
Helsinki University of Technology Institute of Mathematics Research Reports

Espoo 2010 A586

MINIMAL RESIDUAL METHODS FOR SOLVING A CLASS OF

R-LINEAR SYSTEMS OF EQUATIONS

Kui Du Olavi Nevanlinna

AB TEKNILLINEN KORKEAKOULU

TEKNISKA HÖGSKOLAN

HELSINKI UNIVERSITY OF TECHNOLOGY

TECHNISCHE UNIVERSITÄT HELSINKI

UNIVERSITE DE TECHNOLOGIE D’HELSINKI





Helsinki University of Technology Institute of Mathematics Research Reports

Espoo 2010 A586

MINIMAL RESIDUAL METHODS FOR SOLVING A CLASS OF

R-LINEAR SYSTEMS OF EQUATIONS

Kui Du Olavi Nevanlinna

Aalto University

School of Science and Technology

Department of Mathematics and Systems Analysis



Kui Du, Olavi Nevanlinna: Minimal residual methods for solving a class of R-
linear systems of equations; Helsinki University of Technology Institute of Mathe-
matics Research Reports A586 (2010).

Abstract: Recently, R-linear GMRES was proposed by Eirola, Huhtanen
and von Pfaler [SIAM J. Matrix Anal. Appl. 25 (2004), pp. 804–828] for
solving a class of R-linear systems of equations. In this work we investigate
R-linear GMRES through the equivalent real formulations of the R-linear
system. We show that R-linear GMRES requires fewer matrix-vector products
than GMRES applied to the related C-linear system. Numerical results for
an artificial example and the inverse problem of reconstructing an unknown
electric conductivity are reported to confirm our theoretical results.

AMS subject classifications: 65F10, 15A18

Keywords: R-linear GMRES, equivalent real formulation, spectral analysis

Correspondence

Kui Du
Aalto University
Department of Mathematics and Systems Analysis
P.O. Box 11100
FI-00076 Aalto
Finland
kuidumath@yahoo.com

Olavi Nevanlinna
Aalto University
Department of Mathematics and Systems Analysis
P.O. Box 11100
FI-00076 Aalto
Finland
olavi.nevanlinna@tkk.fi

Received 2010-05-06

ISBN 978-952-60-3181-1 (print) ISSN 0784-3143 (print)
ISBN 978-952-60-3182-8 (PDF) ISSN 1797-5867 (PDF)

Aalto University
School of Science and Technology
Department of Mathematics and Systems Analysis
P.O. Box 11100, FI-00076 Aalto, Finland

email: math@tkk.fi http://math.tkk.fi/

http://math.tkk.fi/


MINIMAL RESIDUAL METHODS FOR SOLVING A CLASS OF
R-LINEAR SYSTEMS OF EQUATIONS

KUI DU† AND OLAVI NEVANLINNA†

Abstract. Recently, R-linear GMRES was proposed by Eirola, Huhtanen and von Pfaler [SIAM
J. Matrix Anal. Appl. 25 (2004), pp. 804-828] for solving a class of R-linear systems of equations.
In this work we investigate R-linear GMRES through the equivalent real formulations of the R-linear
system. We show that R-linear GMRES requires fewer matrix-vector products than GMRES applied
to the related C-linear system. Numerical results for an artificial example and the inverse problem
of reconstructing an unknown electric conductivity are reported to confirm our theoretical results.

Key words. R-linear GMRES, equivalent real formulation, spectral analysis

AMS subject classifications. 65F10, 15A18

1. Introduction. Consider the R-linear system

κz + Mz̄ = b, (1.1)

where κ ∈ C, z, b ∈ Cn, M ∈ Cn×n and z̄ denotes the conjugate of z. We use
Mκz = (κI +Mτ)z to denote the left-hand side, where I denotes the identity matrix
whose dimension is clear from the context and τz = z̄ is the conjugation operator on
Cn. Such R-linear systems arise in the inverse problem of reconstructing an unknown
electric conductivity in the unit disc from boundary measurements [18, 14, 1], espe-
cially in the numerical discretization of the R-linear Beltrami equation [11] and the
∂̄-equation [13]. For theoretical analysis of general R-linear operators A = M + Nτ
where M, N ∈ Cn×n, we refer to [6, 9, 10, 12].

