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AN Lp-THEORY FOR STOCHASTIC INTEGRAL EQUATIONS

WOLFGANG DESCH AND STIG-OLOF LONDEN

Abstract. We investigate the stochastic parabolic integral equation of con-

volution type

u = k1 ∗Apu +
∞∑

k=1

k2 ? gk + u0, t ≥ 0,

and develop an Lp-theory, 2 ≤ p < ∞, for this equation. The solution u is a

function of t, ω, x with ω in a probability space and x ∈ B, a σ-finite measure
space with positive measure Λ. The kernels k1(t), k2(t) are powers of t, i.e.,

multiples of tα−1, tβ−1, with α ∈ (0, 2), β ∈ ( 1
2
, 2), respectively. The map-

ping Ap is such that −Ap is a nonnegative linear operator of D(Ap) ⊂ Lp(B)

into Lp(B). The convolution integrals k2 ? gk are stochastic Ito-integrals. By

combining an approach due to Krylov with transformation techniques and esti-
mates involving fractional powers of (−Ap) we obtain existence and uniqueness

results.

In the case where Ap is the Laplacian, with B = Rn, sharp regularity
results are obtained.

1. Introduction

In this paper we analyze the following stochastic parabolic integral equation:

(1.1) u = k1 ∗Apu+
∞∑
k=1

k2 ? g
k + u0.

The solution u = u(t, ω, x) is scalar-valued, t ≥ 0, ω ∈ Ω (the probability space),
x ∈ B, (a σ-finite measure space with positive measure Λ), and

(1.2)

k1 ∗Apu =
∫ t

0

k1(t− s)(Apu)(s, ω, x) ds with k1(t) =
1

Γ(α)
tα−1,

k2 ? g
k =

∫ t

0

k2(t− s)gk(s, ω, x) dwks with k2(t) =
1

Γ(β)
tβ−1,

u0 = u0(ω, x).

Here, (wks )
∞
k=1 is a family of independent, scalar-valued Wiener processes, and the

integrals k2 ? g
k are stochastic Ito-integrals. The constants α, β always satisfy (at

least) α ∈ (0, 2) and β ∈ ( 1
2 , 2). The parameter β is used to quantify the regularity

(or irregularity) of the noise.
As a model for Ap we have in mind the case where B is an open subset of Rn

with smooth boundary, and Ap is a second order elliptic differential operator

(1.3) Apu =
n∑

i,j=1

aij(x)Diju +
n∑
i=1

bi(x)Diu + c(x)u,

with boundary condition u(∂B) = 0, and with coefficients aij , bi, c that are suf-
ficiently smooth. An explicit expression for Ap will, however, be assumed only in
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2 WOLFGANG DESCH AND STIG-OLOF LONDEN

the examples and when we strive for maximal regularity. In general, Ap will be
assumed to be a nonnegative densely defined linear operator of D(Ap) ⊂ Lp(B;R)
into Lp(B;R).

Our goal is to establish existence and uniqueness of solutions for (1.1) in an Lp-
framework with p ∈ [2,∞). Regularity results will be stated in terms of fractional
powers of Ap (for spatial regularity) and fractional time derivatives as well as Hölder
continuity (for time regularity).

Technically we rely on an approach due to Krylov [17], [18], developed for the
stochastic partial differential equation

∂

∂t
u(t) = Apu(t) +

∞∑
k=1

gk(s)dwks ,

where Ap is an operator of type (1.3). This approach makes use of the Burkholder-
Davis-Gundy inequality and sharp estimates for the solution and its spatial gradi-
ent. To handle the integral equation (1.1) we combine Krylov’s approach with trans-
formation techniques and estimates involving fractional powers of (−Ap). Krylov’s
approach is very efficient in obtaining maximal regularity, however, it relies on a
highly nontrivial Paley-Littlewood inequality [17]. A counterpart of this estimate
can be given for general sectorial Ap by straightforward estimates on the Dunford
integral, when we allow for an infinitesimal loss of regularity. To obtain maximal
regularity — which we do only for the case of the Laplacian in Rn — a more
sophisticated generalization of Krylov’s Lemma is required [11].

There is an extensive literature on existence and regularity of solutions of (1.1)
in the deterministic case (k2 ? g

kdwks replaced by a deterministic forcing term f(t),
and u0 independent of ω). We refer in particular to [23], for more regularity results
see, e.g., also [7], [8].

Stochastic equations of type (1.1) (with β = 1) have been considered in a Hilbert
space H in [5] (with β = 1) and [6] (with β 6= 1), assuming that Ap is self-adjoint,
and that the covariance operator Q of the forcing Wiener process commutes with
A. This allows the use of spectral resolution. Results on Hölder continuity of the
trajectories are obtained. In particular, [6, Theorem 4.2] states sufficient conditions
for Hölder regularity in terms of a tradeoff between spatial and time regularity of
the stochastic forcing.

An L2 state-space theory for a Volterra equation perturbed by noise has been
developed in [3], extending an approach by [14]. This approach transforms the
integral equation (1.1) in an abstract stochastic differential equation in a large
state space. Results on existence and regularity of solutions can then be derived
from general theorems for analytic semigroups [9].

To our knowledge, [10] is the first attempt to treat the stochastic integral equa-
tion (1.1) in an Lp-setting with p 6= 2. The present work improves and generalizes
the results obtained there. On the other hand, much is known about the stochas-
tically forced heat equation in Lp and even more general Banach spaces, in terms
of Krylov’s classical setting as well as in terms of the recent advances of stochastic
integration theory for Banach space valued functions (e.g., [12], [29]). We will give
a short comparison of our regularity results to known results about the stochastic
heat equation at the end of this paper. We notice also that in [2] the stochastic
heat equation has been generalized by modification of the stochastic forcing. The
equation in this work is a parabolic differential equation, but the stochastic forcing
is now fractional Brownian motion. This could be remotely compared to our use
of the kernel k2 in (1.1). Like the present paper, [2] is based on Krylov’s approach
and relies on a suitable adaptation of the Krylov’s Paley-Littlewood inequality [17].
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2. Outline of paper

In Section 3 we briefly recall the functional analytic tools, in particular some
properties of fractional powers of (−Ap) and of Dt. In Section 4 we state our
results. Since (1.1) is linear, the contributions of the stochastic forcing and the
initial function can be studied separately. Theorem 4.3 and the following remarks
are our central result on (1.1) with u0 = 0. Here regularity is stated in terms of
fractional powers of (−Ap) and fractional time derivatives. This result requires only
that Ap is sectorial, so no maximum regularity can be expected. In Corollary 4.8
we deduce some results on additional regularity in time — in particular on Hölder-
continuity — using Lq- and Hölder properties of functions with bounded fractional
time derivatives. These results are based on embedding theorems with an epsilon
loss of regularity. This epsilon loss of regularity implies, for instance, that the case
β = 1, p = 2 is just outside the conditions when we get continuous trajectories.
However, in the special case when B ⊂ Rn and when (λI −Ap)−1 admits a kernel
representation, continuity of the trajectories with values in L2 can be proved in the
limiting case β = 1 (Theorem 4.10).

The contribution of the initial condition, i.e.,

(2.1) u = k1 ∗Apu + u0,

with u0 a random variable, is considered in Theorem 4.11. Parts of Theorems 4.3
and 4.11 are combined in Corollary 4.12 to a statement on (1.1). (Obviously, other
combinations of the results are possible).

In the case when B = Rn and when Ap is exactly the Laplacian, Krylov’s use
of a Paley-Littlewood inequality can be adapted to obtain a maximum regularity
result (Theorem 4.14).

Sections 5, 6, 7 and 8 contain the proofs of Theorems 4.3, 4.10, 4.11 and 4.14,
respectively. In Section 9 we formulate some examples. In Section 10 we briefly
compare the results and the approach given here with known results on the sto-
chastic heat equation, in particular those of [12], [29].

3. Nonnegative Operators, Fractional Powers, and Fractional
Integration

In this paper Ap : D(Ap) ⊂ Lp(B;R) → Lp(B;R) will be a linear operator such
that (−Ap) is nonnegative. Regularity in space will be expressed in terms of the
fractional powers (−Ap)θ of (−Ap), but we give also some relations to interpolation
spaces between Lp(B,R) and D(Ap):

(X,Y )θ,p real interpolation space of order θ ∈ (0, 1), p ∈ [1,∞],
(X,Y )θ real continuous interpolation space of order θ,
[X,Y ]θ complex interpolation space of order θ.

Regularity in time will be expressed in terms of fractional time derivatives Dη
t f .

In corollaries we will also give regularity results in terms of the following function
spaces (containing functions on an interval [0, T ] with values in a Banach space X):

Cγ([0, T ];X) space of Hölder continuous functions with values in X,
with Hölder exponent γ ∈ (0, 1),

hγ0→0([0, T ];X) little Hölder-continuous functions with f(0) = 0,
Hγ
p ([0, T ];X) Bessel potential space of order γ.

In this section we summarize briefly the definitions and some known results (with
adaptations, if necessary) about nonnegative operators, their fractional powers,
fractional integration and differentiation, and the interpolation and function spaces
mentioned above.
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Let X be a complex Banach space and let L(X) be the space of bounded linear
operators on X. Let A be a closed, linear map of D(A) ⊂ X into X. The operator
−A is said to be nonnegative if ρ(A), the resolvent set of A, contains (0,∞), and

sup
λ>0

‖λ(λI −A)−1‖L(X) <∞.

