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Tapio Helin: Discretization and Bayesian modeling in inverse problems and imag-
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Abstract: In this thesis the Bayesian modeling and discretization are stu-
died in inverse problems related to imaging. The treatise consists of four
articles which focus on the phenomena that appear when more detailed da-
ta or a priori information become available. Novel Bayesian methods for sol-
ving ill-posed signal processing problems in edge-preserving manner are intro-
duced and analysed. Furthermore, modeling photographs in image processing
problems is studied and a novel model is presented.
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Tapio Helin: Diskretisointi ja bayesiläinen mallintaminen inversio-ongelmissa ja

kuvantamisessa

Tiivistelmä: Väitöskirjassa tutkitaan bayesiläistä mallintamista ja diskre-
tointia kuvantamiseen liittyvissä inversio-ongelmissa. Työ koostuu neljästä
artikkelista, jotka tarkastelevat ilmiöitä liittyen tarkemman datan tai a priori
tiedon hyödyntämiseen. Väitöskirjassa esitellään huonosti asetetuille signaa-
linkäsittelyongelmille uusia bayesiläisiä ratkaisumenetelmiä, jotka pyrkivät
signaalin epäjatkuvuuksien tarkkaan rekonstruointiin. Lisäksi työssä tutki-
taan valokuvien esittämistä resoluutiovapaasti ja esitellään uusi malli tähän
tarkoitukseen.

Avainsanat: Inversio-ongelmat, Mumford–Shah funktionaali, bayesiläinen inver-
sio, hierarkinen mallintaminen, diskretisointi invarianssi, kuvamalli, Borel mitta,
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1 Introduction

This thesis studies Bayesian modeling and discretization in inverse problems
related to imaging. Signal processing problems are the framework for study
in papers [I-III] whereas paper [IV] focuses on two dimensional image pro-
cessing. The common methodological goal is to study and give answers to
some questions raised in previous work [44]. With these observations in mind
we shed more light to the phenomena which appear when more data or more
detailed a priori information become available. Furthermore, we introduce
novel solutions in the Bayesian approach to signal processing problems and
study the modeling of photographs in image processing. Let us begin by
explaining some background to our work.

Defining an inverse problem simultaneously requires defining a forward
problem. In imaging problems arising from physics this distiction is often
intuitive. For the sake of argument, consider the physics behind the computed
tomography (CT) imaging. This imaging modality is based on acquiring
several X-ray projection images of an object from different directions. The
images are then used to generate a three dimensional image of the attenuation
of X-ray inside the object [54]. The forward problem is solving the X-ray
images given the attenuation properties of the object. Such a problem is
numerically stable and can be solved very reliably. However, the inverse
problem, which is finding the attenuation given a set of X-ray images, is
difficult and in mathematical terms called ill-posed. The vast majority of
inverse problems are characterized by ill-posedness.

In mathematical terminology a problem is called well-posed in the sense
of Hadamard [33] if it satisfies following three conditions:

(i) There exists a solution to the problem (existence).

(ii) There is at most one solution to the problem (uniqueness).

(iii) The solution depends continuously on the data (stability).

Accordingly, a problem is defined ill-posed if one or more of these conditions
are not satisfied.

Violating anyone of the three properties produces very distinctive chal-
lenges in solving the problem. Clearly, the existence of a solution is guaran-
teed if the measurement belongs to the solution space of the forward problem.
This may not be the case since any physical measurement can be contam-
inated by noise. In this case the notion of a solution may need adjusting.
Similarly, uniqueness is of high importance in many situations and lack of
uniqueness means that the data are not sufficient for determining the solu-
tion. For non-linear problems proving uniqueness in enough generality may
turn out to be extremely challenging. For instance, consider the evolution of
the inverse conductivity problem [5, 53, 65]. In practise, the non-uniqueness
appears often due to the finite amount of data. In the example of CT imaging
this reflects the inevitable practical problem that only a very limited num-
ber of X-ray images can be taken and hence the inverse problem becomes

8



underdetermined. In conclusion, a mathematical remedy to existence and
uniqueness considerations can be the reformulation of the problem.

The most difficult property for numerical algorithms to handle is the in-
stability of the problem. In other words, small measurement noise can cause
an arbitrarily large error in the solution. This is the case for most inverse
problems. In the classical regularization approach the goal is to produce a
reasonable estimate of the solution. This is done by introducing a slight
modification of the original problem in order to make it stable. Naturally,
by doing so, one introduces some new error to the method and hence it is of
interest to keep the modification as small as possible. Roughly, a regulariza-
tion method balances between errors produced by the modification and the
remaining instability. These methods have proved to be efficient and research
remains active to date. Among a number of excellent textbooks on the topic
we mention [24, 41, 66].

A fundamental assumption in regularization theory is that the magnitude
of the noise, i.e. the noise level, in the measurement is known or can be ac-
curately estimated. Standard regularization methods are known to converge
with respect to the noise level. In a large number of applications, statistical
modeling of the measurement error makes more sense [25]. In such cases, the
problem becomes a question of statistical inference. Given the measurement
and all other information available, what do we know about the solution?

The main paradigms of statistical inference are frequentist and Bayesian.
The core difference between the two is in the interpretation of probabil-
ity. Whereas frequentists see the probability of an event only as its relative
frequency over time, the Bayesian school gives the notion of probability a
subjective status [9]. The latter approach assumes probability measures the
degree of belief in the outcome. Consider throwing of a dice (frequentist
probability) or gambling odds (Bayesian probability) as an example of the
difference in thinking.

