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A unified framework for a posteriori error estimation
for the Stokes problem

Abstract In this paper, a unified framework for a posteriori error estimation for the Stokes problem is
developed. It is based on [H1

0 (Ω)]d-conforming velocity reconstruction andH(div, Ω)-conforming, locally
conservative flux (stress) reconstruction. It gives guaranteed, fully computable global upper bounds as
well as local lower bounds on the energy error. In order to apply this framework to a given numerical
method, two simple conditions need to be checked. We show how to do this for various conforming and
conforming stabilized finite element methods, the discontinuous Galerkin method, the Crouzeix–Raviart
nonconforming finite element method, the mixed finite element method, and a general class of finite
volume methods. Numerical experiments illustrate the theoretical developments.

Keywords Stokes problem · a posteriori error estimate · guaranteed upper bound · unified framework ·
conforming finite element method · discontinuous Galerkin method · nonconforming finite element
method · mixed finite element method · finite volume method
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1 Introduction

The purpose of this paper is to develop a unified framework for a posteriori error estimation for the
Stokes problem discretized by different numerical methods. In particular, we apply this framework to
conforming divergence-free, discontinuous Galerkin, conforming (stabilized), nonconforming, mixed, and
finite volume methods. Our estimates give a guaranteed (that is, not featuring any undetermined con-
stant) upper bound on the error measured in the energy (semi-)norm. They are easily, fully, and locally
computable. They are also locally efficient in the sense that they represent local lower bounds for the
energy error. Numerical experiments show that their effectivity index (the ratio of the estimated and
exact error) is relatively close to the optimal value of one.
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Our estimates are based on [H1
0 (Ω)]d-conforming velocity reconstruction and H(div, Ω)-conforming,

locally conservative flux (stress) reconstructions. Such an approach has recently become popular in
the framework of second-order elliptic equations, see, e.g., [37,32,43,4,23,38,2,36,50,3,27,51] and the
references cited therein. Its main ideas are very physical and can be traced back at least to the Prager–
Synge equality [41]. Equilibrated flux estimates have recently been shown to be robust with respect
to inhomogeneities, anisotropies, and reaction or convection dominance in [53,20,28] and with respect
to the polynomial degree in [13]. In a unifying spirit, similar to the present paper, they have been
extended to the heat equation in [30]. Stokes a posterior error estimates related to the present approach
have previously been studied in [25,42,10]. However, these estimates are valid only for certain type of
numerical approximations.

Locally conservative H(div, Ω)-conforming flux reconstruction is straightforward in so-called locally
conservative methods [2,50,36,3,27,52,29,28,54,30]. For finite element-type methods, which are not
locally conservative by construction, this is less straightforward. However, for such methods, the recon-
struction can be achieved by the equilibration procedure, see [4,23,13] and the references therein. We
follow here the approach for lowest-order methods of [38,51,53], where no equilibration is needed. We
generalize this approach here to higher-order methods. It turns out that only small local problems of
fixed size (d + 1)× (d + 1) for each mesh element, where d is the space dimension, need to be solved in
order to obtain the equilibrated side normal fluxes.

This paper is organized as follows. In Section 2, we state the considered Stokes problem. In Section 3,
we specify our notation and give some preliminary results. Sections 4 and 5 collect our a posteriori error
estimates, first for conforming divergence-free approximations and then for arbitrary ones. These results
are stated in a general form independent of the numerical method at hand; we only suppose the existence
of a locally conservative H(div, Ω)-conforming flux reconstruction σh (cf. assumptions (4.3) and (5.10)
below). Section 6 then presents the efficiency of the estimates, still in a general form independent of the
numerical method at hand, only based on Assumption 6.2. In Section 7, we apply the previous results to
different numerical methods. This consists in specifying the way of construction of σh and in verifying the
assumptions (4.3) or (5.10) and Assumption 6.2. Section 8 presents numerical experiments. A technical
result on the the inf–sup condition is proven in Appendix A.

2 The Stokes problem

Here, we describe the Stokes problem considered in this paper. We use standard notation; some details
on the notation are given in Section 3 below.