An operator is positive if it is nonnegative and, in addition, 0 ∈ ρ(A). For ω ∈ [0, π),
we define

Σω
def= {λ ∈ C \ { 0 } | |arg λ| < ω }.

Recall that if (−A) is nonnegative, then there exists a number η ∈ (0, π) such that
ρ(A) ⊃ Ση, and

(3.1) sup
λ∈Ση

‖λ(λI −A)−1‖L(X) <∞.

The spectral angle of (−A) is defined by

φ(−A)
def= inf{ω ∈ (0, π] | ρ(A) ⊃ Σπ−ω, sup

λ∈Σπ−ω
‖λ(λI −A)−1‖L(X) <∞}.

We will rely heavily on the concept of fractional powers of (−A): Let (−A) be
a densely defined nonnegative linear operator on X. If (−A) is positive, (−A)−1 is
a bounded operator, and (−A)−θ can be defined by integral formulas [4, Ch. 3] or
[19, Section 2.2.2]. As usual,

(3.2) (−A)θ def= ((−A)−θ)−1, θ > 0.

If (−A) is nonnegative with 0 ∈ σ(−A), we proceed as in [4, Ch. 5]: Since (−A+εI)
is a positive operator if ε > 0, its fractional power (−A + εI)θ is well defined
according to (3.2). We define

D((−A)θ) def= { y ∈
⋂

0<ε≤ε0
D((−A+ εI)θ) | lim

ε↓0
(−A+ εI)θy exists },(3.3)

(−A)θy def= lim
ε↓0

(−A+ εI)θy for y ∈ D((−A)θ).(3.4)

Lemma 3.1. Let −A be a nonnegative linear operator on a Banach space X with
spectral angle φ(−A).

1) (−A)θ is closed and D((−A)θ) = D(−A).
2) Assume that θφ(−A) < π. Then (−A)θ is nonnegative and has spectral

angle θφ(−A).

Proof. For (1) see [4, p. 109, 142], also [7, Theorem 10]. For (2) see [4, p. 123]. �
Lemma 3.2. Let −A be a nonnegative linear operator on a Banach space X.

1) For θ ∈ (0, 1),(
X,D(A)

)
θ,1

⊂ D((−A)θ
) ⊂ (X,D(A)

)
θ,∞,

where
(
X,D(A)

)
θ,p

are the real interpolation spaces between X and D(A).
2) If (−A)iy is uniformly bounded for y ∈ R, |y| ≤ 1, then, for θ ∈ (0, 1),

(3.5) D((−A)θ
)

=
[
X,D(A)

]
θ
,

the complex interpolation space between D(A) (with graph norm) and X.

In particular, it follows from (2) that for a large class of elliptic operators
D((−A)θ

)
is a Sobolev space.

Proof. For (1) and more information on the real interpolation spaces see, e.g., [19,
Proposition 2.2.15]. For (2) see [28, p.103]. �
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Lemma 3.3. Let −A be a nonnegative linear operator on a Banach space X with
spectral angle φ(−A). Then for η ∈ [0, π − φ(−A))

(3.6) sup
|arg µ|≤η, µ6=0

‖(−A)θµ1−θ(µI −A)−1‖L(X) <∞.

Proof. In case η = 0, see [4, Th. 6.1.1, p. 141]. The general case can be reduced to
the case µ > 0 as follows, [13, p. 314]. Write µ = βeiα, β > 0. Then

sup
β>0

‖(−A)θ(βeiα)1−θ(βeiα −A)−1‖L(X)

= sup
β>0

‖(−A)θ−1(βeiα)1−θ(−A)(βeiα −A)−1‖L(X)

= sup
β>0

‖(−A)θ−1(βeiα)1−θ[(−A)(βeiα −A)−1

+ β(βeiα −A)−1](−A)(β −A)−1‖L(X)

= sup
β>0

‖(−A)θ−1[(−A)(βeiα −A)−1 + β(βeiα −A)−1]β1−θ(−A)(β −A)−1‖L(X)

= sup
β>0

‖[(−A)(βeiα −A)−1 + β(βeiα −A)−1]β1−θ(−A)θ(β −A)−1‖L(X)

≤ c(α) sup
β>0

‖β1−θ(−A)θ(β −A)−1‖L(X),

where we used the fact that

sup
β>0

‖(−A)(βeiα −A)−1 + β(βeiα −A)−1‖L(X) <∞,

with uniform bound for |α| ≤ η ∈ [0, π − φ(−A)). �

We turn now to fractional differentiation and integration in time:

Definition 3.4. Let X be a Banach space and α ∈ (0, 1), let u ∈ L1((0, T );X) for
some T > 0.

1) Fractional integration in time is defined by D−αt u
def= 1

Γ(α) t
α−1 ∗ u.

2) We say that u has a fractional derivative of order α > 0 provided u = D−αt f ,
for some f ∈ L1((0, T );X). If this is the case, we write Dα

t u = f .

Remark 3.5. Suppose that u has a fractional derivative of order α ∈ (0, 1).
Then 1

Γ(1−α) t
−α ∗ u is differentiable a.e. and absolutely continuous with Dα

t u =
d
dt

(
1

Γ(1−α) t
−α ∗ u

)
.

For the equivalence of fractional derivatives in Lp and fractional powers of the
realization of the derivative in Lp, we have the following Lemma.

Lemma 3.6. [8, Prop.2] Let p ∈ [1,∞), X a Banach space and define

D(L) def= {u ∈W 1,p((0, T );X) | u(0) = 0}, Lu = u′ for u ∈ D(L).

Then, with β ∈ (0, 1),

(3.7) Lβu = Dβ
t u, u ∈ D(Lβ),

where D(Lβ) coincides with the set of functions u having a fractional derivative in
Lp, i.e.,

D(Lβ) = {u ∈ Lp((0, T );X) | 1
Γ(1− β)

t−β ∗ u ∈W 1,p
0 ((0, T );X) }.

In particular, Dβ
t is closed.
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We refer to [8] for further properties of the operator Dβ
t .

It is convenient to define homogeneous potential spaces over [0, T ] as follows (for
η ≥ 0, see, e.g., [23, p. 226], [30, p. 28]):

Definition 3.7. Let X be a UMD-space, let η ∈ R, p ∈ (1,∞). For η ≥ 0 we
define

Hη
p (R;X) def= { f ∈ Lp(R;X) | there exists g ∈ Lp(R;X) such that g̃ = |ω|η f̃ }

‖f‖Hηp (R;X)
def= ‖g‖Lp(R:X),

where g̃ denotes the Fourier transform of g. For η < 0 we define

H̃η
p (R;X) def= { f ∈ L1,loc(R;X) | there exists g ∈ Lp(R;X) such that g̃ = |ω|η f̃ }

‖f‖Hηp (R:X)
def= ‖g‖Lp(R:X),

and let Hη
p (R;X) be the completion of H̃η

p (R;X) with respect to this norm. For a
bounded interval [0, T ], one defines

Hη
p ([0, T ];X) def= {h∣∣

[0,T ]
| h ∈ Hη

p (R;X) }
with

‖f‖Hηp ([0,T ];X)
def= inf

h∈S0,f
‖h‖Hηp (R:X).

Here S0,f
def= {h ∈ Hη

p (R;X) | h∣∣
[0,T ]

= f }.
Note that by this definition any f ∈ Hη

p ([0, T ];X) is a locally integrable function,
even if η < 0.

Lemma 3.8. Let X be a UMD-space, and p ∈ (1,∞). Let f ∈ L1((0, T );X) and
η ∈ (0, 1). Suppose that D−ηt f ∈ Lp

(
(0, T );X

)
. Then f ∈ H−η

p

(
(0, T );X

)
.

Proof. Define w(t) = D−ηt f(t), 0 ≤ t ≤ T ; w(t) = 0, t ∈ R, t 6∈ [0, T ]. Then
w ∈ Lp(R;X). Consider h(t) def= d

dt ((tIR+)−η ∗ w), t ∈ R (where IM denotes the
indicator function of a set M). In particular, up to a constant c we have

h(t) =
d

dt
(t−η ∗D−ηt f) = cf(t) for t ∈ (0, T ).

Taking Fourier transforms we obtain

h(t) = F−1{ (is)(is)−1+ηw̃ } = F−1{ (is)ηw̃ } = F−1{ |s|η (is)η

|s|η w̃ }.

By the Marcinkiewicz Multiplier Theorem (e.g., [23, p.215], vector space valued
[15, Theorem 1.3]), m(s) def= (is)η

|s|η is a multiplier on Lp(R;X). So

g(t) def= F−1
{ (is)η

|s|η w̃
} ∈ Lp(R;X),

and ‖g‖Lp(R;X) ≤ c‖D−ηt f‖Lp((0,T );X). Hence h(t) = F−1{ |s|η g̃ } satisfies h ∈
H−η
p (R;X). Thus h restricted to (0, T ) is in H−η

p ((0, T );X) with

‖h‖H−ηp ((0,T );X) ≤ c‖D−ηt f‖Lp((0,T );X).

�
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4. Results

Throughout this paper, we will make the following assumptions:

Hypothesis 4.1. Let (Ω,F , P ) be a probability space, with {Ft }t≥0 an increas-
ing right-continuous filtration of σ-algebras satisfying Ft ⊂ F . Let P denote the
predictable σ-algebra on R+ × Ω generated by {Ft }t≥0 and assume that {wkt |
k = 1, 2, ....; t ≥ 0 } is a family of independent one-dimensional Ft-adapted Wiener
processes defined on (Ω,F , P ).

