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1 Introduction

The expression ’special symmetries’ in the title refers to suitable subgroups
of G(X) = {T : X → X| T isometric automorphism} where X is a real Banach
space. We denote the closed unit ball of X by BX and the unit sphere by SX.
The orbit of x ∈ SX with respect to a family F ⊂ L(X) is given by F(x) =
{T (x)| T ∈ F}. An inner product (·|·) : X × X → R is said to be invariant
with respect to F if (T (x)|T (y)) = (x|y) for each x, y ∈ X, T ∈ F . The
concept of an invariant inner product is an important tool applied frequently
in this article. We say that X is transitive, almost transitive or convex-
transitive with respect to F if F(x) = SX, F(x) = SX or conv(F(x)) = BX,
respectively, for all x ∈ SX. If F = G(X) above, then we will omit mentioning
it. This article can be regarded as a part of the field generated around the
well-known open Banach-Mazur rotation problem, which asks whether each
transitive separable Banach space is isometrically a Hilbert space. See [3] for
an exposition of the topic.

In [5] F. Cabello Sánchez studied the subgroup

GF = {T ∈ G(X)| Rank(T − Id) < ∞}

consisting of the finite-dimensional perturbations of the identity. There a
classical result appearing in [1, 10] is applied, namely, that each finite-
dimensional Banach space admits an invariant inner product. This motivated
the work in [5], where an elegant proof was presented for the following result:

Theorem 1.1. If the norm of X is transitive with respect to GF , then X is
isometric to a Hilbert space.

Cabello raised the question whether this result can be extended to the
almost transitive setting. It turns out here that the answer is affirmative
under the additional assumption that X is isomorphic to a Hilbert space:

Theorem 1.2. Let X be a Banach space isomorphic to a Hilbert space. Then
X is convex-transitive with respect to GF if and only if X is isometric to a
Hilbert space.

This paper is also motivated by the following problems posed in [4, 5]:

• Is an almost transitive Banach space isometric to a Hilbert space if it
is isomorphic to one?

• Find ideals J ⊂ L(X) (with F ⊂ J) for which Theorem 1.1 remains
true if condition T − Id ∈ F is replaced by T − Id ∈ J (here F is the
ideal of finite-rank operators).

Questions of this type are treated here, and we will also show that the ex-
istence of an invariant inner product on X is determined by the existence
of invariant inner products separately with respect to finitely generated sub-
groups of G(X) (see Theorem 2.2).
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1.1 Preliminaries

We refer to [3], [8], [9] and [12] for some background information. Recall that
a norm || · || on X is maximal if G(X,||·||) ⊂ G(X,|||·|||) for an equivalent norm
||| · ||| implies that G(X,||·||) = G(X,|||·|||). If X is convex-transitive, then the norm
of X is maximal, see [6]. We denote by Aut(X) the group of isomorphisms
T : X → X.

Given a topological group G we denote by UCB(G) the space of uniformly
continuous bounded functions on G. Here we consider the uniform structure
ΦG of G as being generated by a basis of entourages of diagonal having the
form

W = {(g, h) ∈ G × G| gh−1, g−1h ∈ V }, (1)

where V runs over a neighbourhood basis of e in G. The space UCB(G) is
endowed with the || · ||∞-norm.

For the sake of convenience we will enumerate the following condition:
Suppose that there is a positive functional F ∈ UCB(G)∗, ||F || = 1, such
that

F (f(·g)) = F (f(·)) for all f ∈ UCB(G), g ∈ G. (2)

This type of condition can be viewed as a weaker version of amenability of
G (see [11]). We note that the rotation group of Lp with the strong operator
topology is extremely amenable for 1 ≤ p < ∞, see [8].

Recall that the product topology of XX inherited by L(X) is called the
strong operator topology (SOT).