Let Ω ⊂ Rd, d = 2, 3, be a polygonal (polyhedral) domain (open, bounded, and connected set). We
consider the Stokes problem: given f ∈ [L2(Ω)]d, find u, the “velocity”, and p, the “pressure”, such that

−∆u+∇p = f in Ω, (2.1a)

∇·u = 0 in Ω, (2.1b)

u = 0 on ∂Ω. (2.1c)

Denote by V the space [H1
0 (Ω)]d and by Q the space of L2(Ω) functions having zero mean value over

Ω. For u,v ∈ V and q ∈ Q, set

a(u,v) := (∇u,∇v), (2.2a)

b(v, q) := −(q,∇·v). (2.2b)

The weak formulation of (2.1a)–(2.1c) reads: find (u, p) ∈ V ×Q such that

a(u,v) + b(v, p) = (f ,v) ∀v ∈ V, (2.3a)

b(u, q) = 0 ∀q ∈ Q. (2.3b)

The above problem is well-posed (cf. [31]) due to the inf–sup condition

inf
q∈Q

sup
v∈V

b(v, q)

‖∇v‖ ‖q‖ ≥ β, (2.4)
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where β is a positive constant. Denote the divergence-free subspace of V by

V0 := {v ∈ V; ∇·v = 0}.

The velocity u can be equivalently characterized as: find u ∈ V0 such that

a(u,v) = (f ,v) ∀v ∈ V0. (2.5)

Recall also that by introducing the “stress” tensor σ ∈ H(div, Ω), the problem (2.1a)–(2.1c) can be
written as a system consisting of the constitutive law

σ = ∇u− pI, (2.6)

the equilibrium equation
∇·σ + f = 0, (2.7)

and the divergence constraint
∇·u = 0, (2.8)

for which the pressure p is the Lagrange multiplier. Here I is the d × d identity matrix. Alternatively,
(2.6)–(2.7) may be replaced by

σ′ = ∇u (2.9)

and
∇·σ′ −∇p+ f = 0. (2.10)

3 Notation and preliminaries

Here, we summarize the notation used throughout the paper and give some preliminary results.

3.1 Notation

Let D ⊂ Rd. By (·, ·)D, we denote the scalar product in L2(D): (p, q)D :=
∫

D
pq dx. When D coincides

with Ω, the subscript Ω will be dropped. We use the same symbol (·, ·)D for the scalar product in

L2(D) := [L2(D)]d and in L2(D) := [L2(D)]d×d. More precisely, (u,v)D :=
∑d

i=1(u
i,vi)D for u,v ∈

L2(D) and (σ, τ )D :=
∑d

i=1

∑d
j=1(σ

i,j , τ i,j)D for σ, τ ∈ L2(D). The associated norm is denoted by

‖ · ‖D. We denote by 〈·, ·〉 the scalar product in L2(D), D ⊂ Rd−1, and its vector and tensor versions.

For vectors u,v ∈ Rd, u ⊗ v defines a tensor σ ∈ Rd×d such that σi,j := uivj . Finally, for D ⊂ Rd
′

,
1 ≤ d′ ≤ d, |D| stands for the d′-dimensional Lebesgue measure of D and we denote by ei ∈ Rd the i-th
Euclidean unit vector.

Let Th be a polygonal (polyhedral) partition of Ω, whose elements can be nonconvex or non star-
shaped. The partition Th can be nonmatching, that is, the intersection of two elements T , T ′ of Th
is not necessarily their common face, edge, or vertex or an empty set (so-called hanging nodes are
allowed). We denote by hT the diameter of T ∈ Th. We say that F is an interior side of Th if it has
a positive (d − 1)-dimensional Lebesgue measure and if there are distinct T−(F ) and T+(F ) in Th
such that F = ∂T−(F ) ∩ ∂T+(F ). We define nF as the unit normal vector to F pointing from T−(F )
towards T+(F ). Similarly, we say that F is a boundary side of Th if it has a positive (d− 1)-dimensional
Lebesgue measure and if there is T (F ) ∈ Th such that F = ∂T (F ) ∩ ∂Ω and we define nF as the unit
outward normal to ∂Ω. The arbitrariness in the orientation of nF is irrelevant in the sequel. All the
interior (resp., boundary) sides of the mesh are collected into the set ∂T int

h (resp., ∂T ext
h ) and we set

∂Th := ∂T int
h ∪ ∂T ext

h . For F ∈ ∂Th, hF stands for its diameter. For T ∈ Th, we denote by FT all its
sides and by F int