By rewriting (1.1) as an equivalent real formulation of doubled size for its real
and imaginary parts, any standard Krylov subspace method [16, 21] can de used to
solve the problem. Equivalent real formulations of a C-linear (complex linear) system
have been considered by several researchers, see, for example, [7, 2, 4, 3]. Recently,
the R-linear GMRES (RL-GMRES) method [6] was proposed for solving (1.1), which
avoids using an equivalent real formulation. In this paper, we investigate RL-GMRES
through the equivalent real formulation of (1.1).

Huhtanen and Perämäki [11] considered preconditioning techniques for the R-
linear system (1.1). By the right preconditioner κ̄I −Mτ , they obtained the C-linear
system

|κ|2w −MMw = b. (1.2)

If (1.2) is solved, then z can be readily obtained by z = κ̄w −Mw̄. In this paper, we
show that RL-GMRES applied to (1.1) is faster than GMRES [17] applied to (1.2)
in terms of matrix-vector products, namely, RL-GMRES requires fewer matrix-vector
products; see Remark 3.10.

The paper is organized as follows. In section 2 we discuss equivalent real for-
mulations of (1.1). Spectral properties of the equivalent real formulations of the R-
linear operatorMκ are studied. In section 3 we review RL-GMRES and investigate it
through the equivalent real formulation. In section 4 we report numerical experiments
confirming our theoretical results. In the last section we present our conclusions.

†Institute of Mathematics, Aalto University, P.O.Box 11100, FI-00076 Aalto, Finland (kuidu-
math@yahoo.com, Olavi.Nevanlinna@tkk.fi).

1
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2. Equivalent real formulations. Write κ = α + iβ, z = x + iy, b = c + id
and M = A + iB, where i =

√−1, α, β ∈ R, x, y, c, d ∈ Rn and A, B ∈ Rn×n. The
R-linear system (1.1) admits several 2n×2n equivalent real formulations. We list four
representative ones in (2.1)-(2.4), and call them R1 to R4, respectively.

R1 formulation.([
A −B
B A

]
+ α

[
I 0
0 −I

]
+ β

[
0 I
I 0

]) [
x
−y

]
=

[
c
d

]
. (2.1)

R2 formulation.([
A B
B −A

]
+ α

[
I 0
0 I

]
+ β

[
0 −I
I 0

]) [
x
y

]
=

[
c
d

]
. (2.2)

R3 formulation.([
B A
A −B

]
+ α

[
0 −I
I 0

]
+ β

[
I 0
0 I

]) [
x
−y

]
=

[
d
c

]
. (2.3)

R4 formulation.([
B −A
A B

]
+ α

[
0 I
I 0

]
+ β

[
I 0
0 −I

]) [
x
y

]
=

[
d
c

]
. (2.4)

For notational simplicity, let

M1 =
[

A −B
B A

]
,M2 =

[
A B
B −A

]
,M3 =

[
B A
A −B

]
,M4 =

[
B −A
A B

]
,

(2.5)
and

I =
[

I 0
0 I

]
, J =

[
0 −I
I 0

]
, E =

[
0 I
I 0

]
, F =

[
I 0
0 −I

]
. (2.6)

Let ‖ · ‖ denote the Euclidean vector norm or the associated induced matrix norm.
We have

‖M1‖ = ‖M2‖ = ‖M3‖ = ‖M4‖ = ‖M‖. (2.7)

Let R1 to R4 denote the matrices associated with the four formulations. We have

R1 = M1 + αF + βE, R2 = M2 + αI + βJ, (2.8)
R3 = M3 + αJ + βI, R4 = M4 + αE + βF. (2.9)

2.1. Spectral properties. Let σ(M) denote the spectrum of M , σ(M) the set
of complex conjugates of the elements of σ(M) and M the componentwise complex
conjugate of M . The matrix MM is important in our analysis. Its spectrum, σ(MM),
is symmetric with respect to the real axis, i.e., if µ ∈ σ(MM), then µ̄ ∈ σ(MM).
Moreover, the eigenvalues µ and µ̄ are of the same multiplicity. The matrix MM
is similar to MM . We refer the reader to [8, Section 4.6] for the proofs of these
properties.