Hypothesis 4.2. Let B be a σ-finite measure space with positive measure Λ. Fix
p ∈ [2,∞), and let −Ap be a nonnegative, linear operator of D(Ap) ⊂ Lp(B;R)
into Lp(B;R). Moreover, D(Ap) ∩ L1(B;R) ∩ L∞(B;R) is dense in Lp(B;R).
Let α ∈ (0, 2) and suppose that

(4.1) φ−Ap < π
(
1− α

2
)
.

We will need the extension of Ap to Lp(B; l2): Denote by l2 the set of real-valued

sequences g = { gk }∞k=1 with |g|2l2
def= Σ∞k=1|gk|2 < ∞. For a function g : B → l2,

let ‖g‖p def= ‖|g|l2‖Lp(B). We extend Ap to an l2-valued map by defining

D(Ãp) = { f = { fk }∞k=1 ∈ Lp(B; l2) |
fk ∈ D(Ap), k = 1, 2, ...; {Apfk }∞k=1 ∈ Lp(B; l2) }

and
Ãpf = {Apfk }∞k=1, f ∈ D(Ãp).

By a use of the Khintchine-Kahane inequality (see [20], or [27, p. 115]) it follows
that the extension −Ãp is a nonnegative map of D(Ãp) into Lp(B; l2) and that
(4.1) holds with φ−Ap replaced by φ−Ãp . In the sequel we write Ap both for the
scalar-valued mapping Ap and for the l2-valued extension.

Since (1.1) is linear, the contribution of the initial function u0 and of the sto-
chastic forcing term may be studied separately. The following is our main result
concerning the stochastic forcing, with u0 = 0:

Theorem 4.3. Assume the probability space (Ω;F ;P ) and the Wiener processes
{wkt }∞k=1 satisfy Hypothesis 4.1. Let p ∈ [2,∞), Ap : D(Ap) ⊂ Lp(B;R) →
Lp(B;R) satisfy Hypothesis 4.2. Let k1, k2 be as in (1.2), with α ∈ (0, 2), β ∈
( 1
2 , 2). Suppose that for some T > 0,

(4.2) g ∈ Lp
(
(0, T )× Ω;P;Lp(B; l2)

)
.

a) Then there exists a unique u ∈ Lp
(
(0, T )×Ω;P;Lp(B;R)

)
such that k1∗u ∈

D(Ap) a.e. on (0, T )× Ω, and which satisfies

(4.3) u = Ap(k1 ∗ u) +
∞∑
k=1

k2 ? g
k.

Here (4.3) is to be understood as an equation in Lp
(
(0, T )×Ω;P;Lp(B;R)

)
.

(Notice also Remark 4.4 below.)
b) Suppose θ ∈ [0, 1] is such that

(4.4) β − αθ >
1
2
.

Then u ∈ D((−Ap)θ) a.e. on (0, T )× Ω, and

(4.5) u = −(−Ap)1−θ(k1 ∗ (−Ap)θu) +
∞∑
k=1

k2 ? g
k.
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Equality in (4.5) holds in Lp
(
(0, T ) × Ω;P;Lp(B;R)

)
. Moreover, the fol-

lowing estimate holds:

(4.6) ‖(−Ap)θu‖Lp((0,T )×Ω;P;Lp(B;R)) ≤ c‖g‖Lp((0,T )×Ω;P;Lp(B;l2)),

for some constant c, independent of g but depending on A, α ,β, θ, and p.
c) If θ ∈ [0, 1] and η ∈ (−1, 1) are such that

(4.7) β − αθ − η >
1
2
,

then u has a fractional derivative of order η (if η < 0, a fractional in-
tegral of order −η), where fractional differentiation (integration) is to be
understood in the space Lp(Ω × B;R). Moreover, Dη

t u ∈ Lp((0, T ) ×
Ω;P;Lp(B;D(−A)θ)) and satisfies an estimate

(4.8) ‖(−Ap)θDη
t u‖Lp((0,T )×Ω;P;Lp(B;R)) ≤ c‖g‖Lp((0,T )×Ω;P;Lp(B;l2)),

for some constant c, independent of g but depending on A, α ,β, θ, η, and
p.

d) If (4.7) holds, and η 6∈ { 1
p , 1 + 1

p}, then

(4.9) (−Ap)θu ∈ Hη
p

(
[0, T ]; Lp(Ω×B;R)

)
.

e) With η ∈ (−1, 1) such that β − η > 1
2 , one has

(4.10) Dη
t u = Ap(k1 ∗Dη

t u) +Dη
t

( ∞∑
k=1

k2 ? g
k
)
.

Before proceeding, we make a few remarks on Theorem 4.3.

Remark 4.4. The infinite series in (4.3) is to be understood by an approximation
procedure (c.f., [18]): Suppose g = { gk }∞k=1 ∈ Lp((0, T )×Ω;P;Lp(B; l2)) is given.
Obviously, an arbitrary gk is not necessarily bounded. However, by the density
statement Lemma 5.1, one may approximate gk and g by gkj , gj , respectively, where
gj = { gkj }jk=1, g

k
j = 0 for k > j, are adapted and such that

‖gj − g‖Lp((0,T )×Ω:P;Lp(B;l2)) → 0, j →∞,

and such that each gkj is bounded in t, ω, and in x. The sums on the right sides of
(4.3), (4.5) should be read as

(4.11)
∞∑
k=1

k2 ? g
k def= lim

j→∞

j∑
k=1

∫ t

0

k2(t− s)gkj (s, ω, x) dw
k
s .

We show in Lemma 5.3 that this limit exists in Lp
(
(0, T )× Ω;P;Lp(B;R)

)
.

In fact, in the proof of Theorem 4.3 one approximates g by gj , then obtains
the corresponding solution uj , and finally proves appropriate convergence results.
Working with the bounded functions gkj avoids technical problems about existence
of stochastic integrals.

Remark 4.5. If −Ap admits bounded imaginary powers, (4.5) and Lemma 3.2(2)
imply that u takes values in the complex interpolation space [X,D(Ap)]θ.

Remark 4.6. In case (c) of Theorem 4.3, if η > 0, one may first apply case (b)
and see that (−A)θu ∈ Lp((0, T ) × Ω;Lp(B;R)). Then the closedness of (−Ap)θ
implies that

(−Ap)θ[Dη
t u] = Dη

t [(−Ap)θu].
Thus, in this case, (−Ap)θu has a fractional derivative of order η.
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Remark 4.7. With α = β = 1 one has by (4.8) for all η > 0

D−ηt ((−Ap) 1
2u) ∈ Lp

(
(0, T );Lp(Ω×B;R)

)
.

Thus, by Lemma 3.8, if (−Ap) 1
2u ∈ L1([0, T ], Lp(Ω×B;R)),

(4.12) (−Ap) 1
2u ∈ H−η

p

(
(0, T );Lp(Ω×B;R)

)
, η > 0.

By bringing the parameter p into play one may in fact obtain somewhat more
than (4.6) or (4.8), in particular statements on Hölder continuity. This we formulate
in the following corollary.

Corollary 4.8. Let the assumptions of Theorem 4.3 hold.
a) If β − αθ − 1

2 < p−1, then one has, in addition to (4.6),

(4.13) (−Ap)θu ∈ Lq
(
(0, T );Lp(Ω×B;R)

)
, for p ≤ q < q0,

and, for almost all ω ∈ Ω,

(4.14) [(−Ap)θu](·, ω, ·) ∈ Lq
(
(0, T );Lp(B;R)

)
, for p ≤ q < q0,

where
q0 =

p

1− p(β − αθ − 1
2 )
.

b) If p−1 ≤ β − αθ − 1
2 , then

(4.15) (−Ap)θu ∈ Lq
(
(0, T );Lp(Ω×B;R)

)
for q ∈ [p,∞),

and, for almost all ω ∈ Ω,

(4.16) [(−Ap)θu](·, ω, ·) ∈ Lq
(
(0, T );Lp(B;R)

)
, for q ∈ [p,∞).

c) If p−1 < η < β − αθ − 1
2 , then

(4.17) (−Ap)θu ∈ hη−
1
p

0→0

(
[0, T ];Lp(Ω×B;R)

)
,

and, for almost all ω ∈ Ω,

(4.18) [(−Ap)θu](·, ω, ·) ∈ hη−
1
p

0→0

(
[0, T ];Lp(B;R)

)
.

Here hγ0→0 are the little-Hölder continuous functions having modulus of
continuity γ and vanishing at the origin.

Proof. To prove a), let p ≤ q < q0 and choose η ∈ (0, 1
p ) such that (4.7) holds and

q <
p

1− ηp
.

Recall the fact (see [8, p. 420–421]) that if Dη
t v ∈ Lp

(
(0, T );X

)
for some function

v ∈ L1((0, T );X), and ηp < 1, then

(4.19) v ∈ Lq
(
(0, T );X

)
, 1 ≤ q <

p

1− ηp
.

Use this, together with (4.8) and with X = Lp(Ω × B;R), to get the first part of
a). For the second part observe that (4.8) implies

‖Dη
t

(
(−Ap)θu

)‖Lp((0,T );Lp(B)) <∞,

for a.a. ω ∈ Ω. Combine this with (4.19), taking X = Lp(B;R), to get the second
part of a).