The frequentist approach assumes that the value of the unknown is de-
terministic. Various statistical estimation techniques can be used, however,
frequentists typically lean towards non-Bayesian statistical decision theory
[10, 25]. This approach aims to build estimators of the unknown which min-
imize some specific risk function. A widely used non-Bayesian estimator is
the maximum likelihood estimate which is the solution that is most likely to
produce the measured data. It often fails to address the instability of inverse
problems and requires deterministic regularization to also be applied.

In opposition to the frequentist approach, the Bayesian approach seeks
to utilize prior information in the form of a probability distribution called
the prior distribution. When the measurement is obtained the prior knowl-
edge is updated into the posterior distribution using the measurement model
and Bayes formula. Hence the fundamental difference between Bayesian and
other approaches can be summarized by noting that the Bayesian solution
to an inverse problem is a probability distribution rather than a single point
estimate or a confidence interval. The posterior distribution yields a straight-
forward method to assess the reliability of any value of the solution.
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In connection to classical methods the role of the prior information in the
Bayesian paradigm is to regularize the problem. Many similarities exist with
the frequentist approach when the goal is regularization of the ill-posedness.
For example, operating with Gaussian distributions in Bayesian scheme and
regularizing with Tikhonov-based methods in a frequentist scheme can be
shown to produce same point estimates. From the point of view of statistical
decision theory these methods should be seen to complement each other.

Bayesian methods have been widely applied to practical applications of
inverse problems [7, 39, 42, 64], but there are still crucial open questions in
the theory. The key question in this thesis is to determine if the Bayesian
approach can be successful in infinite dimensional problems. This problem
has been studied with Gaussian prior and noise distributions since the paper
by Franklin [27], but the use of non-Gaussian information has turned out
to be much more difficult. Such problems have been recently studied in
[44, 45, 56]. The methodological goal in [I-III] is to show that so-called
hierarchical models leading to non-Gaussian probability distributions can be
used in infinite dimensional Bayesian inverse problems.

The second methodological question approached in [I-III] is related to
discretization of inverse problems and performance of the hierarchical mod-
els when the discretization levels are increased. For example, in the signal
processing problems this could be an increase in sampling frequency. Ques-
tions to consider are, if the noise model for each signal is Gaussian, does the
solution stay stable? Do the solutions stay consistent with the prior? Pa-
pers [I-III] show that under hierarchical models the performance of different
Bayesian point estimates depends on the asymptotics of the noise.

The novel aspect of solving ill-posed signal processing problems in [I-III] is
in introducing Bayesian methods that are edge-preserving. This means that
the method is specialized in preserving sharp edges. For example, Gaussian
modeling often results to unwanted smoothing in the reconstructions. As a
point of interest, computing CM estimate with the widely used total-variation
priors has been shown to smoothen such edges asymptotically [44].

Let us finally discuss the results in paper [IV]. Among the different ap-
proaches to inverse problem the common step where all methods utilize prior
information is when one chooses the underlying space for the unknown. In
what space photographs should be modeled is an open question in image pro-
cessing. There is a long tradition to consider them as functions of bounded
variation and use methods based on variational calculus (see e.g. [60]) but
controversy remains [30]. Recently, general Banach space models have been
presented to tackle problems with rapid oscillation patterns [50]. In [IV] a
novel image model is introduced which considers a simplified physical pro-
cess of a CCD sensor. This problem falls outside the scope of typical inverse
problems research, however, it is of fundamental value in image processing
problems.

This text is organized as follows: Section 2 reviews the theoretical back-
ground of Bayesian inversion. The related methodological implications of the
results in [I-III] are discussed in the light of the general theory. In Section
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3 the edge-preserving Bayesian methods introduced in articles [I-III] and
the related convergence results are explained in more detail. The findings of
paper [IV] and the related research in image processing problems are reviewed
in Section 4. Finally, Section 5 is devoted to a discussion about the results
and their implications.

2 Bayesian inversion

2.1 The Bayes model

Consider a quantity u that can be observed indirectly through a relation

m = Au+ e

where e is an additive noise. Throughout the thesis we assume that A is
linear and bounded. Linearity does not play a central role in the results
and is chosen to maintain a more readable presentation. Instead of linearity,
suitable continuity and boundedness assumptions on A often suffice.

The Bayesian approach to find u given m is to reformulate the problem
as a question of statistical inference incorporating all prior information avail-
able. The quantities are viewed as random variables where the subjective
knowledge is encoded into the probability distributions [39]. Furthermore,
the randomness depicts the lack of knowledge regarding the true values of
the quantities. The Bayesian view is that the measurement is a sample of
random variable

M = AU + E (1)

where U and E model the values of u and e, respectively. Consequently, the
Bayesian paradigm asks

given a realization m = M(ω0), what we know about U . (2)

In real life situations the measurement and the computed solution are
always finite dimensional. This thesis focuses on the asymptotical questions
related to their dimensions and hence we distinguish a computational model

Mkn = AkUn + Ek (3)

from the ideal model (1). In equation (3) parameters k, n ∈ N are related to
discretizing the measurement and the unknown, respectively.

The infinite dimensional linear model and its discretization have been
studied extensively for Gaussian distributions in [26, 27, 43, 46, 47, 48]. Still,
for non-Gaussian probability distributions the interplay between equations
(1) and (3) remains one of the fundamental open questions in Bayesian in-
version. We return to the convergence issues below but point out the fol-
lowing observation. Often in literature one implicitly assumes that the finite
dimensional measurement is produced by random variable Mkn. This is not
immediately clear since the nature itself does not discretize U and hence the
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right model for the measurement should be Mk = AkU + Ek. An interesting
perspective is to consider this discrepancy as model reduction [4, 40] such that
the model error Ak(U − Un) is included in the random noise. This approach
was first analysed in [40] with Gaussian distributions. Later it was shown in
[45] that with Gaussian noise such assumption is not necessary.