Lemma 2.1. Let M1,M2,M3,M4 and J be the matrices in (2.5) and (2.6).
Assume σ(MM) = {µi, i = 1, . . . , m}. Then we have the following facts:

(1) σ(M1) = σ(M) ∪ σ(M), σ(M4) = −iσ(M) ∪ iσ(M).
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(2) If λ ∈ σ(M2), then −λ, λ̄,−λ̄ ∈ σ(M2).
(3) If λ ∈ σ(M3), then −λ, λ̄,−λ̄ ∈ σ(M3).
(4) σ(M2) = σ(JM2) = σ(M3) = σ(JM3) = {±√µi, i = 1, . . . , m}.
Proof. See Proposition 5.1(a)(b) of [7] and Section 1.1 of [4].
Lemma 2.2. Let ω ∈ C, M1,M2,M3,M4,E,J be the matrices in (2.5) and (2.6).

Assume σ(MM) = {µi, i = 1, . . . , m}. Then we have the following facts:
(1) σ(M1 + ωE) = σ(M1 − ωE), σ(M4 + ωE) = σ(M4 − ωE).
(2) σ(M2 +ωJ) = σ(M2−ωJ) = σ(M3 +ωJ) = σ(M3−ωJ) = {±

√
µi − ω2, i =

1, . . . , m}.
Proof. By −JJ = I, −J(M1+ωE)J = M1−ωE, and −J(M4+ωE)J = M4−ωE,

(1) is obvious. Let

S =
√

2
2

[
I −iI
−iI I

]
. (2.10)

By a straightforward calculation, we have

S(M2 + ωJ)2S∗ =
[

MM − ω2I 0
0 MM − ω2I

]
, (2.11)

and

(M2 + ωJ)2 = (M2 − ωJ)2 = M2
2 − ω2I. (2.12)

By (2.11), (2.12), Lemma 2.1 (4) and σ(MM) = σ(MM), we have

σ(M2 + ωJ) = σ(M2 − ωJ) = {±
√

µi − ω2, i = 1, . . . , m}.

Similarly,

σ(M3 + ωJ) = σ(M3 − ωJ) = {±
√

µi − ω2, i = 1, . . . , m}.

We obtain (2).
Theorem 2.3. Let α, β ∈ R, R2,R3 be the matrices in (2.8) and (2.9). Assume

σ(MM) = {µi, i = 1, . . . , m}. Then we have the following facts:
(1) σ(R2) = {α±

√
µi − β2, i = 1, . . . , m} is symmetric with respect to the point

(α, 0) and the real axis.
(2) σ(R3) = {β±

√
µi − α2, i = 1, . . . , m} is symmetric with respect to the point

(β, 0) and the real axis.
Proof. (1) and (2) are direct results of Lemma 2.2 (2) and the eigenvalues come

in conjugate pairs for real matrices.

3. R-linear GMRES. In this section, we investigate the R-linear GMRES for
solving (1.1) through the R2 formulation (2.2). Let

Ki(Mκ, b) := span{b,Mκb, . . . ,Mi−1
κ b} ⊂ Cn,

denote the ith Krylov subspace generated by Mκ and b ∈ Cn. Define φ : Cn → R2n

by

φ(z) =
[

Re(z)
Im(z)

]
.
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Let

KR
i (R2, φ(b)) := spanR{φ(b),R2φ(b), . . . ,Ri−1

2 φ(b)} ⊂ R2n,

denote the ith Krylov subspace generated by R2 and φ(b) ∈ R2n. Here and in the
sequel, the notation “spanR{· · · }” denotes the space of all real linear combinations
of the vectors in braces. We list some important properties of the Krylov subspaces
Ki(Mκ, b) andKR

i (R2, φ(b)) in the following lemma. The proof is easy, and is therefore
omitted here.