To get b), assume that β−αθ−p−1 ≥ 1
2 and take any q ≥ 1. Choose η ∈ (0, p−1)

sufficiently close to p−1, such that q < p(1 − ηp)−1. Since η < p−1 we have (4.7).
Then apply (4.8) and recall (4.19) to obtain (4.16).
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To prove c), observe that ([8, p. 421]) if the fractional derivative f of order η of
v satisfies

(4.20) f ∈ Lp
(
(0, T );X

)
,with p−1 < η,

then v ∈ hη−p−1

0→0 ([0, T ];X). �

Remark 4.9. In Corollary 4.8(c) with θ = 0, β = 1, p > 2, one has

(4.21) u ∈ hη−p−1

0→0

(
[0, T ];Lp(B;R)

)
, η ∈ (

1
p
,
1
2
).

Thus, in this case, for a.a. ω ∈ Ω, the solution u (and (−Ap)θu for appropriate θ) is
Hölder continuous in time, with values in Lp(B;R), (independently of α if θ = 0).

In Remark 4.9, the case p = 2 is obviously excluded by (4.21). However, by
taking B ⊂ Rn, and imposing an additional condition on Ap, we have the following
result for this case. We give the proof of this result in Section 6.

Theorem 4.10. Let the assumptions of Theorem 4.3 hold with p = 2, β = 1 and
θ = 0. Assume B ⊂ Rn with the Lebesgue measure Λ, and suppose that (λI−Ap)−1

admits a kernel representation:(
(λI −Ap)−1f

)(
x
)

=
∫
B

γλ(x, y)f(y) dy, x ∈ B,

for f ∈ Lp(B;R), with the kernel γλ satisfying a Poisson estimate

(4.22) |γλ(x, y)| ≤ c|λ| nm−1 Ψ
(
|x− y| |λ| 1

m

)
for λ in a sector Σπ−φ such that φ+απ < π, and some m > 0. Here Ψ : (0,∞) →
(0,∞) is a continuous nonincreasing function with∫ ∞

0

Ψ(r)rn−1 dr <∞.

Then the solution u(t, ω, x) of (4.3) satisfies u ∈ C
(
[0, T ];L2(B;R)

)
for a.a. ω

with
sup

0≤t≤T
‖u(t, ·, ·)‖L2(Ω×B) ≤ c‖g‖L2((0,T )×Ω;L2(B;l2)),

for some constant c, depending on α.

We refer the reader to [1] and [25], and to the references therein, for treatments
of kernel estimates.

We complement Theorem 4.3 with a statement on solutions of (2.1), i.e., the
homogeneous integral equation with nonzero initial condition u0.

Theorem 4.11. Let α, p, B, Ap and the probability space (Ω;P;P ) be as in The-
orem 4.3.

a) Suppose

(4.23) u0 ∈ Lp(Ω;F0;Lp(B;R)).

Then there exists a unique function u1 such that u1(t, ω, ·) ∈ D(Ap) for
t > 0, and a.a. ω ∈ Ω, and

(4.24) u1(t) = Ap

∫ t

0

k1(t− s)u1(s) ds+ u0.
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b) For θ ∈ (0, 1], t > 0, and an apriori constant c, independent of θ,

(4.25) ‖(−Ap)θu1(t, ·, ·)‖Lp(Ω;Lp(B)) ≤ ct−αθ‖u0‖Lp(Ω;Lp(B)).

Thus, u1 solves (2.1) in the sense that for t > 0, and θ such that αθ < 1,

(4.26) u1(t, ω, x) = u0(ω, x)− (−Ap)1−θ
∫ t

0

k1(t− s)(−Ap)θu1(s, ω, x) ds.

Equality in (4.26) holds for t > 0 both in Lp(Ω;Lp(B;R)), and for a.a.
ω ∈ Ω in Lp(B;R). In addition,

lim
t→0+

u1(t) = u0

in Lp(B;R) for a.a. ω ∈ Ω and in Lp(Ω;Lp(B;R)).
c) Let η > 0 be such that ηp < 1. Then

(4.27) ‖Dη
t (u1 − u0)‖Lp((0,T )×Ω;Lp(B;R)) ≤ c(η)‖u0‖Lp(Ω;Lp(B;R)).

d) Let αp > 1, and let, for some µ̂ satisfying 1− 1
αp < µ̂ < 1,

(4.28) u0 ∈ Lp
(
Ω;
(
Lp(B;R),D(Ap)

)
µ̂

)
.

Then the solution u1 of (4.24) satisfies

(4.29) Dα
t (u1 − u0) ∈ Lp

(
(0, T )× Ω;Lp(B;R)

)
,

with the Lp-norm of Dα
t (u1−u0) bounded by an apriori constant multiplying

the norm of u0 in the space of (4.28).
In particular, if

(4.30) u0 ∈ Lp
(
Ω;D((−Ap)θ)) for some θ > 1− 1

αp
,

then (4.29) holds.

A combination of (4.5), (4.6) of Theorem 4.3 and Theorem 4.11 (a,b) gives the
following corollary.

Corollary 4.12. Let α ∈ (0, 2), β ∈ ( 1
2 , 2), θ ∈ (0, 1], β − αθ > 1

2 . Let p ∈
[2,∞) and assume that Hypotheses 4.1 and 4.2 are satisfied. Suppose g, u0 satisfy,
respectively, (4.2) and (4.23). Assume αθp < 1. Then there exists a unique solution
u of (1.1) such that

u ∈ D((−Ap)θ), a.e. on (0, T )× Ω,

(−Ap)θu ∈ Lp
(
(0, T )× Ω;P;Lp(B;R)

)
u = −(−Ap)1−θ

(
k1 ∗ (−Ap)θu

)
+

∞∑
k=1

k2 ? g
k + u0, t ≥ 0,

‖(−Ap)θu‖Lp((0,T )×Ω;P;Lp(B;R)) ≤
c
[‖g‖Lp((0,T )×Ω;P;Lp(B;l2)) + ‖u0‖Lp(Ω;Lp(B;R))].

Remark 4.13. Suppose that, in Corollary 4.12, α, β are large enough, e.g., in case
θ = 0, β > 3

2 , α > 1. Obviously, one may then add a term tv0 to (1.1), where
v0 ∈ Lp(Ω;F0;Lp(B;R)) and interpret v0 as an initial condition d

dtu(0) = v0. We
have, for simplicity, taken v0 = 0.

In the special case that Ap is the Laplacian on Lp(Rn;R), Hypothesis 4.2 is
satisfied, and with suitable convolution kernels, Theorem 4.3 can be applied. In
addition, we obtain a maximal regularity result in the sense that the strict inequality
in (4.4) can be replaced by “≥”:
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Theorem 4.14. Let ∆p denote the Laplacian on Lp(Rn;R) for n ≥ 1, p ∈ [2,∞).
Let α ∈ (0, 2), β ∈ ( 1

2 , 2), k1 and k2 as in (1.2), and let the probability space
(Ω,F , P ) and the Wiener processes wkt be as in Hypothesis 4.1. Suppose that θ ∈
[0, 1) is such that

(4.31) β − αθ ≥ 1
2
.

Then there exists a constant c depending on n, p, α, β, θ such that for any g ∈
Lp((0, T )× Ω;P;Lp(Rn; l2)), the solution u of

(4.32) u(t) = ∆p(k1 ∗ u) +
∞∑
k=1

k2 ? g
k

(according to Theorem 4.3) satisfies the following estimate:

(4.33) ‖(−∆p)θu‖Lp((0,T )×Ω;P;Lp(Rn;R)) ≤ c‖g‖Lp((0,T )×Ω;P;Lp(Rn;R)).

Remark 4.15. Of course, (4.33) is an analogon to (4.8) in the case of η = 0 and
β−αθ = 1

2 . One is tempted to conjecture that for the Laplacian also (4.10) can be
extended to the case that β−αθ−η = 1

2 . However, if we take θ = 0 and β−η = 1
2 ,

then Dη
t k2 ? g

k is not well defined in Lp((0, T )×Ω×B;R). This can be seen most
easily in the case p = 2 and g = g1 = 1, where we use that β − η = 1

2 to obtain
formally

Dη
t k2 ? g = c

d

dt

∫ t

0

(t− s)
1
2 dws.

However, for ε ↓ 0, it is easily estimated by Ito’s isometry that∫
Ω

1
ε2

∣∣∣∣∫ t+ε

0

(t+ ε− s)
1
2 dws −

∫ t

0

(t− s)
1
2 dws

∣∣∣∣2 dP (ω) →∞.

5. Proof of Theorem 4.3

We begin by proving the density statement referred to earlier.

Lemma 5.1. [18] Let p ∈ [2,∞), g ∈ Lp(R+ × Ω;P;Lp(B; l2)). Let G be any
countable dense subset of D(Ap) ∩ L∞(B;R) ∩ L1(B;R).
Then there exist adapted { gj }∞j=1, gj ∈ Lp(R+ × Ω;P;Lp(B; l2)), gj = { gkj }∞k=1,
such that ‖g − gj‖Lp(R+×Ω;P;Lp(B;l2)) → 0, as j →∞, and such that

(5.1)
gkj =

j∑
i=1

Iτji−1<t≤τji (t)g
ik
j (x), k ≤ j,

gkj = 0, k > j,

with gikj ∈ G and bounded stopping times τ j0 ≤ τ j1 ≤ .... ≤ τ jj .