We often consider subgroups G ⊂ G(X), which enjoy the following prop-
erty:

(∗) Given n ∈ N, T1, . . . , Tn ∈ G and a finite-codimensional subspace Z ⊂ X
there exists a finite-codimensional subspace Y ⊂ Z such that
T1(Y) = · · · = Tn(Y) = Y.

Clearly GF is an example of a subgroup of G(X) satisfying (∗).
It is easy to see that if H is a Hilbert space, then GF ⊂ G(H) is dense in

G(H) in the topology of uniform convergence on compact sets. On the other
hand, given a Banach space X the group G(X) is SOT-closed in Aut(X).

2 Results

Theorem 2.1. Let X be a maximally normed Banach space, which is isomor-
phic to a Hilbert space. Suppose that G(X) endowed with the strong operator
topology is amenable in the sense of condition (2). Then X is isometrically
isomorphic to a Hilbert space.

Proof. We may assume without loss of generality that (X, || · ||) and (X, | ·
|) are isomorphic via the identical mapping, where | · | is a norm induced
by an inner product (·|·) on X. We denote by G(X) = G(X,||·||) and G(X,|·|)

the corresponding rotation groups, and these are regarded with the strong
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operator topology. Recall that ΦG(X) is the natural uniformity given by the
group (G(X), SOT) applied to (1).

Observe that T 7→ (Tx|Ty) defines a ΦG(X)-uniformly continuous map
G(X) → R for each x, y ∈ X. Indeed, this map is obtained by composing the
ΦG(X)-|| · ||X⊕2X uniformly continuous map G(X) → X ⊕2 X, T 7→ (Tx, Ty)
and the map (Tx, Ty) 7→ (Tx|Ty), which is || · ||X⊕2X-uniformly continuous
as || · || ∼ | · |. To check that T 7→ (Tx, Ty) is uniformly continuous, first
consider a standard entourage

E = {(x1, y1, x2, y2) ∈ X ⊕2 X × X ⊕2 X : ||(x1, y1) − (x2, y2)||X⊕2X < ǫ}

for some ǫ > 0. The preimage of this is

{(R,S) ∈ G(X) × G(X) : ||(Rx,Ry) − (Sx, Sy)||X⊕2X < ǫ},
⊃ {(R,S) ∈ G(X) × G(X) : ||Tx − Sx||, ||Ty − Sy|| < ǫ

2
}

= {(R,S) ∈ G(X) × G(X) : ||x − T−1Sx||, ||y − T−1Sy|| < ǫ
2
}.

Hence it suffices to pick V = {R ∈ G(X) : ||x − Rx||, ||y − Ry|| < ǫ
2
} in

(1) to find an entourage of ΦG(X) in the preimage of E. We obtain that
T 7→ (Tx, Ty) is ΦG(X)-uniformly continuous.

According to the assumptions there is F ∈ UCB(G(X))∗, ||F || = 1, such
that F (f(·g)) = F (f(·)) for f ∈ UCB(G(X)) and g ∈ G(X). For each x, y ∈ X
we put

[x|y] = F ({(g(x)|g(y))}g∈G(X)).

This definition is sensible, since g 7→ (g(x)|g(y)) defines an element in UCB(G(X))
for each x, y ∈ X. We claim that [·|·] defines an inner product on X such that

|||x|||
·
=

√
[x|x] is equivalent to || · ||. Indeed, first note that [·|·] : (X, || · ||)⊕2

(X, || · ||) → R is defined and bounded, since (·|·) : (X, || · ||)⊕2 (X, || · ||) → R is
bounded and ||F || = 1. By using the bilinearity of (·|·) and the linearity of F
we obtain that [·|·] is bilinear. Let C ≥ 1 such that C−2||·||2 ≤ |·|2 ≤ C2||·||2.
Since F is positive and norm-1, we get that

C−2||x||2 = inf
g

C−2||g(x)||2 ≤ F ({(g(x)|g(x))}g∈G(X)) ≤ sup
g

C2||g(x)|| = C2||x||,

where x ∈ X and the supremum and infimum are taken over G(X). This
means that [·|·] is an inner product on X such that ||| · ||| is equivalent to || · ||.