T those sides of T which belong to ∂T int
h . We will also use the notation TT (resp., FT )

for the elements (resp., sides) of Th sharing a vertex with T . We denote by Fint
T those sides of FT which

belong to ∂T int
h . The notation Vh (resp., V int

h ) will be used for the set of all (resp., interior) vertices of
Th. Let V ∈ Vh. Then TV denotes all the elements of Th having V as vertex.
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For a (sufficiently smooth) scalar, vector, or tensor function v that is double-valued on an interior
side F , its jump and average on F are defined as

[[v]]F := v|T−(F ) − v|T+(F ), {{v}}F := 1
2 (v|T−(F ) + v|T+(F )). (3.1)

We set [[v]]F := v|F and {{v}}F := v|F on boundary sides. The subscript F in the above jumps and
averages is omitted if there is no ambiguity. We denote by V(Th) the space of piecewise smooth vector
functions on Th

V(Th) := {vh ∈ L2(Ω); vh|T ∈ [H1(T )]d ∀T ∈ Th}.

Note that V(Th) 6⊂ V. We employ the notation Pk(Th) for piecewise polynomials of order k on Th. In the
sequel, we use the signs ∇, ∆, and ∇· respectively for the elementwise gradient, Laplace, and divergence
operators. Some additional notation will also be introduced later where needed.

3.2 Preliminaries

Let T ∈ Th and denote by ϕT the average of ϕ over T , i.e., ϕiT = (ϕ, ei)T /|T |, i = 1, . . . , d. Then the
Poincaré inequality states

‖ϕ−ϕT ‖T ≤ CP,ThT ‖∇ϕ‖T ∀ϕ ∈ [H1(T )]d, (3.2)

where the constant CP,T is independent of hT . It depends only on the shape of T . For a convex T , we
have the estimate CP,T ≤ 1/π [39,9].

Set

B((v, q), (z, r)) := a(v, z) + b(z, q) + b(v, r). (3.3)

The problem (2.3a)–(2.3b) can then be stated as: find (u, p) ∈ V×Q such that

B((u, p), (v, q)) = (f ,v) ∀(v, q) ∈ V ×Q. (3.4)

We define the energy (semi-)norm for (v, q) ∈ V(Th)×Q as

|||(v, q)|||2 := ‖∇v‖2 + β2‖q‖2, (3.5)

where β is the constant from the inf–sup condition (2.4). We refer to Appendix A for the proof of the
following stability estimate:

Lemma 3.1 (The inf–sup condition on V ×Q) There is a positive constant CS such that

inf
(v,q)∈V×Q

sup
(z,r)∈V×Q

B((v, q), (z, r))
|||(z, r)||| |||(v, q)||| ≥ CS (3.6)

with

2
√
3 ≥ 1

CS
. (3.7)



5

4 A posteriori error estimate for conforming divergence-free approximations

In this section, we derive an a posteriori error estimate valid for arbitrary conforming and divergence-free
approximations, i.e., approximation uh ∈ V0. It can be considered as an intermediate result, as standard
approximation methods do not lead to uh ∈ V0. There exist, however, methods fulfilling this constraint,
like that of [44].

Given an approximation (uh, ph) ∈ V0 × Q, not necessarily the numerical solution, the a posteriori
error estimators on T ∈ Th are defined as follows. Let σh ∈H(div, Ω). We define the residual estimator

ηR,T := CP,ThT ‖∇·σh + f‖T , (4.1)

where CP,T is the constant from the the Poincaré inequality (3.2), and the diffusive flux estimator

ηDF,T := ‖∇uh − phI − σh‖T . (4.2)

We then have the following estimate.