Proof. The set of g ∈ Lp(R+ ×Ω;P;Lp(B; l2)) for which the statement holds, is a
closed subspace M ⊂ Lp(R+ × Ω;P;Lp(B; l2)). Then, if Lp \M 6= ∅, there exists
h ∈ Lq(R+ × Ω;P;Lq(B; l2)); q−1 + p−1 = 1, such that h 6≡ 0, h(M) = 0, that is,∫

R+×Ω

∫
B

(h, g) dΛ dP (ω) dt = 0, for all g ∈M.

Here (h, g) = Σ∞k=1h
kgk.

Take an arbitrary bounded stopping time τ(ω) and fix some k0. Let g = { gk }∞k=1

be defined by
gk0 = I0<t≤τ g̃; gk = 0, k 6= k0,
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where g̃ ∈ G. Thus g ∈ M . Therefore,
∫
R+×Ω

I0<t≤τF (t, ω) dP (ω) dt = 0, where

F (t, ω) def=
∫
B
hk0(t, ω, x)g̃(x) dΛ is a predictable process. Since G is dense and τ ,

g̃ are arbitrary, it is not difficult to show that then
∫
B
hk0(t, ω, x)g(x) dΛ = 0, a.e.

on R+ ×Ω, for all g ∈ Lp(B;R). One concludes that hk0 = 0 a.e. on R+ ×Ω×B.
But k0 was arbitrary and so hk = 0 a.e. for all k. This contradicts the assumption

h 6≡ 0, and so Lemma 5.1 follows. �

An essential ingredient to the proof is the following Lp-estimate for stochastic
convolutions, obtained by the Burkholder-Davis-Gundy inequality:

Lemma 5.2. Let p ∈ [2,∞), let {V (t) | t ≥ 0} be a family of bounded linear
operators V (t) : D(Ap) → Lp(B;R), such that for fixed u ∈ D(Ap) the map t →
V (t)u is in L2([0, T ];Lp(B;R)). There exists a constant c, dependent only on p
and T , such that for all gj as in Lemma 5.1 and all t ∈ [0, T ]∫

B

∫
Ω

∣∣∣∣∣
j∑

k=1

∫ t

0

[V (t− s)gkj (s, ω)](x) dwks

∣∣∣∣∣
p

dP (ω) dΛ(x)

≤ c

∫
B

∫
Ω

(∫ t

0

|[V (t− s)gj(s, ω)](x)|2l2 ds
) p

2

dP (ω) dΛ(x).

Proof. First fix some t ∈ (0, T ]. For x ∈ B, r > 0 we define

Yj(r, ω, x) =
j∑

k=1

∫ r

0

[V (t− s)gkj (s, ω)](x) dwks .

By the elementary structure of gj ,∫ r

0

∣∣[V (t− s)gkj (s, ω)](x)
∣∣2 ds <∞

for allmost all x ∈ B, so that Yj(r, ω, x) is well-defined as an Ito integral for such
x, and it is a martingale. Since the Wiener processes wks are independent, the
quadratic variation of Yj(·, ·, x) is

j∑
k=1

∫ r

0

∣∣[V (t− s)gkj (s, ω)](x)
∣∣2 ds.

Now the Burkholder-Davis-Gundy inequality (see [16, p. 163]) yields for r ∈ [0, t],

(5.2)

E
∣∣∣ j∑
k=1

∫ r

0

[V (t− s)gkj (s, ω)](x) dwks
∣∣∣p ≤

cE

(∫ r

0

j∑
k=1

|[V (t− s)gkj (s, ω)](x)|2 ds
) p

2

=

cE

(∫ r

0

|V (t− s)gj(s, ω)](x)|2l2 ds
) p

2

.

In (5.2), take r = t and integrate over B:∫
B

E
∣∣∣ j∑
k=1

∫ t

0

[V (t− s)gkj (s, ω)](x) dwks
∣∣∣p dΛ(x) ≤

c

∫
B

E

(∫ t

0

|V (t− s)gj(s, ω)](x)|2l2 ds
) p

2

dΛ(x).

�
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As a first application of the Lemma above we obtain that the series in (4.11)
converges in Lp((0, T )× Ω;P;Lp(B;R)).

Lemma 5.3. Assume that Hypotheses 4.1 and 4.2 hold. Let p, g, k2, B be as in
Theorem 4.3, with β ∈ ( 1

2 , 2). Take { gj }∞j=1 approximating g as in Lemma 5.1.
Let η > 0 and asume that β − η > 1

2 . Then

Dη
t

∫ t

0

k2(t− s)Σjk=1g
k
j (s, ω, x) dw

k
s

converges in Lp
(
(0, T )× Ω;P;Lp(B; l2)

)
, when j →∞.

Proof. First note that under the assumption β − η > 1
2 one has that Dη

t (k2 ∗ f) =
k ∗ f , where k ∈ L2(0, T ). We work with this latter representation. In Lemma 5.2,
take V (t) = k(t) and integrate with respect to t to obtain

∫ T

0

∫
B

∫
Ω

∣∣∣∣∣
j∑

k=1

∫ t

0

k(t− s)gkj (s, ω, x) dw
k
s

∣∣∣∣∣
p

dP (ω) dΛ(x) dt ≤

c

∫ T

0

∫
B

∫
Ω

(∫ t

0

|k(t− s)gj(s, ω, x)|2l2 ds
) p

2

dP (ω) dΛ(x) dt =

c

∫ T

0

∫
B

∫
Ω

(∫ t

0

|k(t− s)|2|gj(s, ω, x)|2l2 ds
) p

2

dP (ω) dΛ(x) dt ≤

c

∫ T

0

∫
B

∫
Ω

|gj(t, ω, x)|pl2 dP (ω) dΛ(x) dt.

where we used k2 ∈ L1(0, T ) and the fact that∣∣k2 ∗ |gj |2l2
∣∣
L p

2
((0,T )×Ω×B)

≤ |k2|L1(0,T )

∣∣|gj |2l2∣∣L p
2
((0,T )×Ω×B)

.

Now recall that gj → g in Lp(R+ × Ω;P;Lp(B; l2)). �

Our solutions will be constructed by a stochastic variation-of-parameters for-
mula using the (deterministic) resolvent associated with the triple (k1, k2, Ap). The
resolvent theory for integral equations of evolutionary type is well understood. For
the theory in case β = 1, see [23]. (See also [7]). For β not necessarily equal to 1,
we define

Definition 5.4.

(5.3) Sαβ(t)v
def= (2πi)−1

∫
Γ1,ψ

eλt(λαI −Ap)−1λα−βv dλ, t > 0,

for v ∈ X; where X is either Lp(B;R) or Lp(B; l2), ψ ∈ (π2 ,min{π, π−φ(−Ap)

α }),
and

(5.4) Γr,ψ
def= { reit | |t| ≤ ψ } ∪ { ρeiψ | r < ρ <∞} ∪ { ρe−iψ | r < ρ <∞}.
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Lemma 5.5. Let α ∈ (0, 2), β ∈ ( 1
2 , 2), θ ∈ [0, 1], η ∈ (−1, 1). Let Sαβ(t) be the

resolvent defined in Definition 5.4. Then one has

Sαβ(t) ∈ L(X), t > 0; sup
t>0

‖t1−βSαβ(t)‖L(X) <∞,(5.5)

Sαβ(t)v ∈ D(Ap), t > 0, v ∈ X; sup
t>0

‖t1+α−βApSαβ(t)‖L(X) <∞,(5.6)

sup
t>0

‖t1+αθ−β+ηDη
t (−Ap)θSαβ(t)‖L(X) <∞,(5.7)

Sαβ(t)−Ap

∫ t

0

k1(t− s)Sαβ(s) ds = k2(t)I, t > 0,(5.8)

Sαβ(t) is analytic for t ∈ C, t 6= 0, |arg t| < ψ − π

2
.(5.9)

Proof. To obtain (5.7), use (5.3), the analyticity of the integral and a change of
variables to get

(5.10)

Dη
t (−Ap)θSαβ(t)

= (2πi)−1

∫
Γ1,ψ

eλt(−Ap)θ(λαI −Ap)−1λα−β+η dλ

= (2πi)−1

∫
Γ1,ψ

es
(s
t

)θα−β+η
t−1(−Ap)θ

(s
t

)α(1−θ)[(s
t
)α −Ap

]−1
ds

= ct−θα+β−η−1

∫
Γ1,ψ

essθα−β+η(−Ap)θ
(s
t

)α(1−θ)[(s
t
)α −Ap

]−1
ds.

Now apply (3.6) with µ = ( st )
α to obtain that the last integral in (5.10) is bounded

in L(X), uniformly in t. Estimates (5.5) and (5.6) are obtained similarly. Identity
(5.8) follows by a straightforward Laplace transform argument, and the analyticity
of Sαβ is a consequence of its integral representation and Hypothesis 4.2. �

The central estimate in the proof is the following inequality:

Lemma 5.6. Let α ∈ (0, 2), β ∈ ( 1
2 , 2), θ ∈ [0, 1], and η ∈ (−1, 1) such that (4.7)

holds, i.e., β − αθ − η > 1
2 . Then there exists a constant c, depending on T , p, A,

α, β, θ, η, such that for all h ∈ Lp([0, T ]×B, l2)

(5.11)

∫ T

0

∫
B

( ∫ t

0

|Dη
t

(
(−Ap)θSαβ(t− s)

)
h(s, x)|2l2 ds

) p
2 dΛ dt

≤ c

∫ T

0

∫
B

|h(s, x)|pl2 dΛ ds.