Observe that

[h(x)|h(y)] = F ({(gh(x)|gh(y))}g∈G(X)) = F ({(g(x)|g(y))}g∈G(X)) = [x|y]

for each h ∈ G(X). The maximality of the norm of (X, || · ||) yields that
G(X,||·||) = G(X,|||·|||). The proof is completed by a standard argument using the
fact that (X, ||| · |||) is transitive.

Suppose that X is a Banach space with two equivalent norms || · || and
||| · ||| such that the group G generated by G(X,||·||) ∪G(X,|||·|||) is operator norm
bounded. Then there is one more equivalent norm |||| · |||| on X given by
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||||x|||| = supg∈G ||g(x)|| and this is G-invariant. Consequently, if the norms
|| · || and ||| · ||| are additionally maximal (resp. convex-transitive), then
G(X,||·||) = G(X,|||·|||) (resp. || · || = c||| · ||| for some constant c > 0).

The argument employed in the proof of [5, Lemma 2] can be modified
to obtain the following dichotomy regarding the existence of invariant inner
products.

Theorem 2.2. Let X be a Banach space and C ≥ 1. Suppose that for each
n ∈ N and T1, . . . , Tn ∈ G(X) there exists an inner product (·|·)∗ : X×X → R

invariant under the rotations T1, . . . , Tn such that C−2 ||x||2 ≤ (x|x)∗ ≤
C2 ||x||2 for each x ∈ X. Then there is already an inner product (·|·)X : X ×
X → R, which is invariant under G(X) and satisfies C−2 ||x||2 ≤ (x|x) ≤
C2 ||x||2 for x ∈ X.

Proof. We may assume without loss of generality that G(X) is not finitely
generated. Let N be the net of finitely generated subgroups of G(X) ordered
by inclusion. By the assumptions we may assign for each γ ∈ N an inner
product (·|·)γ : X × X → R invariant under γ and satisfying C−1||x||2 ≤
(x|x)γ ≤ C||x||2 for x ∈ X. Observe that the sets {γ ∈ N| δ ⊂ γ}, where
δ ∈ N , form a filter base of a filter F on N . Let us extend F to an ultrafilter
U on N . Note that U is non-principal, since for each η ∈ N there is δ ∈ N
with η ( δ, so that η /∈ {γ ∈ N| δ ⊂ γ} ∈ U .

Define B : X × X → RN by setting B(x, y) = {(x|y)γ}γ∈N for x, y ∈ X.
We will consider RN equipped with the usual point-wise linear structure.
Then B becomes a symmetric and bilinear map. Moreover, B(x, x) ≥ 0

point-wise for x ∈ X. Put
→

B : X × X → R,
→

B(x, y) = limU B(x, y) for
x, y ∈ X. Indeed, the above limit exists and is finite for all x, y ∈ X, since
(x|y)γ ≤

√
(x|x)γ(y|y)γ ≤ C2 ||x|| ||y|| for all γ ∈ N , x, y ∈ X. Moreover,

similarly we get that C−2||x||2 ≤
→

B(x, x) ≤ C2||x||2 for all x ∈ X. It follows

that
→

B is an inner product on X.
Observe that for all T ∈ G(X) and x, y ∈ X we have that

{γ ∈ N| (Tx|Ty)γ = (x|y)γ} ⊃ {γ ∈ N| T ∈ γ} ∈ F ⊂ U .

Hence
→

B(Tx, Ty) =
→

B(x, y) for T ∈ G(X) and x, y ∈ X. Consequently,
→

B is
the required inner product.

It is not known if an almost transitive Banach space isomorphic to a
Hilbert space is in fact isometric to a Hilbert space (see [4]). The following
consequence of Theorem 2.2 provides a partial answer to this problem.