Looking from a practical point of view, the process presented above can
also be seen reversed. Namely, in a real life application one can have a range
of possible choices for k and hence some idea how the statistics of Ek develops.
In this case, the corresponding stability issues are obviously of interest. A
Bayesian solution method that works coherently on all these scales is called
discretization invariant. In the following sections we discuss and comment
on this property in connection to converging posterior distributions as well
as point estimates. Notice that the essence of discretization invariance is not
only in convergence issues but also in discretization independent qualitative

properties of the estimates. The qualitative incoherence of point estimates is
discussed in Section 3. Finally, it should be recognized that a limiting model
like (1) might not exist. We discuss this and the role of the limiting noise E
more below.

2.2 The posterior distribution

The Bayesian answer to problem (2) is the conditional distribution of the
unknown given the measurement. This is called the posterior distribution.
When a density function presentation is available in the finite dimensional
problems, the Bayes formula has a straightforward form.

Consider the following framework for the computational problem. Let
(H1, 〈·, ·〉1) and (H2, 〈·, ·〉2) be two real Hilbert spaces such that dimH1 = N
and dimH2 = K. Suppose Un obtains realizations in H1 and Mkn is modeled
in H2. Furthermore, let I : H1 → R

N and J : H2 → R
K be two arbitrary

isometries. Let us then map equation (3) to a matrix equation

Mkn = JMkn = AknUn + Ek (4)

where Akn = JAkI−1 ∈ R
K×N , Ak = PkA and Un = IUn : Ω → R

N .
If all the probability distributions of the random variables above are abso-
lutely continuous with respect to Lebesgue measure, by the Bayes formula
the posterior density πkn has a form

πkn(u | m) =
Πn(u)Γkn(m | u)

Υkn(m)
(5)

where u ∈ R
N and m ∈ R

K . In equation (5) functions Πn and Γkn represent
the densities of the prior distribution of Un and the likelihood distribution of
Mkn given Un = u, respectively, and Υkn is the density of Mkn.

Notice that due to the connection between m and u via (3) the likelihood
term depicts the distribution of the noise. We also point out that if Υkn(m) =
0 happens, the prior modeling has failed. Namely, the measurement can not
be predicted by the model.
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The density function presentation proves powerful in many respect. How-
ever, in infinite dimensional problems the Lebesgue measure is not available
and hence this presentation is not meaningful. The first question about
problem (1) is obviously whether the posterior distribution exists and can be
defined. The answer turns out to be ’yes’ even in the general framework of
Polish spaces, i.e., separable and completely metrizable topological spaces.
An existence result can be found in [23, Section 10.2].

Let us consider problem (1) and let (Ω,F ,P) be a probability space. Fur-
thermore, let (G,G) and (H,H) be measurable spaces such that U : Ω → G
and M : Ω → H are random variables. Denote the probability distributions
of U and M with µU and µM , respectively. The following theorem and a
proof is given in [61, Theorem 1.31].

Theorem 1 Let ν be a measure in (H,H). Assume that there exists a condi-

tional distribution of M given U and denote it by µM |U(· | u). Furthermore,

assume that µM |U(· | u) is absolutely continuous with respect to ν for µU-

almost all u ∈ G with the Radon-Nikodym derivative

ΓM |U(m | u) :=
dµM |U(· | u)

dν
(m).

In addition, suppose that the mapping (u,m) 7→ ΓM |U(m | u) is measurable

in (G × H,G × H). Then a conditional distribution of U given M exists,

µU |M(· | m) is absolutely continuous with respect to µU for µM-almost all

m ∈ H, and

µU |M(A | m) =

∫

A
ΓM |U(m | u)µU(du)

∫

G
ΓM |U(m | u)µU(du)

, A ∈ G, (6)

for µM -almost all m ∈ H.

We notice that a ’reference measure’ ν is still required to obtain a likelihood
density. The key notion in the recent results in [45] is to use a choice of
ν = µM for linear inverse problems with additive Gaussian noise. This can
be shown to satisfy the assumptions above due to the Cameron-Martin the-
orem [13]. Furthermore, in [45] the formula is used to obtain convergence of
posterior distributions between problems (3) and (1). In paper [I] the con-
vergence result is generalized by relaxing the assumption on the convergence
of prior distributions. Finally, we point out that convergence of the posterior
can be studied also from different perspectives [55, 56].

2.3 Point estimates

The role of Bayesian point estimates is, likewise to classical regularization
methods, to describe the solution with a single value. However, the theory
proves versatile since the estimate can be intuitively chosen to depict different
properties of the posterior. The two most common point estimates used in
Bayesian inversion and also studied in [I-III] are the conditional mean (CM)
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and the maximum a posteriori (MAP) estimate. Let us first shed light to the
first of these two.

The CM estimate is defined as the expectation value of the posterior
distribution. Given the density function representation and the notations of
Section 2.2 it is defined as the integral

uCM
kn =

∫

RN

uπkn(u | m)du

and hence the CM estimate for problem (3) is

uCM
kn = I−1

(

uCM
kn

)

∈ H1.

The numerical implementation requires computation of the integral. In prac-
tical applications the dimensionality of the integral increases rapidly and thus
sophisticated numerical methods are required. Usually the value is approx-
imated by Markov Chain Monte Carlo (MCMC) methods [34, 49]. In the
numerical examples in [I] we have implemented a method called single com-
ponent adaptive Metropolis [31, 32]. Unfortunately, even adaptive methods
are not feasible without enormous computing power to problems like medical
imaging where very high dimensional objects are involved. However, it is the
opinion of the author that the evolution of computers together with efficient
parallelization of the algorithm can develop it into a very competitive and
stable choice.