Theorem 4.1 (Velocity estimate for conforming divergence-free approximations.) Let u ∈ V0

be the weak solution given by (2.5) and let (uh, ph) ∈ V0 ×Q be arbitrary. Let σh ∈H(div, Ω) be such
that

(∇·σh + f , ei)T = 0, i = 1, . . . , d, ∀T ∈ Th. (4.3)

Then

‖∇(u− uh)‖ ≤
{

∑

T∈Th

(ηR,T + ηDF,T )
2

}1/2

. (4.4)

Proof Using (2.5), we have

‖∇(u− uh)‖ = a

(

u− uh,
u− uh

‖∇(u− uh)‖

)

≤ sup
ϕ∈V0

a(u− uh,ϕ)

‖∇ϕ‖

= sup
ϕ∈V0

(f ,ϕ)− a(uh,ϕ)

‖∇ϕ‖ .

Let ϕ ∈ V0 be fixed. Then, using that ∇·ϕ = 0,

0 = (ph,∇·ϕ) = (phI,∇ϕ).
Moreover, using the Green theorem (σh,∇ϕ) = −(∇·σh,ϕ) and adding and subtracting (σh,∇ϕ),

(f ,ϕ)− a(uh,ϕ)

= (f ,ϕ) − (∇uh,∇ϕ) + (phI,∇ϕ) + (σh,∇ϕ)− (σh,∇ϕ)
= (f +∇·σh,ϕ)− (∇uh − phI − σh,∇ϕ).

For T ∈ Th, let ϕiT := (ϕ, ei)T /|T |, i = 1, . . . , d. Then, using the assumption (4.3), the Cauchy–Schwarz
inequality, the Poincaré inequality (3.2), and the definition (4.1), we get

(∇·σh + f ,ϕ)T = (∇·σh + f ,ϕ−ϕT )T ≤ ηR,T ‖∇ϕ‖T .
Next, the estimate

(∇uh − phI − σh,∇ϕ)T ≤ ηDF,T ‖∇ϕ‖T
is immediate by the Cauchy–Schwarz inequality and definition (4.2). The above developments give

‖∇(u− uh)‖ ≤ sup
ϕ∈V0

∑

T∈Th
{(ηR,T + ηDF,T )‖∇ϕ‖T }

‖∇ϕ‖ ,

whence (4.4) follows by the Cauchy–Schwarz inequality. ⊓⊔



6

5 A posteriori error estimate for general approximations

In this section we derive our main a posteriori error estimate. This estimate is valid for an approximation
(uh, ph) ∈ V(Th) ×Q, not necessarily the numerical solution. Note that the approximation can also be
nonconforming and non-divergence-free.

The a posteriori error estimators on T ∈ Th are defined as follows. The possible nonconformity of uh,
i.e., the fact that uh is not necessarily in V, is estimated by the nonconformity estimator

ηNC,T := ‖∇(uh − sh)‖T , (5.1)

where sh ∈ V is arbitrary. Next, the divergence estimator, related to the divergence-free constraint (2.8),
is given by

ηD,T :=
‖∇·sh‖T

β
. (5.2)

As in Section 4, the key for our a posteriori error estimates is to construct a flux (stress field) σh ∈
H(div, Ω) that is in approximate local equilibrium, i.e., satisfying (4.3). It enters in the residual estimator

ηR,T := CP,ThT ‖∇·σh + f‖T , (5.3)

related to the possible violation of the equilibrium equation (2.7) in the approximate solution (here CP,T

is the constant from the the Poincaré inequality (3.2)), and in the diffusive flux estimator

ηDF,T := ‖∇sh − phI − σh‖T , (5.4)

related to the fact that the constitutive law (2.6) is not satisfied exactly by the approximate solution.
Recall the definition (3.5) of the energy (semi-)norm.

Our main theorem is the following.