Lemma 3.1. Let Mκ = κI +Mτ , b ∈ Cn, R2 and J be the matrices in (2.8) and
(2.6). Then we have the following facts:

(1) Ki(Mκ, b) = span{b, Mτb, . . . , (Mτ)i−1b};
(2) Ki(Mκ, b) ⊆ Ki+1(Mκ, b);
(3) Mκ(Ki(Mκ, b)) ⊆ Ki+1(Mκ, b);
(4) KR

i (R2, φ(b)) ⊂ φ(Ki(Mκ, b)),JKR
i (R2, φ(b)) ⊂ φ(Ki(Mκ, b));

(5) φ(Ki(Mκ, b)) = KR
i (R2, φ(b)) + JKR

i (R2, φ(b));
(6) span{b}+Mκ(Ki(Mκ, b)) = Ki+1(Mκ, b);
(7) spanR{φ(b),Jφ(b)} + R2φ(Ki(Mκ, b)) = φ(Ki+1(Mκ, b));
(8) There is a positive integer m such that

dim(Ki(Mκ, b)) =
{

i, 1 ≤ i ≤ m,
m, i ≥ m + 1,

dim(φ(Ki(Mκ, b))) =
{

2i, 1 ≤ i ≤ m,
2m, i ≥ m + 1,

where “dim” denotes dimension.
We remark that R2φ(Ki(Mκ, b)) is a linear subspace of R2n and Mκ(Ki(Mκ, b))

is an R-linear subspace of Cn. We can generate the Arnoldi basis of Ki(Mκ, b) by the
Arnoldi process [16, 21].

Let z0 be the initial guess and r0 = b −Mκz0 the corresponding residual. The
ith iterate, zi, determined by RL-GMRES satisfies

‖b−Mκzi‖ = min
w∈z0+Ki(Mκ,r0)

‖b−Mκw‖, zi ∈ z0 +Ki(Mκ, r0).

Let Ĩi denote the i × i identity matrix augmented with the row of zeros as the last
row and e1 the first column of the identity matrix with appropriate dimension. Let
Hi+1,i be the upper Hessenberg matrix generated in the Arnoldi process (see step 2
of Algorithm 1 below). The ith iterate zi satisfies

‖b−Mκzi‖ = min
s∈Ci

∥∥∥‖r0‖e1 − κĨis−Hi+1,is̄
∥∥∥ .

The minimal problem

min
s∈Ci

∥∥∥‖r0‖e1 − κĨis− H̃i+1,is̄
∥∥∥

can be solved by employing the R-linear QR decomposition [6]. The work and storage
of RL-GMRES (as a function of the number of iterations) are comparable to those of
GMRES. We give the details of RL-GMRES in Algorithm 1.
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Algorithm 1: R-linear GMRES
1. Compute r0 = b−Mκz0, z0 is the initial guess
2. Generate the Arnoldi basis and the matrix Hi+1,i:

v1 = r0/‖r0‖;
for j = 1, 2, . . . , do

w = Mv̄j

for i = 1 to j do
hij = v∗i w
w = w − hijvi

end for
hj+1,j = ‖w‖
vj+1 = w/hj+1,j

Solve the minimal problem min
s∈Ci

∥∥∥‖r0‖e1 − κĨis−Hi+1,is̄
∥∥∥ for s

Set zi = z0 + Vis and ri = b−Mκzi

Exit if satisfied
end for

For notational simplicity, in the sequel, we choose the initial guess to be z0 = 0.
In step 2 of Algorithm 1, application of i steps of the Arnoldi process with starting
vector b yields the Arnoldi decomposition

MκVi = Vi+1(κĨi + Hi+1,i), (3.1)

where Vi = [v1, v2, . . . , vi] and V ∗i Vi = I. The columns of Vi form an orthonormal
basis of the Krylov subspace Ki(Mκ, b); see [6, Theorem 3.1].

We say that the Arnoldi process (3.1) breaks down at step m if hm+1,m = 0. Sim-
ilar to that of GMRES, the exact solution is determined by RL-GMRES when break-
down occurs. However, the proof is not trivial because in general Mκ(Ki(Mκ, b)) is
not a C-linear subspace of Cn. When hm+1,m = 0,

MκVm = Vm(κI + Hm),

where Hm is the leading m×m submatrix of Hm+1,m. We have

dim(Km+1(Mκ, b)) = dim(Km(Mκ, b)) = m,

and

dim(φ(Km+1(Mκ, b))) = dim(φ(Km(Mκ, b))) = 2m. (3.2)

If R2 is nonsingular, then it follows from dim(R2φ(Km(Mκ, b))) = 2m, (3.2) and (7)
of Lemma 3.1 that

spanR{φ(b),Jφ(b)} ⊆ R2φ(Km(Mκ, b)).