The definition of a CM estimate can be extended to infinite dimensional
setting using Bochner integrals (see [22]). Notice that the posterior measure
obtained from Bayes formula (6) makes sense for almost all measurements.
Hence, conditioning on a single measurement requires careful consideration.
In [45] a concept of reconstructor is introduced to overcome this difficulty.

Definition 1 Denote by M ⊂ Σ the σ-algebra generated by the random

variable M . We say that any deterministic function

RM (U | ·) : H → G, m 7→ RM (U | m),

is a reconstructor of U ∈ L1(Ω,Σ;G) with measurement M if

RM (U |M(ω)) = E(U | M)(ω) almost surely.

Replacing variables M and U by Mkn and Un, respectively, defines the re-
constructor for the computational model. This object coincides with the
functional presentation of the conditional expectation (see [63]). However, a
reconstructor is defined for every measurement m ∈ H and hence the indi-
vidual definition [45] is needed. The definition is non-unique and especially
for a single measurement may be arbitrary. Thus one has to fix which re-
constructor is used (see [I]). Furthermore, here the discrepancy of assuming
measurement as realization of Mkn or Mk is visible. Namely, one has to make
sure that the reconstructor of the computational model is defined for the data
obtained from Mk.
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Among inverse problems the most used point estimate is by far the MAP
estimate. The standard definition requires

uMAP
kn ∈ argmax

u∈Rnπkn(u | m)

where the set on the right-hand side consist of all points u maximizing
πkn(· | m). Hence the value of

uMAP
kn = I−1

(

uMAP
kn

)

∈ H1

is commonly defined as the MAP estimate of the computational problem.
One notices this value is obtained from an optimization problem and it is
not necessarily unique given a multi-modal posterior distribution. In fact,
the main critique towards MAP estimation is that it does not represent the
posterior well. For the sake of argument, consider an example on real axis
where a thin spike is located far away from most of the probability mass.
However, in real life applications when dimensionality increases significantly,
the computation of MAP estimates can be very efficient when numerical
methods such as conjugate gradient or Newton’s method can be applied. In
the numerical work of [I] and [III] the difference between computation times is
huge: for a similar 512 dimensional problem a MAP estimate was computed
in a few seconds whereas the computation of a CM estimate with reasonable
accuracy took over 50 hours. Clearly, this comparison is not completely
fair since computing a CM estimate with MCMC methods produces also
information regarding the whole posterior.

In some cases a MAP estimate can be defined for the infinite dimensional
problems [35]. The definition is rather implicit and difficult to assess since
it involves studying all neighborhoods around a candidate point. It can be
shown that the definition coincides in finite dimensional cases. Giving any
general convergence conditions remains an open problem.

Finally, we note that although the posterior density depends on the inner
products 〈·, ·〉1 and 〈·, ·〉2 both point estimates are invariant with respect to
such choices.

2.4 Modeling noise

Noise is always present in physical measurements and estimating the error in
solutions requires some knowledge on how it contributes to the data. Since
ill-posed problems are by definition sensitive to noise, it is a crucial part of
the problem to model reliably how the noise is produced.

Most often in inverse problems the noise is modeled as additive and mu-
tually independent of the unknown [39]. This is the simplest choice yielding
accessible likelihood distribution. More complicated relationships have been
used as well, e.g., multiplicative noise. Such model could appear, e.g., when
signal goes through a noisy amplifier. In the convergence analysis in [45]
and [I-III] additivity is a crucial ingredient of the result making it possible
to use the Cameron-Martin theorem [13]. Furthermore, noise is assumed
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Gaussian due to the same reason. Likewise, we recognize the variety of sit-
uations leading to different non-Gaussian models. Consider problems where
the measurements are done according to a Poisson process [1, 37].

The most typical Gaussian noise model is the white noise. Roughly,
if the measurement is written in an orthonormal basis, every coefficient in
this presentation is contaminated by an independent and identically dis-
tributed Gaussian noise. Consider such a process on a torus T. In the
L2(T)-orthonormal basis of trigonometrical functions {t 7→ ei2πkt, t ∈ T}k∈Z

the white noise can be formally written as

W =
∑

k∈Z

Xke
i2πkt (7)

where Xk ∼ N (0, 1) i.i.d. for all k ∈ Z. The difficulty in this formulation lies
in the knowledge that the sum in equation (7) does not converge in L2(T)
almost surely. This phenomenon reflects a more general observation that the
covariance operator of a Gaussian random variable in a Hilbert space is of
the trace class. Consequently, the random variable W is not Gaussian in
L2(T) although every finite truncation of the sum in (7) is. There are ways
to approach this ambiguity by defining the random variable in more general
setting [43, 28]. In [I-III] we have chosen to embed the L2-type white noise
into the Sobolev space H−s(T) for s > 1/2. Neither approach avoids all
controversies.

The convergence considerations also raise a question about the interpre-
tation of the limiting noise distribution. One could ask whether idealizing the
measurement (by taking k to infinity) erases the measurement error. Some
arguments can be given defending the existence of E . First, a physical process
always contains some background noise. Secondly, in the Bayesian approach
the role of the noise is also to describe the inexact physical modeling. Notice
that these two properties are not completely independent. In paper [III] the
discrete noise Ek is defined via

Ek = Ek + PkE (8)

where Ek and E describe the instrumentation and the background noise,
respectively. On the other hand, E might be neglectable from practical point
of view. Hence both aspects can make sense and the right path is rather
problem-dependent.