Corollary 2.3. Let X be a maximally normed Banach space, H a Hilbert
space and C ≥ 1. Suppose that for any n ∈ N and T1, . . . Tn ∈ G(X)
there exists an isomorphism φ : X → H such that max(||φ||, ||φ−1||) ≤ C
and ||φ(x)|| = ||φ(Tix)|| for x ∈ X and i ∈ {1, . . . , n}. Then X is already
isometric to H.
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Proof. By putting (x|y)∗ = (φ(x)|φ(y))H for each T1, . . . , Tn we obtain the
assumptions of Theorem 2.2. Let (·|·)X : X × X → R be the resulting inner

product. Then X endowed with the norm |||x|||
·
=

√
(x|x)X is transitive being

a Hilbert space. Since X is maximally normed, we get that G(X,||·||) = G(X,|||·|||).
Thus X is transitive. It follows that || · || = c||| · ||| for some c > 0, and hence
X is a Hilbert space.

Theorem 2.4. Let (X, || · ||) be a Banach space, (H, (·|·)H) an inner prod-
uct space, G ⊂ G(X) a subgroup satisfying (∗) and let S : X → H be an
isomorphism. Then there exists an inner product (·|·)X on X such that

(1) ||S−1||−2 ||x||2 ≤ (x|x)X ≤ ||S||2 ||x||2 for x ∈ X.

(2) (Tx|Ty)X = (x|y)X for x, y ∈ X and T ∈ G
SOT

⊂ L(X).

Proof. It suffices to find (·|·)X, which satisfies conclusion (1) and conclusion

(2) for merely T ∈ G. Indeed, given T ∈ G
SOT

and x, y ∈ X there is a sequence
(Tn) ⊂ G such that Tn(x) → T (x) and Tn(y) → T (y) as n → ∞. This yields
that (T (x)|T (y))X − (x|y)X = limn→∞((Tn(x)|Tn(y))X − (x|y)X) = 0 by using
the G-invariance and the || · ||-continuity of (·|·)X.

Let M be the set of all pairs (E,G), where E ⊂ X is a finite-codimensional
subspace and G ⊂ G is a finitely generated subgroup such that T (E) = E
for T ∈ G.

According to the definition of G we obtain that
⋃

(E,G)∈M G = G and⋂
(E,G)∈M E = {0}. We equip M with the partial order ≤ defined as follows:

(E1, G1) ≤ (E2, G2) if E1 ⊃ E2 and G1 ⊂ G2. So, (M,≤) is a directed set.
Suppose that Y ⊂ H is a subspace of a Hilbert space and H/Y is the

corresponding quotient space. Then there exists a natural inner product on
H/Y, namely

(x̂Y|ŷY)H/Y = (x − PYx|y − PYy)H, x, y ∈ H,

where x̂Y = x + Y, ŷY = y + Y and PY : X → Y is the orthogonal projection
onto Y.

Given (E,G) ∈ M it holds that T (E) = E for T ∈ G and hence the

mapping T̂E : X/E → X/E given by T̂E(x̂E) = T (x + E) defines a rotation
on X/E for T ∈ G. Indeed, ||x̂E||X/E = dist(x,E) and dist(T (x), E) =
dist(x,E), as T (E) = E. Now, since X/E is finite-dimensional, the rotation
group GX/E is compact in the operator norm topology.

For each (E,G) ∈ M we define a map ŜE : X/E → H/S(E) by ŜE(x̂E) =
S(x + E). It is easy to see that

||S−1||−2 ||x̂E||2X/E ≤ (ŜE(x̂E)|ŜE(x̂E))H/S(E)

(ŜE(x̂E)|ŜE(ŷE))H/S(E) ≤ ||S||2 ||x̂E||X/E ||ŷE||X/E

(3)

for x, y ∈ X. Consider RM with the point-wise linear structure. Define a
map B : X × X → RM by