Therefore,

span{b} ⊆Mκ(Km(Mκ, b)). (3.3)

It follows from (3.3) that

‖rm‖ = ‖b−Mκzm‖ = 0.
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This is referred to as a benign breakdown.
In the sequel, Pi denotes the set of all complex polynomials of degree at most i,

and PR
i denotes the subset of Pi of polynomials with real coefficients. The RL-GMRES

process chooses the coefficients of pi−1 ∈ Pi−1 to minimize the norm of the residual
ri = b−Mκ(pi−1(Mκ)b). The proof of the following proposition is obvious.

Proposition 3.2. Let J and R2 be the matrices in (2.6) and (2.8), and ri be the
ith residual of RL-GMRES applied to (1.1). Then

‖ri‖ = min
w∈Ki(Mκ,b)

‖b−Mκw‖ = min
φ(w)∈φ(Ki(Mκ,b))

‖φ(b)−R2φ(w)‖ (3.4)

= min
p1,p2∈PR

i−1

‖φ(b)−R2p1(R2)φ(b)−R2Jp2(R2)φ(b)‖. (3.5)

Let rR
i be the ith residual of GMRES applied to (2.2), we have

‖rR
i ‖ = min

u∈KR
i (R2,φ(b))

‖φ(b)−R2u‖. (3.6)

By (3.4) and (3.6), RL-GMRES can be viewed as an augmented GMRES method.
At step i, the subspace JKR

i (R2, φ(b)) is added. It follows from KR
i (R2, φ(b)) ⊆

φ(Ki(Mκ, b)) that

‖ri‖ ≤ ‖rR
i ‖. (3.7)

This inequality implies that RL-GMRES applied to (1.1) is better than GMRES
applied to (2.2). See also Proposition 3.6 of [6]. A sufficient condition for GMRES
applied to (2.2) having the same performance as RL-GMRES applied to (1.1) is given
in Proposition 3.3. The proof of this proposition is obvious.

Proposition 3.3. If KR
i+1(R2, φ(b))⊥R2JKR

i (R2, φ(b)) then ‖ri‖ = ‖rR
i ‖.

Similar to the GMRES approximation problem [20, p.269], we can define the
RL-GMRES approximation problem

Find pi−1 ∈ Pi−1 such that ‖b−Mκ(pi−1(Mκ)b)‖ = minimum. (3.8)

Theorem 3.4.
(1) RL-GMRES is scale-invariant, i.e., if Mκ is changed to ωMκ for ω 6= 0 ∈ C,

and b is changed to ωb, the residuals {ri} change to {ωri}.
(2) RL-GMRES is invariant under unitary similarity transformations, i.e., if

Mκ is changed to UMκU∗ for some unitary matrix U , and b is changed to
Ub, the residuals {ri} change to {Uri}.

Proof. By (1) of Lemma 3.1, for any pi−1 ∈ Pi−1, there exist p̃i−1, p̂i−1, qi−1 ∈
Pi−1 such that pi−1(ωMκ)(ωb) = p̃i−1(ωMτ)(ωb) = p̂i−1(Mτ)b = qi−1(Mκ)b. Then
(1) is readily proved from (3.8). The proof of (2) is easy.

In view of Theorem 3.4 (1) and Proposition 3.2, if one matrix of the set

{M̃2 + α̃I + β̃J : α̃, β̃ ∈ R, α̃2 + β̃2 = |κ|2}
has desirable properties for GMRES convergence rate, then RL-GMRES applied to
(1.1) has speedy convergence rate (see Example 2 of section 4). Here α̃ + iβ̃ =
eiϑ(α + iβ), ϑ ∈ [0, 2π), M̃2 = ΘM2, and Θ = cosϑI + sin ϑJ.