Proof. Write G(t) def= Dη
t

(
(−Ap)θSαβ

)
(t). First assume that p > 2. Then note

that p
2 , p

p−2 are conjugate exponents and let f : [0, T ] × B → R+ be such that
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0

∫
B
f

p
p−2 dΛ dt = 1. We estimate:∫ T

0

∫
B

f(t, x)
∫ t

0

|G(t− s)h(s, x)|2l2 ds dΛ dt

=
∫ T

0

∫ t

0

∫
B

f(t, x)|G(t− s)h(s, x)|2l2 dΛ ds dt

≤
∫ T

0

∫ t

0

[ ∫
B

|f(t, x)| p
p−2 dΛ

] p−2
p
[ ∫

B

|G(t− s)h(s, x)|pl2 dΛ
] 2
p ds dt

≤
∫ T

0

∫ t

0

‖f(t, ·)‖L p
p−2

(B)‖G(t− s)‖2Lp(B;l2)→Lp(B;l2)
‖h(s, ·)‖2Lp(B;l2)

ds dt

≤ [ ∫ T

0

‖f(t, ·)‖
p
p−2

L p
p−2

(B)dt
] p−2

p

[ ∫ T

0

∣∣∫ t

0

‖G(t− s)‖2Lp(B;l2)→Lp(B;l2)
‖h(s, ·)‖2Lp(B;l2)

ds
∣∣ p2 dt] 2

p ,

so that

(5.12)

[ ∫ T

0

∫
B

( ∫ t

0

|G(t− s)h(s, x)|2l2 ds
) p

2 dΛ dt
] 2
p

≤[ ∫ T

0

∣∣ ∫ t

0

‖G(t− s)‖2Lp(B;l2)→Lp(B;l2)
‖h(s, ·)‖2Lp(B;l2)

ds
∣∣ p2 dt] 2

p .

In the case p = 2, equation (5.12) is obvious. Now (by convolution with respect to
s) we obtain in either case[ ∫ T

0

∫
B

( ∫ t

0

|G(t− s)h(s, x)|2l2 ds
) p

2 dΛ dt
] 2
p

≤ [ ∫ T

0

‖G(t)‖2Lp(B;l2)→Lp(B;l2)
dt
] [ ∫ T

0

‖h(t, x)‖pLp(B;l2)
dt
] 2
p

≤ c ‖h(t, x)‖2Lp((0,T );Lp(B;l2))
,

where the last inequality follows by (5.7) and (4.7). Thus (5.11) holds. �

Remark 5.7. The constant c in the Lemma above can be made arbitrarily small
by choosing a sufficiently short time interval [0, T ].

Proof. In fact, the last lines of the proof above show that c is proportional to∫ T
0
‖G(t)‖2Lp(B;l2)→Lp(B;l2)

dt, which converges to 0 as T → 0. �

We have now collected all tools for the proof of Theorem 4.3. To proceed, we
use Lemma 5.1 and therefore consider

(5.13)

uj(t, ω, x) =
∫ t

0

k1(t− s)Apuj(s, ω, x) ds

+
j∑

k=1

∫ t

0

k2(t− s)gkj (s, ω, x) dw
k
s ,

where the functions gj = { gkj }jk=1 are such that

(5.14) ‖gj − g‖Lp((0,T )×Ω;P;Lp(B;l2)) → 0

for j →∞, and where each gkj is of the simple structure given by Lemma 5.1. We
construct first solutions to (5.13), and then show that these converge.
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For fixed j, let uj be defined by

(5.15) uj(t, ω, x) =
j∑

k=1

∫ t

0

Sαβ(t− s)gkj (s, ω, x) dw
k
s .

To see that the stochastic integrals in (5.15) are well-defined, notice that for each
fixed v ∈ Lp(B; l2), Sαβ(s)v is smooth in time for s > 0 by (5.9). Since gj is of
the simple form (5.1), it is easy to see that Sαβ(t − s)gj(s, ω, x) is adapted. From
β > 1

2 and (5.5) we have that Sαβ(s)v is in L2([0, T ];Lp(B; l2)).

Note that by (5.6), uj ∈ D(Ap) for t > 0, a.s. In fact we have more: Since gkj
takes values in G ⊂ D(Ap), and since Ap and Sαβ(t) commute on D(Ap),

(5.16) Apuj(t, ω, x) =
j∑

k=1

∫ t

0

Sαβ(t− s)Apgkj (s, ω, x) dw
k
s .

We next claim that uj defined by (5.15) satisfies (5.13) for t > 0, a.e. on
B, and a.s. (For simplicity, without loss of generality, take j = 1, and g1

1 =
Iτ1<s≤τ2(s)g(x)). We have

(5.17)

k1 ∗Apuj =
∫ t

0

k1(t− s)[
∫ s

0

Sαβ(s− τ)Iτ1<τ≤τ2(τ)Apg(x) dwτ ]ds

=
∫ t

0

[ ∫ t

τ

k1(t− s)Sαβ(s− τ)Apg(x) ds
]
Iτ1<τ≤τ2 dwτ

=
∫ t

0

[ ∫ t−τ

0

k1(t− τ − v)Sαβ(v)Apg(x) dv
]
Iτ1<τ≤τ2 dwτ

=
∫ t

0

[
Ap

∫ t−τ

0

k1(t− τ − v)Sαβ(v)g(x) dv
]
Iτ1<τ≤τ2 dwτ

=
∫ t

0

[
Sαβ(t− τ)− 1

Γ(β)
(t− τ)β−1

]
g(x)Iτ1<τ≤τ2 dwτ

=uj(t, ω, x)−
∫ t

0

k2(t− τ)g1
1(τ, ω, x) dwτ .

The first equality in (5.17) follows by (5.16). The second is a consequence of the
stochastic Fubini theorem. For this, see, e.g. [26, Th.4.6, p.160] where we take
dµ(s) = k1(t − s)ds and observe that

∫ t
0

∫ s
0
‖Sαβ(s − τ)‖2X→Xk1(t − s) dτds < ∞,

by the fact that α > 0, β > 1
2 and (5.5). The third equality is a simple change of

variables. The fourth follows by the commutativity of Sαβ , Ap on D(Ap). The next
to last is (5.8). The last equality uses (5.15).

To obtain apriori bounds for the approximating solutions, let θ ∈ [0, 1] and
η < 1 be such that (4.7) holds, i.e. β − αθ − η > 1

2 . For shorthand put V (t) =
Dη
t (−A)θSαβ(t). For t > 0, V (t) is a bounded linear operator. By definition of Dη

t

we have that for all h ∈ Lp(B;R)

(−A)θSαβ(t)h =
∫ t

0

τη−1

Γ(η)
V (t− τ)h dτ.
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Consequently, using the stochastic Fubini theorem, we have

(−A)θuj(t, ω, x) =
j∑

k=1

∫ t

0

[(−A)θSαβ(t− s)gkj (s, ω)](x) dwks

=
j∑

k=1

∫ t

0

∫ t−s

0

τη−1

Γ(η)
[V (t− s− τ)gkj (s, ω)](x) dτ dwks

=
∫ t

0

τη−1

Γ(η)
( j∑
k=1

∫ t−τ

0

[V (t− τ − s)gkj (s, ω)](x) dwks
)
dτ.

This shows that

Dη
t (−A)θuj(t, ω, x) =

j∑
k=1

∫ t

0

[V (t− s)gkj (s, ω)](x) dwks .

We apply Lemma 5.2 and Lemma 5.6

(5.18)

∫ T

0

∫
B

∫
Ω

∣∣Dη
t (−A)θuj(t, ω, x)

∣∣p dP (ω) dΛ(x) dt

=
∫ T

0

∫
B

∫
Ω

∣∣∣∣∣
j∑

k=1

∫ t

0

[V (t− s)gkj (s, ω)](x) dwks

∣∣∣∣∣
p

dP (ω) dΛ(x) dt

≤ c

∫ T

0

∫
B

∫
Ω

(∫ t

0

|[V (t− s)gj(s, ω)](x)|2l2 ds
) p

2

dP (ω) dΛ(x) dt

≤ c

∫ T

0

∫
B

∫
Ω

|gj(s, ω, x)|pl2 dP (ω) dΛ(x) ds.

Here the constant c depends on T , α, β, θ, η, Ap, and p, but not on gj and j.
We next let j →∞. By linearity, by (5.14), and by (5.18),

‖uj − ui‖Lp((0,T )×Ω;P;Lp(B)) ≤ c‖gj − gi‖Lp((0,T )×Ω;P;Lp(B,l2)) → 0

for i, j → ∞. By completeness, there exists u such that uj → u in Lp((0, T ) ×
Ω;P;Lp(B;R)). Moreover, (k1 ∗ uj) ∈ D(Ap) and k1 ∗ uj → k1 ∗ u in Lp((0, T ) ×
Ω;P;Lp(B;R)). By Lemma 5.3, (take η = 0), the series k2 ? Σjk=1g

k
j converges.