Let us finally describe the scaled white noise model used in [III]. The
random variabe Ek : Ω → Ran(Pk) ⊂ L2(T) is assumed to be a Gaussian
random function on T with zero expectation and covariance

E (〈Ek, φ〉L2〈Ek, ψ〉L2) = K−κ〈φ, ψ〉L2 (9)

for any φ, ψ ∈ Ran(Pk) whereK = dim(Ran(Pk)). The parameter κ describes
the scaling of the distribution. Notice that equation (9) implies E ‖Ek‖2

L2 =
K1−κ and hence choice κ ≥ 1 is reasonable if the L2-norm of the noise is
expected to vanish or stay stable.
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3 Edge-preserving prior structures

In many imaging applications one seeks a solution that may contain discon-
tinuities. The classical Tikhonov-type regularization methods often lead to
some smoothing in the solutions. The same phenomenon appears in Bayesian
models when Gaussian prior distributions are utilized. Hence it has become
a challenge on its own to introduce efficient methods that focus on good
reconstruction of the edges [15, 36, 52, 62].

In Bayesian paradigm this property has to be modeled in the prior dis-
tribution. Roughly speaking, the prior distribution should be constructed in
such a way that the solutions which have high probability with respect to the
posterior distribution are piecewise smooth and have rapidly changing values
only in a set of small measure. Such reconstruction methods are often called
edge-preserving.

In finite dimensional Bayesian inversion theory a number of methods have
been introduced for obtaining edge-preserving reconstructions [14, 20, 29, 68].
Maybe the most widely used edge-preserving structure is the total variation
prior [38, 42, 64]. In the seminal work [29] by Geman and Geman and also
recently by Calvetti and Somersalo in [16, 17] the edge-preserving property
is obtained using so-called hierarchical prior models. In a nutshell, if a pa-
rameter of the prior distribution is not known, it is a part of the inference
problem [39]. In such cases the prior is referred to as hierarchical.

We point out that the majority of these methods concentrate in the MAP
estimation and therefore the question of discretization invariance is usually
clear or omitted. However, the asymptotic properties of the MAP estimate
tell very little if nothing about the convergence of a non-Gaussian posterior
distribution. In fact, it was proved in [44] regarding the total variation priors
that the CM estimates lose their edge-preserving property asymptotically or
even diverge with the typical choice of parameters. The methodological nov-
elty of [I-III] lies in studying hierarchical prior models for which the posterior

distribution converges while the edge-preserving property is maintained.
Many Bayesian prior models lift deterministic regularization ideas to the

stochastic setting (cf. total variation priors [44]). Such lifting has also been
the starting point of this thesis. Namely, the finite dimensional MAP esti-
mation problem studied by Geman and Geman in [29] lead Mumford and
Shah in [52] to introduce the celebrated continuous deterministic version of
the method. The novel idea was to define a penalty term

F (u,K) =

∫

T\K

|Du|2dt+ ♯(K) (10)

where K ⊂ T is a set and the notation ♯(K) stands for the number of points
in K. Roughly, the minimization of

F (u,K) +

∫

T

|u−m|2dt

with respect to u andK results to a piecewise smooth signal approximatingm
and a set describing the points where this approximation jumps. The original
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framework for the functional was in two dimensional image segmentation in
which case ♯(K) is replaced by the one dimensional Hausdorff measure of
the edge set K. This setting has been extensively studied and a number of
interesting theoretical questions remain open [21].

The functional F (u,K) is known to be difficult to handle numerically and
several approximations to the variational problem have been introduced. In
[2, 3] it is shown that the Mumford–Shah functional can be approximated by
elliptic functionals

Fǫ(u, v) =

∫

T

(

(ǫ2 + v2)|Du|2 + ǫ|Dv|2 +
1

4ǫ
(1 − v)2

)

dt

in the sense of Γ-convergence with respect to ǫ > 0 [11, 12]. This is discussed
in detail in [III]. For a minimizing pair (uǫ, vǫ) one sees that the auxiliary
function vǫ describes the edges of uǫ.

The core idea in [I-III] is to create a hierarchical prior distribution so that
samples with high probability produce small value for a functional similar to
Fǫ. Let us next formally define the discrete prior models studied in [I-III].
Set N = 2n and let points tj = j/N , j = 0, 1, ..., N , and t0 identified with
tN , denote an equispaced mesh on T. We define PL(n) to be the space of
continuous functions f ∈ C(T) such that f is linear on each interval [tj , tj+1]
for 0 ≤ j < N . Furthermore, let PC(n) be the space of functions f ∈ L2(T)
such that f is constant on each interval [tj , tj+1) for 0 ≤ j < N . Denote by
Qn : L2(T) → PC(n) the orthogonal projections with respect to L2(T) inner
product and let Q = Q0 be the projection to constant functions. Define the
operator Dq = D + ǫqQ : H1(T) → L2(T) where ǫ > 0, q > 1 and D = d

dt
.

The hierarchical structure is defined in two steps. First, fix ǫ > 0 and
α ∈ R and let Vn,ǫ be a Gaussian random variable in PL(n) with density
function

ΠVn,ǫ
(v) = C exp

(

−N
α

2

∫

T

(

ǫ|Dv|2 +
1

4ǫ
(1 − v)2

)

dt

)

(11)

where v ∈ PL(n). Then choose vn,ǫ to be a sample of Vn,ǫ. The random vari-
able Un,ǫ, conditioned on vn,ǫ, is then defined as a Gaussian random variable
on PL(n) with a density function

ΠUn,ǫ|Vn,ǫ
(u | vn,ǫ) = C ′(vn,ǫ) exp

(

−N
α

2

∫

T

(ǫ2 + |Qnvn,ǫ|2)|Dqu|2 dt
)

(12)

where u ∈ PL(n). Following Section 2.2 we notice that the density function
presentation is not unique without a definition of the inner product on PL(n).
The choice of the inner product is rather technical and for details see [I].