Let N = P + Qτ , where P, Q ∈ Cn×n. We have

MκN = (κI + Mτ)(P + Qτ) = (κP + MQ) + (κQ + MP )τ.
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To use RL-GMRES, the preconditioned R-linear operator MκN should preserve the
form ωI + Nτ , i.e., κP + MQ = ωI. On the other hand, if κQ + MP = 0 then the
preconditioned R-linear operator MκN = κP + MQ. Simplest options for choosing
P are diagonal matrices. Choosing P = κ̄I and Q = −M , we have the linear system
(1.2) with z = (κ̄I −Mτ)w.

To compare RL-GMRES applied to (1.1) with GMRES applied to (1.2), we need
the following lemma which describes the shift-invariance property [19] of Krylov sub-
spaces.

Lemma 3.5. For any A ∈ Rn×n, ρ ∈ R, x ∈ Rn,

KR
i (A + ρI, x) = KR

i (A, x),

i.e., any u = pi−1(A+ρI)x with pi−1 ∈ PR
i−1 can be expressed as u = p̃i−1(A)x, where

p̃i−1(ζ) = pi−1(ζ + ρ).
In the following proposition, the residual norms of RL-GMRES applied to (1.1)

and GMRES applied to (1.2) are expressed by the equivalent real formulations.
Proposition 3.6. Let M2, I be the matrices in (2.5)-(2.6), κ = |κ|eiθ, Θ =

cos θI− sin θJ, M = ΘM2 and bθ = e−iθb.
(1) Let rG

i be the ith residual of GMRES applied to (1.2). Then,

‖rG
i ‖ = min

p1,p2∈PR
i−1

‖φ(bθ)−(M2−|κ|2I)p1(M2)φ(bθ)−(M2−|κ|2I)p2(M2)φ(ibθ)‖.

(2) Let ri be the ith residual of RL-GMRES applied to (1.1). Then,

‖ri‖ = min
p1,p2∈PR

i−1

‖φ(bθ)− (M + |κ|I)p1(M)φ(bθ)− (M + |κ|I)p2(M)φ(ibθ)‖.

Proof. (1) Let C = |κ|2I −MM , S be the matrix in (2.10) and C =
[

C 0
0 C

]
.

Then,

‖rG
i ‖ = min

pi−1∈Pi−1
‖b− Cpi−1(C)b‖ = min

pi−1∈Pi−1
‖bθ − Cpi−1(C)bθ‖

= min
p1,p2∈PR

i−1

‖bθ − Cp1(C)bθ − iCp2(C)bθ‖

=
√

2
2

min
p1,p2∈PR

i−1

∥∥∥∥[
bθ − Cp1(C)bθ + iCp2(C)bθ

bθ − Cp1(C)bθ − iCp2(C)bθ

]∥∥∥∥
=
√

2
2

min
p1,p2∈PR

i−1

∥∥∥∥[
bθ − Cp1(C)bθ + iCp2(C)bθ

−ibθ − Cp1(C)(−ibθ)− iCp2(C)(−ibθ)

]∥∥∥∥
=
√

2
2

min
p1,p2∈PR

i−1

∥∥∥∥[
bθ

−ibθ

]
−

[
Cp1(C)bθ

Cp1(C)(−ibθ)

]
+

[
Cp2(C)ibθ

Cp2(C)(−bθ)

]∥∥∥∥
= min

p1,p2∈PR
i−1

‖Sφ(bθ)−Cp1(C)Sφ(bθ)−Cp2(C)Sφ(ibθ)‖

= min
p1,p2∈PR

i−1

‖φ(bθ)− (M2 − |κ|2I)p1(M2)φ(bθ)− (M2 − |κ|2I)p2(M2)φ(ibθ)‖.

The last equality holds due to (2.11)-(2.12), Lemma 3.5 and M2
2 = M2.

(2) Note that M + |κ|I is the coefficient matrix of the R2 formulation of the
following R-linear system

|κ|z + e−iθMz̄ = e−iθb.
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Then the result follows from Theorem 3.4 (1), Proposition 3.2, Lemma 3.5, JM =
−MJ and Jφ(bθ) = φ(ibθ).