B(x, y)(E,G) =

∫

GX/E

(ŜE(τ x̂E)|ŜE(τ ŷE))H/S(E) dτ.
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Above
∫
GX/E

is the invariant Haar integral over the compact group GX/E. The

invariance of the integral yields that B(Tx, Ty)(E,G) = B(x, y)(E,G) for
x, y ∈ X, (E,G) ∈ M and T ∈ G. By using (3) and the basic properties of
the integral we obtain that

||S−1||−2 ||x̂E||2X/E ≤ B(x, x)(E,G)

B(x, y)(E,G) ≤ ||S||2 ||x̂E||X/E ||ŷE||X/E
(4)

for x, y ∈ X and (E,G) ∈ M.
The family {{γ ∈ M| γ ≥ η}}η∈M is a filter base on M. Let U be a

non-principal ultrafilter extending {{γ ∈ M| γ ≥ η}}η∈M. Put (x|y)X =
limU B(x, y) for x, y ∈ X. It is easy to see that (·|·)X is a bilinear mapping.

According to (4) we get that (x|y)X ≤ ||S||2||x||X||y||X. Next, we aim
to verify that ||S−1||−2||x||2X ≤ (x|x)X. Towards this, we will check that
sup(E,G)∈M ||x̂E||X/E = ||x||X. Fix x ∈ SX. Assume to the contrary that

sup(E,G)∈M ||x̂E||X/E = c < 1. Note that X is reflexive being isomorphic to
H. Thus the ball x + cBX is weakly compact. Putting

{{y ∈ E : ||x − y|| ≤ C}}(E,G)∈M

defines a net of non-empty closed convex subsets of x + cBX. This net has
a cluster point z ∈ x + cBX according to the weak compactness of x + cBX.
This means that z ∈

⋂
(E,G)∈M E, which provides a contradiction, since z 6= 0.

Consequently, (4) yields that

||S−1||−2 ||x||2X = ||S−1||−2 lim
U

||x̂E||2X/E ≤ lim
U

B(x, x) = (x|x)X.

Finally, we claim that (Tx|Ty)X = (x|y)X for x, y ∈ X and T ∈ G. Indeed,
pick T ∈ G and x, y ∈ X. Then

{(E,G) ∈ M : B(T (x), T (y))(E,G) = B(x, y)(E,G)}
⊃ {(E,G) ∈ M : T ∈ G} ∈ U ,

so that limU(B(Tx, Ty) − B(x, y)) = 0.

Corollary 2.5. Let X be a maximally normed space X isomorphic to a Hilbert
space. Suppose that there is a subgroup G ⊂ G(X), which satisfies (∗) and

G(X) ⊂ G
SOT

. Then X is isometrically a Hilbert space.

In Theorem 2.4 the isomorphism S was exploited in order to give bounds
for the resulting inner product (·|·)X. In [5] a different approach was taken
instead; namely the analogous construction was suitably normalized by using
a special point x0. By suitably combining the arguments in [5] and in the
proof of Theorem 2.4 we obtain the following result.

Theorem 2.6. Let X be a Banach space transitive with respect to a subgroup
G ⊂ G(X), which satisfies (∗). Then X is isometric to a Hilbert space.
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Theorem 1.2 is an immediate consequence of the following result. This
result yields that X must be in particular almost transitive, and we note
that there exists an alternative route to this fact, since spaces both convex-
transitive and superreflexive are additionally almost transitive, see e.g. [7].

Theorem 2.7. Let X be a Banach space isomorphic to a Hilbert space and
suppose G ⊂ G(X) is a subgroup, which satisfies (∗) and GF ⊂ G. Then X is

convex-transitive with respect to G
SOT

⊂ L(X) if and only if X is isometric
to a Hilbert space.

Proof. First note that a Hilbert space is transitive, in particular convex-
transitive, and that GF ⊂ G(H) is SOT-dense in G(H), so that the ’if’ direc-
tion is clear.