Roughly speaking, a sample vn,ǫ has a high probability if it is continuous
and the L2(T)-distance from constant function 1 is small. When ǫ is de-
creased, the probable samples becomes less smooth. Consequently, a sample
of Un,ǫ has a high probability if it varies rapidly only near the points where
vn,ǫ is close to zero. Hence the role of ǫ is to control how sharp jumps Un,ǫ can
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have. We call parameter ǫ the sharpness of the prior. Further, the parameter
α describes the scaling of the prior information. Increasing α results to a
prior distribution that is more concentrated around the expectation values.

As a consequence of the construction above the probability density of the
joint distribution of (Un,ǫ, Vn,ǫ) has a form

Π(Un,ǫ,Vn,ǫ)(u, v) = c exp

(

−N
α

2
F α

ǫ,n(u, v)

)

where (u, v) ∈ PL(n) × PL(n) and

F α
ǫ,n(u, v) =

∫

T

(

−N1−α log(ǫ2 + |Qnv|2) +

+(ǫ2 + |Qnv|2)|Dqu|2 + ǫ|Dv|2 +
1

4ǫ
|1 − v|2

)

dt. (13)

The logarithmic term in (13) appears due to the fact that the normalization
constant C ′ in (12) depends on vn,ǫ.

Let us next describe the results in [I-III]. The papers study asymptotical
properties of linear inverse problems (3) and the implementation of the hi-
erarchical prior presented above. The forward operator A is assumed to be
bounded in L2(T). For the sake of the presentation we simplify the setting
by assuming that k and n are coupled although this is not necessary for the
convergence results in [I]. Further, it is assumed that Ek is scaled white noise
and κ = α. This implies that the asymptotic behavior of the noise is well-
known and the scaling of the prior distribution can be estimated accordingly.
The case when κ 6= α is discussed in [III]. Due to these simplifications we
drop the notation k and κ.

Under these assumptions the MAP estimate for (Un,ǫ, Vn,ǫ) corresponding
the measurement mn sampled from Mn is a minimizer

(

uMAP
n,ǫ , vMAP

n,ǫ

)

∈ argminu,v∈PL(n)

(

F α
ǫ,n(u, v) + ‖PnAu−mn‖2

L2

)

. (14)

Notice that the presence of an arbitrary bounded operator A produces some
difficulties when analyzing the convergence of the MAP estimates with re-
spect to ǫ. In fact, the Mumford–Shah penalization has been applied only
recently to inverse problems [57, 58, 59]. In image segmentation the residual
term provides a bound for the minimizers in Lp(T) for some p > 1. The
approach taken in [58, 59] is to assume a priori that the minimizers are in a
bounded set of L∞(T). In [III] we modify this approach by assuming instead
that A : H−s(T) → L2(T) for some s < 1/2 is invertible. We show that it is
enough to prove a bound for the minimizers in L1+δ(T) where δ > 0 is a small
number. Hence as a byproduct some novel results about the deterministic
problem are proved in [III].

Consider the situation when α = 0 and ǫ > 0. With the additional
assumption that A : L2(T) → H1(T) is bounded the following convergence
results are shown in [I] and [III] when n→ ∞:
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(i) There exists a well-defined random variable (U, V ) : Ω → L2(T)×L2(T)
to which (Un,ǫ, Vn,ǫ) converges in distribution.

(ii) The posterior distributions converge weakly in L2(T) × L2(T).

(iii) The CM estimates (uCM
n,ǫ , v

CM
n,ǫ ) converge in L2(T)×L2(T) to the recon-

structors of problem (1).

(iv) The MAP estimates (uMAP
n,ǫ , vMAP

n,ǫ ) diverge.

The case when α ≥ 1 is studied in [III]. Recall that in this setting the
expectation of the measurement error is bounded. In this context we assume
that A : Lp(T) → Lp(T) is bounded for p ∈ {1, 2} and also that mapping
A : H−s(T) → L2(T) is bounded from below for some s < 1

2
. The following

claims are proved in [III]:

(i’) When n → ∞ the MAP estimates
(

uMAP
n,ǫ , vMAP

n,ǫ

)

converge weakly in

H1(T)×H1(T) to a minimizer, denoted
(

uMAP
ǫ , vMAP

ǫ

)

, of a perturbed
Ambrosio–Tortorelli functional.

(ii’) The functions
(

uMAP
ǫ , vMAP

ǫ

)

are shown to converge with respect to
ǫ > 0 in L1(T)×L1(T), up to a sequence, to a minimizer of a Mumford–
Shah-type functional.

We discuss the implications of these results in Section 5.

4 Modeling the space of images

4.1 Current aspects

A digital image is a discretized quantization of the continuous world [6].
Most popular quantization is by far the one produced by common day digital
cameras. Roughly, one can consider a regular grid with a number assigned
to each square describing, e.g., the average brightness of the analogue image.
Although the ideal undiscretized image is never available in practise, the
notion is useful for resolution independent mathematical analysis.

The question of how to choose a mathematical space for modeling images
is often problem-driven. In the PDE based methods both the uniqueness
and the existence of the solution are very valuable because they help to
characterize why and when the algorithms work. However, this way the
mathematical basis of the problem describes what type of images can be
processed and are produced.

For instance, there is a long tradition of using functions of bounded vari-
ations (BV) in problems like image restoration involving variational calculus.
The main reason is that such functions can be discontinuous across hyper-
surfaces whereas the classical Sobolev functions do not have this property.
For presenting the complexity of natural photographs this is mandatory. It
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is typical to all image processing methods that one can describe situations
when the model fails [30].