Since uj = Ap(k1 ∗ uj) + k2 ? Σjk=1g
k
j , we have that Ap(k1 ∗ uj) converges. By the

closedness of Ap, k1 ∗ u ∈ D(Ap) and (4.3) holds.
In case β − αθ > 1

2 , then by (5.18) with η = 0, (−Ap)θuj converges. The
closedness of the fractional powers gives (4.5), (4.6). Analogously, by the closedness
of Dη

t , and by (5.18), we have (4.8).
The relation (4.9) is a consequence of (4.7), (4.8), [30, p. 29]. For the application

of the results in [30], note that here u(t = 0) = 0, and that if β − αθ − 1
2 > 1 + 1

p ,
then u′(t = 0) is welldefined and = 0.

Recalling Lemma 5.3, we conclude that (4.10) is satisfied.
Finally, to prove uniqueness, assume that u and ũ are two solutions of (4.3).

Then v = u− ũ solves the deterministic integral equation

v = k1 ∗Apv.
From the theory of deterministic integral equations [23] we know that v = 0. Now
Theorem 4.3 is proved.

Remark 5.8. Estimate (4.8) can be refined: Let a ∈ L1([0, T ];R) for all T < ∞,
and of subexponential growth. Define its Laplace transform â(s) =

∫∞
0
e−sta(t) dt.
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Suppose that there are functions f : (0,∞) → [0,∞) and g : Γ1,ψ → [0,∞) (c.f.
(5.4)) such that

|â(s
t
)| ≤ f(t)g(s) for all s ∈ Γ1,ψ, t ∈ (0, T ],

tβ−αθ−2 f(t) ∈ L2((0, T );R),∫
Γ1,ψ

|es| |s|αθ−β+1 g(s) |ds| <∞.

Then the solution u of (4.3) satisfies

d

dt
(−A)θa ∗ u ∈ Lp((0, T )× Ω;Lp(B;R)).

In particular, this holds if

(5.19) |â(λ)| ≤ c |λ|η−1 with β − αθ − η >
1
2
.

Proof. For shorthand we write

V (t) =
d

dt
(−A)θ[a ∗ Sαβ ](t).

Copying the proof of (5.7) we obtain

‖V (t)‖L(X) ≤ 1
2π

tβ−αθ−2 f(t)
∫

Γ1,ψ

es|s|αθ−β+1 g(s) |ds| ≤ ctβ−αθ−2 f(t).

Thus ‖V (t)‖L(X) is in L2((0, T );R) and we can redo the proof of Lemma 5.6 to
obtain that ∫ T

0

∫
B

(∫ t

0

|V (t− s)h(s, x)|2l2 ds
) p

2

dΛ dt

≤ c

∫ T

0

∫
B

|h(s, x)|pl2 dΛ ds.

Now we can again use Lemma 5.2 to achieve the desired result.
In particular, if (5.19) holds, take f(t) = ct1−η and g(s) = |s|η−1. �

6. Proof of Theorem 4.10

Let uj be approximate solutions as in the proof of Theorem 4.3, c.f., (5.15). By
[25, Thm.1, p. 295] and the assumption on Ap, one has that the resolvent Sα,1(t)
admits the kernel representation

(Sα,1(t)f)(x) =
∫
B

σt(x, y)f(y) dy, x ∈ B, t > 0,

for f ∈ Lp(B;R). Thus

uj(t, ω, x) =
j∑

k=1

∫ t

0

[ ∫
B

σt−s(x, y)gkj (s, ω, y) dy
]
dwks .

The kernel σt satisfies the estimate

|σt(x, y)| ≤ t−
αn
m q

(
t−

α
m |x− y|) , for t > 0,

with a continuous, nonincreasing function q : (0,∞) → (0,∞) such that∫
B

t−
αn
m q

(
t−

α
m |x|) dx =

∫ ∞

0

q(r)rn−1 dr <∞.
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In particular (by convolution of an L1-function with an L2-function) we infer that
there exists a constant c independent of t

(6.1)
∫
B

∣∣∣∣∫
B

σt(x, y)gj(s, ω, y) dy
∣∣∣∣2
l2

dx ≤ c

∫
B

|gj(s, ω, x)|2l2 dx.

Using Lemma 5.2 and (6.1), we obtain∫
Ω

∫
B

|uj(t, ω, x)|2 dx dP (ω)

=
∫

Ω

∫
B

∣∣∣∣∣
j∑

k=1

∫ t

0

∫
B

σt−s(x, y)gkj (s, ω, y) dy dw
k
s

∣∣∣∣∣
2

dx dP (ω)

≤ c

∫
Ω

∫
B

∫ t

0

∣∣∣∣∫
B

σt−s(x, y)gkj (s, ω, y) dy
∣∣∣∣2
l2

ds dx dP (ω)

≤ c

∫
Ω

∫
B

∫ t

0

|gj(s, ω, x)|2l2 ds dx dP (ω)

≤ c ‖gj‖2L2([0,T ]×Ω×B;l2)
.

Hence, for almost all ω, uj converges in L∞
(
(0, T );L2(B;R)

)
. Since each uj ∈

C
(
[0, T ];L2(B;R)

)
, the claim follows.

7. Proof of Theorem 4.11

To prove (i), observe that by [23, Ch. I] and by (4.1), the resolvent S(t) def= Sα1(t)
for (2.1) (exists and) is bounded, analytic. Thus u1

def= S(t)u0 satisfies

u1 = u0 +Ap(k1 ∗ u1), t > 0,

and a.a. ω. In addition we have that u1 → u0 as t ↓ 0 [23, p. 32], Moreover,
u1 ∈ D(Ap) for t > 0. By transformation techniques, one has, for a.a. ω,

‖(−Ap)θu1(t, ω, ·)‖Lp(B) ≤ ct−αθ ; θ ∈ [0, 1].

Therefore, if αθ < 1,
∫ t
0
‖k1(t − s)(−Ap)θu1(s)‖Lp(B) ds < ∞ and (4.25), (4.26)

follow.
To obtain (4.27), note that by estimating the inverse Laplace transform, one has

‖Dη
t (u1 − u0)‖Lp(Ω×B) ≤ c(η)t−η‖u0‖Lp(Ω×B).

For the proof of (4.29), one applies results of [8] as follows. Take E0, E1 of [8,
p. 427], respectively, equal to Lp(Ω;Lp(B)), Lp(Ω;D(Ap)) and observe that (X a
Banach space)

BUC1−µ([0, T ], X)
def= {u ∈ C((0, T ];X) | t1−µu(t) ∈ BUC((0, T ];X), lim

t↓0
t1−µ‖u(t)‖X = 0 }.

First use (21) of [8] which gives (by (4.28)) that

u1 ∈ BUC1−µ
(
[0, T ];Lp

(
Ω;D(Ap)

)) ∩BUCα1−µ([0, T ];Lp
(
Ω;Lp(B)

))
,

where (see [8, p. 428]) µ = 1− α+ αµ̂. Here, [8, p. 423],

BUCα1−µ
(
[0, T ];Lp

(
Ω;Lp(B;R)

))
is the set of u ∈ BUC1−µ

(
[0, T ];Lp

(
Ω;Lp(B;R)

))
for which there exist

u0 ∈ Lp(B) and f ∈ BUC1−µ
(
[0, T ];Lp

(
Ω;Lp(B;R)

))
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such that

u = u0 +
1

Γ(α)
t−1+α ∗ f.

Observe that by the condition on µ̂ one has µ > 1 − p−1 which implies (see [8, p.
422])

BUC1−µ
(
[0, T ];Lp(B;R)

) ⊂ Lp
(
(0, T );Lp(B;R)

)
.

Thus

u1 = u0 +
1

Γ(α)
t−1+α ∗ f,

with f ∈ Lp
(
[0, T ];Lp(Ω;Lp(B;R))

)
and (4.29) follows.

To obtain (4.29) under the assumption (4.30), observe that (see, e.g., [19, p. 47
and p. 56])

D((−Ap)θ) ⊂ (Lp(B),D(−Ap)
)
µ̂
,

for θ > µ̂. For θ as in (4.30) we can find µ̂ < θ such that µ̂ > 1− 1
αp .

8. Proof of Theorem 4.14

In fact, we can almost literally copy the proof of (4.8) (for the special case
η = 0) from Theorem 4.3. There (4.8) is proved for the approximate solutions uj
(c.f. (5.15)) by the estimate (5.18), based on Lemma 5.6 and Lemma 5.2. By a
straightforward limiting procedure the estimate is carried over to the solution u.
It only is Lemma 5.6, where the full strength of condition (4.7) is required. In the
case of Theorem 4.14, we can complete Lemma 5.6 by the following result, which
works in the case that β − αθ = 1

2 . The rest of the proof can be copied from the
proof of Theorem 4.3.

Lemma 8.1 ([11, Theorem 1.2]). Let n ≥ 1 be an integer, α ∈ (0, 2), β > 1
2 ,

θ ∈ (0, 1) such that β − αθ = 1
2 . Let H be a separable Hilbert space (e.g., H = l2),

p ∈ [2,∞) and T ∈ R. Let Sαβ be the resolvent operator corresponding to (4.32).
Then there exists some constant c (depending on p, α, β, θ, n) such that for all
h ∈ Lp((−∞, T )×Rn;H) the following estimate holds:

(8.1)

∫
Rn

∫ T

−∞

[∫ t

−∞

∥∥[(−∆)θSαβ(t− s)h(s, ·)] (x)∥∥2

H
ds

] p
2

dt dx

≤ c

∫
Rn

∫ T

−∞
‖h(s, y)‖pH ds dy.