Since X is isomorphic to a Hilbert space, we may apply Theorem 2.4 to

obtain an G
SOT

-invariant inner product (·|·)X on X such that |||x|||2 = (x|x)X

defines a norm equivalent with || · ||X. Clearly ||| · ||| is G
SOT

-invariant as well.
By rescaling |||·||| we may assume without loss of generality that ||·||X ≤ |||·|||
and supy∈S(X,|||·|||)

||y||X = 1. Put C = {x ∈ X : |||x||| ≤ 1}.

Fix x ∈ S(X,||·||X) and ǫ > 0. Let y ∈ S(X,|||·|||) be such that ||y||X >

1− ǫ
2
. Since (X, || · ||X) is convex-transitive with respect to G

SOT
, we get that

(1 − ǫ
2
)x ∈ conv||·||X({T (y)|T ∈ G

SOT
}). Since the norms ||| · ||| and || · ||X

are equivalent we obtain that there is a convex combination
∑

anTn(y) ∈
conv({T (y)|T ∈ GF}) such that |||(1− ǫ

2
)x−

∑
anTn(y)||| < ǫ

2
. By noting that

|||
∑

anTn(y)||| ≤
∑

an|||Tn(y)||| we get that sup
T∈G

SOT |||T (y)||| ≥ |||x|||−ǫ.

Hence |||y||| ≥ |||x||| − ǫ by using the G
SOT

-invariance of ||| · |||. Since ǫ
was arbitrary and |||x||| ≥ 1, we deduce that |||x||| = 1, and it follows that
|| · ||X = ||| · |||.

Finally, we will take a different approach and characterize the Hilbert
spaces in terms of the subgroup of rotations, that, instead of fixing a finite-
codimensional subspace, rather fix a given 1-dimensional subspace.

Proposition 2.8. Let X be an almost transitive Banach space. Suppose
that there exists z0 ∈ SX satisfying that for any ǫ > 0 and x, y ∈ SX with
dist(x, [z0]) = dist(y, [z0]) = 1, there is T ∈ G(X) such that ||T (z0) − z0|| < ǫ
and ||T (x) − y|| < ǫ. Then X is isometric to an inner product space.

Proof. It is well-known (see e.g. [3]) that almost transitive finite-dimensional
spaces are isometric to Hilbert spaces. Hence we may concentrate on the case
dim(X) ≥ 3. Let A,B ⊂ X be 2-dimensional subspaces such that z0 ∈ A.
Recall the classical result that a Banach space is isometric to a Hilbert space
if and only if any couple of 2-dimensional subspaces are mutually isometric
(see [2]). Thus, in order to establish the claim, it suffices to verify that the
subspaces A and B are isometric.

Fix 0 < ǫ < 1, x ∈ SX ∩ A such that dist(x, [z0]) = 1 and w ∈ SX ∩ B.
Let f ∈ SX∗ be such that f(w) = 1.
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Since X is almost transitive, there is T1 ∈ G(X) such that ||T1(w)− z0|| <
ǫ
4
. Define a linear operator S : X → X by S(v) = T1(v) + f(v)(z0 − T1(w))

for v ∈ X and note that S(w) = z0. Observe that S is an isomorphism, since
||T1 − S1|| < ǫ

4
. Pick y ∈ SX ∩ S(B) such that dist(y, [z0]) = 1. According to

the assumptions there is T2 ∈ G(X) such that max(||T2(z0) − z0||, ||T2(y) −
x||) < ǫ

4
. Let g, h ∈ 2BX∗ be such that g(z0) = h(y) = 1, y ∈ Ker(g) and

z0 ∈ Ker(h). Define a linear operator U : X → X by

U(v) = T2(v) + g(v)(z0 − T2(z0)) + h(v)(x − T2(y)) for v ∈ X.

Note that U(z0) = z0 and U(y) = x. Moreover, ||T2 − U || < ǫ, so that
U is an isomorphism. Observe that U ◦ S maps B linearly onto A. We
conclude that A and B are almost isometric, since ǫ was arbitrary. Hence,
being finite-dimensional spaces, A and B are isometric.
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