In some cases an image model aims at describing one particular property
well. In image segmentation methods the goal is to find meaningful edges
from the images. A famous method presented in earlier sections was intro-
duced by Mumford and Shah in [52]. In the related research a subspace
of BV functions called special functions of bounded variation is used in the
analysis.

In the same spirit, consider the problem of characterizing strongly os-
cillating patterns in images. There is a line of research utilizing the Meyer
image model [50]. The goal of this approach is to decompose images into a
well-structured component with homogeneous regions and a component that
contains oscillating patters such as texture and noise. First of these is mod-
eled with BV functions and the latter in a space that roughly corresponds
the dual of BV functions. In conclusion, the characterization of an image
becomes far from intuitive. To this direction there are also studies involv-
ing image models outside typical function spaces. Namely, in a paper by
Mumford and Gidas [51] it was shown that locally integrable functions do
not provide a framework where the statistics of large sets of random natural
images can be studied.

Finally, it appears to be difficult to say which approach is more natural
than another. Hence it is a well-justified question to ask what are the mathe-
matical objects that the physical process of imaging produces. Following this
observation, in paper [IV] a novel image model is introduced by analyzing a
simplified imaging process of a CCD sensor. Below we describe the model
and the obtained results.

4.2 Infinite photography

The starting point of article [IV] is a simplified model of a monochromatic
digital camera comprising a light-sensitive surface called sensor, an optical
arrangement, and a shutter for preventing light from passing through the
optics. Photographs are taken by opening the shutter for a suitable period
of time, allowing a large number of photons to arrive at the sensor which
is divided into square-shaped disjoint subsets called pixels. Each pixel then
measures the wavelength-dependent energy delivered by the photons, and the
gray level of the pixel is determined by the ratio between energy detected at
that pixel and the total energy received by the whole sensor.

The sensor surface is modeled as a two dimensional torus D = T
2. Thus

one can consider a unit square with edges identified. An exposure is an
infinite ordered sequence e = (e1, e2, e3, . . . ), where each ej = (zj , λj) models
a photon with wavelength λj > 0 arriving at the sensor at the location
zj ∈ D. The set of exposures is denoted by E. We recognize that knowing
the exact data is an unphysical assumption. Yet, the value of the model
is in deeper understanding of the structure of digital photographs provided
by mathematical asymptotic analysis, and in new image processing methods
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that can be applied consistently at any given finite resolution.

When a digital photograph is taken, the first J photons in an exposure e
reach the sensor. We describe the resolution level by parameter n ∈ N such
that the pixels at level n are sets

Dn(k, ℓ) :=

{

(x, y) ∈ D

∣

∣

∣

∣

(ℓ− 1)2−n ≤ x < ℓ 2−n,
1 − k 2−n ≤ y < 1 − (k − 1)2−n

}

.

Given a resolution parameter n ≥ 0, the pixel image In(e, J) produced by
the J first photons of e is the following 2n × 2n matrix:

In(e, J) :=







In(e, J, 1, 1) · · · In(e, J, 1, 2n)
...

. . .
...

In(e, J, 2n, 1) · · · In(e, J, 2n, 2n)






. (15)

Above the matrix elements, or pixel values, are defined by

In(e, J, k, ℓ) :=
1

J |Dn(k, ℓ)|
∑

zj∈Dn(k,ℓ)
1≤j≤J

g(λj) (16)

where 1 ≤ k ≤ 2n is the row index and 1 ≤ ℓ ≤ 2n is the column index.
Here g : R → R is the spectral sensitivity function of the sensor satisfying
0 ≤ g(λ) ≤M with some sensor-dependent constant M <∞.

The ideal images, called snapshots, are defined using the concept Banach

limit. It has the crucial property that while being linear with respect to the
sequence, the limit exists always. Hence when we have infinite amount of
photons, i.e., J → ∞, we define ideal pixel values as

In(e, k, ℓ) := B-lim
J→∞

In(e, J, k, ℓ) (17)

and similarly In(e) denotes the corresponding 2n × 2n matrix.

To discuss distance between two snapshots we introduce a metric on E.
Let

d(e, e′) := max
n≥0

|Dn(k, ℓ)|√
2(n + 1)

‖In(e) − In(e′)‖2

for every e, e′ ∈ E. Define also an equivalence relation ∼ between exposures
e, e′ ∈ E by

e ∼ e′ if and only if d(e, e′) = 0.

This allows us to define a central component of the analysis in [IV].

Definition 2 The set P := E/∼ is called the space of infinite photographs.
The metric d of P is called the snapshot metric.
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4.3 Connections and applications

The image model presented above has interesting connections to Borel mea-
sures. First, denote by BM (D) the set of all positive Borel measures µ on D

satisfying µ(D) ≤ M . In the following we formally construct two mappings
between P and BM(D) and characterize in which sense they are inverses of
each other.

Given a measure µ ∈ BM (D) one can construct an exposure e by sampling
locations of the photons using the distribution µ and setting the wavelength
as a suitable constant. Namely, let Z(j) : Ω → D be independent and iden-
tically distributed random variables with probability distribution 1

µ(D)
µ. In

[IV] it is shown that one can choose ωµ ∈ Ω for every µ such that mapping
P : BM (D) → P , where

P(µ) := [ ((Z(j)(ωµ), λ))∞j=1 ]

and λ > 0 satisfies g(λ) = µ(D), is well-defined. We call P the illumination

map.
Likewise, given an exposure e one can proceed to the opposite direction

and define an outer measure µ∗ on D such that

µ∗(D) = inf

{

∞
∑

ν=1

2−2nνInν
(e, kν , ℓν) : D ⊂

∞
⋃

ν=1

Dnν
(kν , ℓν)

}

(18)

for any subset D ⊂ D. The limit image map M : P → BM(D) is defined by

M([e]) = µe

where µe is a restriction of µ∗ to Borel sets. It is rather straightforward to
see that M is well-defined since the snapshot data of e and e′ coincides if
e ∼ e′.