For the case of κ = 0, (1.1) and (1.2) reduce to

Mz̄ = b, (3.9)

and

−MMw = b, (3.10)

respectively. By Proposition 3.6, we immediately obtain the following corollary.
Corollary 3.7. Let ri and rG

i be the ith residual of RL-GMRES applied to (3.9)
and the ith residual of GMRES applied to (3.10), respectively. Then, ‖r2i‖ ≤ ‖rG

i ‖.
Actually, the inequality ‖r2i‖ ≤ ‖rG

i ‖ holds for any κ ∈ C. To prove this, we need
the following lemma.

Lemma 3.8. Let M and I be the matrices in Proposition 3.6. Then, for any
p ∈ PR

i−1, there exists a polynomial p̃ ∈ PR
2i−1 satisfying

(M + |κ|I)p̃(M) = (M2 − |κ|2I)p(M2).

Proof. Note that for any p ∈ PR
i−1, there exists a polynomial p̃ ∈ PR

2i−1 such that

p̃(M) = (M − |κ|I)p(M2). (3.11)

Multiplying both sides of (3.11) by M + |κ|I, we complete the proof.
Theorem 3.9. Let ri and rG

i be the ith residual of RL-GMRES applied to (1.1)
and the ith residual of GMRES applied to (1.2), respectively. Then,

‖r2i‖ ≤ ‖rG
i ‖.

Proof. This is a direct result of Proposition 3.6 and Lemma 3.8.
Remark 3.10. By Theorem 3.9, RL-GMRES applied to (1.1) requires fewer

matrix-vector products than GMRES applied to (1.2) (Note that GMRES applied to
(1.2) requires two matrix-vector products every iteration, and for z an extra matrix-
vector product is required). See the numerical experiments in section 4.

Remark 3.11. We can prove Theorem 3.9 through a different approach by the
shift-invariance property of Krylov subspaces and the minimal residual property of
RL-GMRES and GMRES; see [5, 15].

4. Numerical experiments. In this section, we report numerical results of two
examples. Throughout, the computation is performed in MATLAB 2008a on a laptop
with 2.26G CPU and 4GB memory.

4.1. Example 1. The matrix M used in this example is a randomly chosen
complex tridiagonal matrix of dimension n = 200. The right-hand side b is a randomly
chosen complex vector. The matrix M and the right-hand side b are generated by the
following MATLAB codes.

n = 200 ;
d1 = rand(n,1)+i*rand(n,1);
d2 = rand(n-1,1)+i*rand(n-1,1);
d3 = rand(n-1,1)+i*rand(n-1,1);
M = diag(d1)+diag(d2,-1)+diag(d3,1);
b = rand(n,1)+i*rand(n,1);
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Fig. 4.1. Example 1. Convergence history for GMRES applied to (3.10) and RL-GMRES
applied to (3.9).

We compare RL-GMRES applied to (3.9) with GMRES applied to (3.10). The
initial guess is set to be the zero vector and the iteration stops if the number of
matrix-vector products is 150. Note that GMRES applied to (3.10) requires two
matrix-vector products every iteration and RL-GMRES requires only one. We have
tested this example many times and Figure 4.1 shows the typical convergence history
of these methods. The curve of RL-GMRES applied to (3.9) is below the curve of
GMRES applied to (3.10), which illustrates Corollary 3.7.

4.2. Example 2. In this example, we consider an R-linear system arising from
the inverse problem of reconstructing an unknown electric conductivity [1, 11]. More
precisely, we need to solve the R-linear integral equation

u + (ν̄1I1 + ν̄2I2)ū = ν̄3, (4.1)

defined in the rectangle Ω = [−1, 1)2. The integral operators I1 and I2 are defined
as follows, for f ∈ C∞0 (C),

I1f(ξ) = − 1
π

lim
ε→0

∫
|ζ−ξ|>ε

f(ζ)
(ζ − ξ)2

dζ1dζ2, I2f(ξ) = − 1
π

∫
C

f(ζ)
ζ − ξ

dζ1dζ2,

where ζ = ζ1 + iζ2. We remark that I1 (Beurling transform) is a singular integral
operator and I2 (Cauchy transform) is a weakly singular integral operator.

