

t

= limt→0+

||x+ t
a(t)

y||−||x||
t

a(t)

= limt→0+
||x+ty||−||x||

t
.

(21)

We will also apply the fact that

lim
t→0+

t(limt→0+
||x−ty||−||x+ty||

2t||x||
) − t ||x−ty||−||x+ty||

2t||x||

t
= 0. (22)

The claimed one-sided limits are calculated as follows:

lim
t→0+

||x+ t(y + θx)|| − ||x||

t

= lim
t→0+

||(1 + ||x−ty||−||x+ty||
2||x||

)x+ ty|| − ||x||

t

= lim
t→0+

||(1 + ||x−ty||−||x+ty||
2||x||

)x+ ty|| − (1 + ||x−ty||−||x+ty||
2||x||

)||x||

t

+ lim
t→0+

(1 + ||x−ty||−||x+ty||
2||x||

)||x|| − ||x||

t

= lim
t→0+

||x+ ty|| − ||x||

t
+ lim

t→0+

||x− ty|| − ||x+ ty||

2t

= lim
t→0+

||x+ ty|| + ||x− ty|| − 2||x||

2t
.

In the first equality above we applied the fact (22), and in the third equality
the fact (21). The calculations for the equation

lim
t→0+

||x− t(y + θx)|| − ||x||

t
= lim

t→0+

||x+ ty|| − ||x− ty|| − 2||x||

2t

are similar.

16



Proof of Theorem 4.1. The equivalence of conditions (1) and (2) is well-
known (see e.g. [9] or Remark 6.1 in [4]). The direction (1) =⇒ (3) is
established by using the Hahn-Banach Theorem to obtain suitable rank-1
projections P . Towards the implication (3) =⇒ (2), suppose that ρ(X) = 2.
Given δ > 0 there exists a projection P : X → Y, which satisfies ||P || = 1
and ||I − P || > 2 − δ

2
. Choose x ∈ SX such that ||x − P (x)|| > 2 − δ

2
.

This gives that ||P (x)|| ≥ 1 − δ
2
. Put y = P (x)

||P (x)||
and note that y ∈ SX and

||y − P (x)|| < δ
2
. Moreover,

||x− y|| ≥ ||x− P (x)|| − ||y − P (x)|| > 2 − δ > 2(1 − δ)

and

||x+ y|| ≥ ||x+ P (x)|| − ||y − P (x)|| > ||x+ P (x)|| −
δ

2

= ||2x+ P (x) − x|| ||P || −
δ

2

≥ ||P (2x+ P (x) − x)|| −
δ

2
= ||P (2x)|| −

δ

2
> 2 − δ −

δ

2
> 2(1 − δ).

Thus X is not uniformly non-square.
To verify the last sentence in the theorem, an application of Lemma 4.2

yields that if supx∈SX
η(x,X) = 2, then X is not uniformly non-square. Al-

ternatively, this can be seen by modifying the argument in Remark 1 of [3].
We obtain that ρ(X) = 2.

The extreme roughness of X is a tremendously stronger condition than
ρ(X) = 2. For example, if (Fn) is a sequence of finite-dimensional smooth
spaces such that ρ(Fn) → 2 as n→ ∞, then the space

X =
⊕

n∈N

Fn (summation in ℓ2−sense)

is Fréchet-smooth but ρ(X) = 2.
However, for convex-transitive spaces X the condition of being extremely

rough is equivalent to the condition ρ(X) = 2. Indeed, if a convex-transitive
space is not extremely rough then, by [5, Thm. 6.8], it must be uniformly
convex and thus ρ(X) < 2. It is unknown to us whether a convex-transitive
Banach space is reflexive if it does not contain an isomorphic copy of ℓ1.

In the same spirit as in this section, the projection constants of Lp spaces
were discussed in [21].

5 Final Remarks: On the universality of tran-

sitivity properties

The well-known Banach-Mazur problem mentioned in the introduction asks
whether every transitive, separable Banach space must be linearly isometric
to a Hilbert space. It is well-known that all such (transitive+separable)
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spaces must be smooth; otherwise, not much is known. Even adding some
properties like being a dual space or even reflexivity has not sufficed, to date,
for proving that the norm is Hilbertian.

Let us make a few remarks on the universality of some spaces of continuous
functions. It is well-known that C(∆) contains C([0, 1]) isometrically; hence,
the former space is universal for the property of being uniformly convex-
transitive and separable. However, it is not almost transitive.

To get a space which is universal for the property of being almost tran-
sitive and separable, just consider the almost transitive space X = CC

0 (L)
where L is the pseudo-arc with one point removed ([16] or [19]). Since [0, 1] is
a continuous image of L, every separable space is isometrically contained in
X (complex case) or XR (real case). Finally, note that the almost transitivity
of a Banach space implies that of the real underlying space.
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Computational methods for stochastic relations and Markovian couplings

June 2009

A570 Janos Karatson, Sergey Korotov

Discrete maximum principles for FEM solutions of nonlinear elliptic systems

May 2009

A569 Antti Hannukainen, Mika Juntunen, Rolf Stenberg

Computations with finite element methods for the Brinkman problem

April 2009

A568 Olavi Nevanlinna

Computing the spectrum and representing the resolvent

April 2009

A567 Antti Hannukainen, Sergey Korotov, Michal Krizek

On a bisection algorithm that produces conforming locally refined simplicial

meshes

April 2009

A566 Mika Juntunen, Rolf Stenberg

A residual based a posteriori estimator for the reaction–diffusion problem

February 2009

A565 Ehsan Azmoodeh, Yulia Mishura, Esko Valkeila

On hedging European options in geometric fractional Brownian motion market

model

February 2009

A564 Antti H. Niemi

Best bilinear shell element: flat, twisted or curved?

February 2009

A563 Dmitri Kuzmin, Sergey Korotov

Goal-oriented a posteriori error estimates for transport problems

February 2009



HELSINKI UNIVERSITY OF TECHNOLOGY INSTITUTE OF MATHEMATICS

RESEARCH REPORTS

The reports are available at http://math.tkk.fi/reports/ .

The list of reports is continued inside the back cover.

A576 S. Ponnusamy, Antti Rasila

On zeros and boundary behavior of bounded harmonic functions

August 2009

A575 Harri Hakula, Antti Rasila, Matti Vuorinen

On moduli of rings and quadrilaterals: algorithms and experiments

August 2009

A574 Lasse Leskelä, Philippe Robert, Florian Simatos

Stability properties of linear file-sharing networks

July 2009

A573 Mika Juntunen

Finite element methods for parameter dependent problems

June 2009

A572 Bogdan Bojarski

Differentiation of measurable functions and Whitney–Luzin type structure

theorems

June 2009

ISBN 978-952-248-065-1 (print)

ISBN 978-952-248-066-8 (PDF)

ISSN 0784-3143 (print)

ISSN 1797-5867 (PDF)