To obtain a connection between P and M let us give the following defi-
nition.

Definition 3 An element e ∈ E is a regular exposure if the equality

µe(Dn(k, ℓ)) =
In(e, k, ℓ)

|Dn(k, ℓ)|

holds and the limit limJ→∞ In(e; J, k, ℓ) exists for any n ≥ 0 and for all

indices 1 ≤ k ≤ 2n and 1 ≤ ℓ ≤ 2n. The subset of regular exposures is

denoted by E0 ⊂ E.

Further, let P0 be the subset of P such that every equivalence class [e] ∈ P0

has a regular exposure representative. This P0 is called the set of regular
infinite photographs.

The core feature of modeling images with exposure data lies in the fol-
lowing properties shown in [IV] for mappings M and P:
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(i) M◦P is the identity map on BM (D),

(ii) P ◦M : P → P is a projection onto P0,

(iii) P ◦M is the identity map on P0.

In conclusion, the regular infinite photographs naturally correspond to Borel
measures on D.

Let us discuss what type of applications such observation has. The first
question studied in [IV] is to analyze a part of image that cannot be pre-
sented in typical function space models. A method for finding the Lebesgue
decomposition of an image is introduced based on the exposure data and
some numerical examples are presented. Also, some practical algorithms
are described based on infinite photography. Pixel images and more general
Borel measures can be mapped to exposures using a Markov Chain Monte
Carlo algorithm, leading to a scalable image representation. Furthermore,
applying this method to a negative image and interpreting photons as spots
of ink constitutes a novel and flexible stochastic halftoning method appli-
cable in graphical printing technology. Moreover, the familiar techniques of
anti-aliasing and blurring allow photon-based implementations.

5 Conclusions

This dissertation studies the effects of discretization in the modeling of sig-
nal and image processing problems. The major mathematical contributions
of the thesis are in papers [I-III] where novel hierarchical Bayesian prior
models are introduced. The approach leads to discretization invariant edge-
preserving reconstructions via MAP and CM estimation. In the light of the
convergence results presented in Section 3 these point estimation methods
differ remarkably from each other.

From the Bayesian point of view the case with scaling parameter α = 0
is interesting since the non-Gaussian posterior distribution converges simul-
taneously while the MAP estimate diverges. Careful consideration of this
discrepancy leads to the conclusion that even if the limiting posterior dis-
tribution is well-defined, the MAP estimate can not be used to describe it.
Technically, this phenomenon occurs due to the hierarchical modeling and it
is a future challenge within this framework to better understand the role of
the MAP estimate. The qualitative performance of the numerical simulations
in [I] provide clear evidence that the CM estimate can be used to reconstruct
sharp jumps. However, the scope of the simulations is limited and demon-
strating the full potential of the method requires large scale implementation.

The important contribution of [I-III] is to characterize prior models that
use the methods of Mumford–Shah segmentation in Bayesian inversion. In
the case α ≥ 1 this connection can be shown rigorously and the MAP es-
timates are proved to approximate Mumford–Shah minimizers. It would be
an interesting yet difficult, problem to show a similar connection for the CM
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estimates when α = 0. Similarly, the extension of the methods to higher
dimensions is part of the future work.

Article [IV] is concerned about the nature behind digital pixel images.
The model assumes that the idealized imaging situation measures an un-
known infinite point process on a bounded domain. While recognizing such
assumptions lead to unphysical modeling, value of the model is in resolution
independent analysis, as explained in Section 4.3. The most crucial direction
for future studies is to include noise in the model.

Finally, we note that paper [IV] omits some recent development in reg-
ularization theory. Namely, in [67] the tools of regularization are extended
to the space of Borel measures and hence many image processing methods
become theoretically available for the model. The future development of the
image model presented in [IV] involves studying how such methods can be
formulated and applied with the help of exposure data.
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Birkhäuser Verlag, Basel, (2005).

[22] J. Diestel and J. J. Uhl, Jr., Vector measures, AMS, Providence,
RI, (1977).

[23] R. M. Dudley, Real Analysis and Probability, Cambridge University
Press, New York, (2002).

[24] H. Engl, M. Hanke and A. Neubauer, Regularization of inverse

problem, Kluwer, Dordrecht, (1996).

[25] S. N. Evans and P.B. Stark, Inverse problems as statistics, Inverse
Problems 18 (2002), R55–R97.

26



[26] B. G. Fitzpatrick, Bayesian analysis in inverse problems, Inverse
Problems 7 (1991), pp. 675–702.

[27] J. N. Franklin, Well-posed stochastic extensions of ill-posed linear

problems, J. Math. Anal. Appl. 31 (1970), pp. 682–716.

[28] I. M. Gelfand and N. Y. Vilenkin, Generalized Functions, Vol. 4:

Applications of Harmonic Analysis, Academic Press, New York-London
(1964).

[29] S. Geman and D. Geman, Stochastic Relaxation, Gibbs Distribu-

tion and the Bayesian Restoration of Images, IEEE Trans. Patt. Anal.
Machine Intell. 6 (1992), pp. 721–741.

[30] Y. Gousseau and J. M. Morel, Are natural images of bounded

variation?, SIAM J. Math. Anal. 33 (2001), pp. 634–648.

[31] H. Haario, E. Saksman and J. Tamminen, An adaptive Metropolis

algorithm, Bernoulli 7 (2001), pp. 223–242.

[32] H. Haario, E. Saksman and J. Tamminen, Componentwise adap-

tion for high dimensional MCMC, Comput. Statist. 20 (2005), pp. 265–
273.
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