The numerical discretization of (4.1) on uniform n × n grids results in R-linear
systems of the form

z + (D1T1 + D2T2)z̄ = b, (4.2)

where D1 and D2 are diagonal matrices, and T1 and T2 are block-Toeplitz-Toeplitz-
block (BTTB) matrices. More precisely, T1 is complex symmetric and has the struc-
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ture

T1 = − 1
π


M1 M2 · · · Mn−1 Mn

MT
2 M1 M2 · · · Mn−1

... MT
2 M1

. . .
...

MT
n−1 · · · . . . . . . M2

MT
n MT

n−1 · · · MT
2 M1

 ,

where Mk = (mk
ij), i, j, k = 1, . . . , n are Toeplitz matrices with

mk
ij =


1

(j − i + (k − 1)i)2
, k 6= 1 or i 6= j,

0, k = 1 and i = j.

The matrix T2 is complex skew-symmetric and has the structure

T2 = −h

π


N1 N2 · · · Nn−1 Nn

−NT
2 N1 N2 · · · Nn−1

... −NT
2 N1

. . .
...

−NT
n−1 · · · . . . . . . N2

−NT
n −NT

n−1 · · · −NT
2 N1

 ,

where h = 2/n, Nk = (nk
ij), i, j, k = 1, . . . , n are Toeplitz matrices with

nk
ij =


1

j − i + (k − 1)i
, k 6= 1 or i 6= j,

0, k = 1 and i = j.

Let ν1(ζ) = − exp(−i(kζ + k̄ζ̄))
1− ϕ(ζ)
1 + ϕ(ζ)

, ν2(ζ) = −ik̄ν1(ζ), ν3(ζ) = −ν2(ζ),

where k ∈ C is a parameter, and the piecewise continuous conductivity ϕ(ζ) in the
unit square is

ϕ(ζ) =


3, |ζ + 0.3i| < 0.3,
0.3, |ζ + 0.4− 0.3i| < 0.3 or |ζ − 0.4− 0.3i| < 0.3,
1, otherwise.

We have M = D1T = D1(T1 + ikT2). The multiplication by M consists of a mul-
tiplication by the BTTB matrix T followed by a diagonal matrix D1, which can be
obtained in O(n2 log n) operations by FFT. We compare the performance of RL-
GMRES applied to (1.1) with GMRES applied to (1.2). The initial guess is set to be
the zero vector and the iteration stops if ‖b − zi −Mz̄i‖/‖b‖ ≤ 10−12 (RL-GMRES)
or ‖b− |κ|2wi + MMwi‖/‖b‖ ≤ 10−12 (GMRES).

We plot in Figure 4.2 the eigenvalues of the matrices I − MM and R2 arising
from the numerical discretization on a 64 × 64 grid. The spectral radius of MM ,
ρ(MM) ≈ 0.3509 < 1. It is obvious that σ(I − MM) is located in the right-half
plane. By Theorem 2.3, σ(R2) is located in the right-half plane. See Figure 4.2.
Table 4.1 shows the numbers of matrix-vector products of RL-GMRES applied to
(1.1) and GMRES applied to (1.2) for numerical discretizations of (4.1) on uniform
N × N grids. We observe that both RL-GMRES and GMRES converge fast and
RL-GMRES is slightly faster than GMRES in terms of matrix-vector products.
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Fig. 4.2. Example 2. Eigenvalues of I −MM (left) and R2 (right)

Table 4.1
Example 2. Number of matrix-vector products of RL-GMRES applied to (1.1) and GMRES

applied to (1.2) for numerical discretizations of (4.1) on uniform n× n grids.

Method 64× 64 128× 128 256 × 256 512× 512
RL-GMRES 26 24 24 23

GMRES 27 27 25 25

5. Conclusions. We have analyzed R-linear GMRES for (1.1) through the equiv-
alent real formulation (2.2). We have proved that RL-GMRES applied to the R-linear
system (1.1) is faster than GMRES applied to the related C-linear system (1.2) in
terms of matrix-vector products. For many challenging R-linear systems such that
‖M‖ ≫ |κ| (see [1]), efficient preconditioning techniques are being considered.
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for many helpful discussions about this work and providing their RL-GMRES MAT-
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Mixed finite element methods for problems with Robin boundary conditions

November 2009

A579 Lasse Leskelä, Falk Unger
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