This lemma is a generalization of [17, Theorem 2.1]. Its proof (and thus closing
the gap to obtain maximal regularity) is significantly more intricate than proving
Lemma 5.6.

9. Examples

Our first example is well-known. See, e.g., [22].
Let B ⊂ Rn be a bounded domain with C2-boundary. Assume s > n, s ≥ p,

p ∈ [2,∞). Let b ∈ W 1,s(B,Rn×n) and assume b is symmetric and uniformly
positive definite. Assume Ap is a second order operator in divergence form, i.e.,

(Apu)(x)
def= div(b(x) · ∇u(x)), x ∈ B,

for u ∈ D(Ap) = W 2,p(B) ∩W 1,p
0 (B).
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Then Ap is closed, densely defined, positive in Lp(B) with compact resolvent
and

‖(λI −Ap)−1‖ ≤ c(ψ)
1 + |λ| ; |arg λ| ≤ π − ψ,

where ψ > 0 arbitrary. Hence φ−Ap < π(1− α
2 ) for any α ∈ (0, 2), and so Theorem

4.3 may be applied. In particular, with α ∈ (0, 2), β ∈ ( 1
2 , 2), and g satisfying (4.2),

we have that there exists a unique solution u ∈ Lp((0, T ) × Ω;P;Lp(B;R)) such
that k1 ∗ u ∈ D(Ap) for t > 0 and a.a. ω ∈ Ω, and such that (4.3) holds.

If, in addition, β − α > 1
2 , then u ∈ D(Ap), for t > 0 and a.a. ω ∈ Ω, and

(9.1) u = k1 ∗Apu+
∞∑
k=1

k2 ? g
k.

Our second example concerns the case where Ap is not of divergence form. We
make use of [24].

Assume B ⊂ Rn and, e.g., either B = Rn or B a bounded domain with C2-
boundary. Let p ∈ [2,∞), and

Ãpu =
n∑

j,k=1

ajk(x)∂j∂ku(x) +
n∑
j=1

bj(x)∂ju(x) + c(x)u(x)

for u ∈ D(Ap) = W 2,p(B) ∩W 1,p
0 (B). Here a(x) = (ajk(x)) is a real symmetric

matrix for x ∈ B such that

0 < a0 ≤ a(x)ξ · ξ ≤ 1
a0
, for x ∈ B, |ξ| = 1.

Assume aij ∈ Cρ(B), for some ρ ∈ (0, 1); and if B is unbounded, assume a∞ij =
lim|x|→∞ aij(x) exists, with |aij(x)− a∞ij | ≤ c|x|−ρ, for |x| large and all i, j. Then,
under certain conditions on bj , c (see [24, (A3), (A4), p. 165]), the spectrum of
−Ãp away from [0,∞) consists only of eigenvalues.

In particular, assume that ψ is such that Ãp has no eigenvalues λ such that
0 6= λ ∈ Σπ−ψ. Then, [24, Th. D(c)], for each η > 0 there exists cp(η) > 0 such
that

‖(λI − Ãp)−1‖ ≤ cp(η)|λ|−1, λ ∈ Σπ−ψ, |λ| > η.

Thus, Theorem 4.3 may be applied with Ap = Ãp − δI, for any δ > 0, provided

0 < α < 2
[
1− ψ

π

]
, β >

1
2
,

to give a solution u satisfying (4.3). If

0 < α < min
(
β − 1

2
, 2[1− ψ

π
]
)
,

we have a solution u satisfying (9.1).
Note moreover that (under the above assumptions) we have for any δ > 0, that

δ − Ãp admits bounded imaginary powers [24, Th.D(c)]. In addition, if B is a
bounded domain and N (Ãp) = 0, then, [24, Th. D(c) and Th. A],

‖(−Ãp)iy‖ ≤ ceθ|y|, y ∈ R.

Hence we have, in this case, D((−Ãp)θ) =
[
Lp(B),D(Ãp)

]
θ
.

As a final remark we point out the following.
Suppose (−Ap) has spectral angle ω def= φ−Ap ,. Take θω < π. Recall that then

(−Ap)θ has spectral angle θω. Thus the above examples may be extended, e.g., to
fourth order operators A obtained as A = (−Ap)2, under appropriate conditions on
the spectral angle of −Ap.
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10. Krylov’s Approach Versus B-space Valued Stochastic Integration

At the center of the study of stochastic integral equations in Banach spaces
is the problem of defining and estimating stochastic integrals, in particular sto-
chastic convolutions, in Banach spaces. Krylov’s approach, which is used in this
paper, is elementary in the sense that stochastic integrals are taken pointwise, so
they are classical Ito-integrals of scalar valued processes. Kahane-Khintchine ar-
guments, in particular the Burkholder-Davis-Gundy inequality, provide the step
from L2-estimates to Lp. Of course, this can only be done for sufficiently “nice”
integrands. The final step is to extend the results obtained for smooth initial data
and elementary forcing terms to more general Lp-data by a completion argument.

On the other hand, the recent progress on stochastic integration in Banach spaces
(see, e.g.[21]) provides a convenient tool to handle stochastic convolutions directly
in the Banach space. While we do not know about applications of this method
to integral equations, it has been used successfully to treat parabolic stochastic
differential equations, e.g., [12], [29]. We expect that such results can be extended
to integral equations. Clearly, this approach works in more general Banach spaces,
while the more classical technique is confined to the special structure of Lp.

It seems interesting to conclude our paper with a short comparison of these two
approaches.

We mention first, that the results obtained for parabolic differential equations
go far beyond the scope of our paper, in the sense that both approaches have been
used to treat nonlinear equations, with possibly time dependent coefficients, and
state dependent diffusion. On the other hand, the aim of the present paper is to
treat a fractional differential equation. With α = β = 1, our equation (1.1) reduces
to the stochastic differential equation

(10.1) du(t) = Apu(t) dt+G(t) dWt.

It is this case, where we can compare our results to the results obtained by the
abstract integration theory. Notice that in abstract notation, Wt is a cylindrical
Wiener process in a separable Hilbert space H and G ∈ Lp([0, T ]×Ω; γ(H,Lp(B))
where γ(H,Lp(B)) denotes the space of γ-radonifying operators H → Lp(B). This
is equivalent to writing the stochastic forcing in Krylov’s notation

g(t) =
∞∑
k=1

gkwks .

with {gk}∞k=1 ∈ Lp([0, T ]× Ω;Lp(B, l2)) (use, e.g., [29, Proposition 3.2.3]).

With the assumption that A is sectorial, [29, Theorem 8.2.1] states (translated
to our notation, and in the special case θ = 0 and time-independent generators
A(t) = A)

‖u‖pLp([0,T ]×Ω;(E,D(A))δ,1)
≤ c‖G‖pLp([0,T ]×Ω;γ(H,E)) if δ <

1
2
,

u ∈ Cλ([0, T ], (E,D(A))δ,1) a.e. if δ + λ <
1
2
− 1
p
.

These results are exactly the results of our Theorem 4.3(c) and Corollary 4.8(c)
with E = Lp(B), α = β = 1, η = 0, θ = δ. (Notice that the condition on δ
is a strict inequality, so that it makes no difference whether the result is stated
in terms of (E,D(A))δ,1 or of D((−A)δ). In [12, Theorem 4.1(ii)] we find that
u ∈ Cλ([0, T ],D(−A)θ) if θ+ λ < 1

2 . Notice that in this result the forcing operator
G(t) is independent of time, so it is in Lp([0, T ]×Ω, E) for all p ≥ 1, and the result
is again commensurate to Corollary 4.8 in the present paper.
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In the abstract approach, maximal regularity is achieved in the case that A has
a γ-bounded H∞-calculus. In this case, and Hilbert space, the maximal regularity
result [29, Theorem 8.2.2] (again for the case of time-independent generators) reads

‖u‖2L2([0,T ]×Ω;[E,D]1/2)
≤ c‖G‖2L2([0,T ]×Ω;γ(H,E))

which is exactly what we get in Theorem 4.14, if A is the Laplacian on Rn, p = 2
and θ = 1

2 . Theorem 4.14 is not confined to the Hilbert space case. A comparable
maximal regularity result for a space which needs only be of finite cotype, and
again with γ-bounded H∞-calculus is given in [12, Theorem 6.2]. Unlike our Theo-
rem 4.14, it is pointwise for t ∈ [0, T ], but again it is based on the assumption that
G is independent of time. Again, both approaches are equivalent for the Laplacian.
Notice, however, that the proof of Theorem 4.14 is based on the maximal inequality
Lemma 8.1, which is derived only for the Laplacian operator on the full space, and
that the proof of this lemma is quite sophisticated and takes a paper of its own
[11].
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Math., 32 (1939), 115–121.

[21] J. van Neerven and L. Weis, Stochastic integration of functions with values in a Banach space,
Studia Math., 166 (2005), 131–170.

[22] J. Prüss, Quasilinear parabolic Volterra equations in spaces of integrable functions. In Semi-

group Theory and Evolution Equations, B. de Pagter, Ph. Clément, E. Mitidieri, eds., Lect.
Notes Pure Appl. Math., 135 (1991), 401–420, Marcel Dekker.

[23] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel, 1993.
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