Theorem 5.1 (Estimate for general approximations) Let (u, p) ∈ V × Q be the weak solution
of (2.3a)–(2.3b) and let (uh, ph) ∈ V(Th) × Q be arbitrary. Choose an arbitrary sh ∈ V and σh ∈
H(div, Ω) which satisfies (4.3). Then it holds

|||(u− uh, p− ph)|||

≤
{

∑

T∈Th

η2NC,T

}1/2

+
1

CS

{

∑

T∈Th

{

(ηR,T + ηDF,T )
2 + η2D,T

}

}1/2

.
(5.5)

Proof By the triangle inequality we have

|||(u − uh, p− ph)||| ≤ ‖∇(uh − sh)‖+ |||(u − sh, p− ph)|||.
Using the stability estimate (3.6) (note that u− sh ∈ V), we obtain

|||(u − sh, p− ph)||| ≤
1

CS
sup

(ϕ,ψ)∈V×Q

B((u− sh, p− ph), (ϕ, ψ))

|||(ϕ, ψ)||| .

Let (ϕ, ψ) ∈ V ×Q be fixed. Employing the definitions (3.3) and (3.4), we have

B((u− sh, p− ph), (ϕ, ψ))

= B((u, p), (ϕ, ψ))− B(sh, ph), (ϕ, ψ))
= (f ,ϕ)− (∇sh,∇ϕ) + (∇·ϕ, ph) + (∇·sh, ψ).

(5.6)

Next, using the fact that ∇·u = 0, adding and subtracting (σh,∇ϕ), and using the Green theorem, we
get

B((u− sh, p− ph), (ϕ, ψ))

= (f ,ϕ)− (∇sh,∇ϕ) + (phI,∇ϕ) + (∇·sh, ψ) + (σh,∇ϕ)− (σh,∇ϕ)
= (∇·σh + f ,ϕ)− (∇sh − phI − σh,∇ϕ) + (∇·sh, ψ).



7

We estimate the first two terms as in the proof of Theorem 4.1, using the equilibrium condition (4.3)
and the Poincaré inequality (3.2). For the last term, we use the Cauchy–Schwarz inequality to obtain

B((u− sh, p− ph), (ϕ, ψ))

≤
∑

T∈Th

(ηR,T + ηDF,T )‖∇ϕ‖T +
β

β
‖∇·sh‖‖ψ‖

≤
{

∑

T∈Th

{

(ηR,T + ηDF,T )
2 + η2D,T

}

}1/2

|||(ϕ, ψ)|||.

The assertion then follows by collecting the above estimates. ⊓⊔

Let for T ∈ Th, ηR,T and ηDF,T be given by (4.1) and (4.2), respectively. Set sh = uh. Theorem 5.1
then gives the following additional result to Theorem 4.1 for conforming divergence-free approximations.

Corollary 5.1 (Pressure estimate for conforming divergence-free approximations) Let (u, p) ∈
V ×Q be the weak solution of (2.3a)–(2.3b). Further, let (uh, ph) ∈ V0 ×Q be arbitrary. Assume that
σh ∈H(div, Ω) satisfies (4.3). Then it holds

β‖p− ph‖ ≤ 1

CS

{

∑

T∈Th

(ηR,T + ηDF,T )
2

}1/2

. (5.7)

Let, for T ∈ Th, ηNC,T and ηD,T by given respectively by (5.1) and (5.2) and set

ηR,T := CP,ThT ‖∇·σh −∇ph + f‖T (5.8)

and

ηDF,T := ‖∇sh − σh‖T . (5.9)

In the sequel, we will also need the following modified version of Theorem 5.1.

Corollary 5.2 (An alternative version of Theorem 5.1) Let (u, p) ∈ V ×Q be the weak solution
of (2.3a)–(2.3b) and let (uh, ph) ∈ V(Th) × [Q ∩H1(Ω)] be arbitrary. Choose an arbitrary sh ∈ V and
σh ∈H(div, Ω) such that

(∇·σh −∇ph + f , ei)T = 0, i = 1, . . . , d, ∀T ∈ Th. (5.10)

Then it holds

|||(u− uh, p− ph)|||

≤
{

∑

T∈Th

η2NC,T

}1/2

+
1

CS

{

∑

T∈Th

{

(ηR,T + ηDF,T )
2 + η2D,T

}

}1/2

.
(5.11)

Proof We proceed as in the proof of Theorem 5.1; only the term (∇·ϕ, ph) in (5.6) is treated differently.
By the assumption ph ∈ H1(Ω) and the Green theorem, we get (∇·ϕ, ph) = −(∇ph,ϕ). The rest of the
proof follows easily while using assumption (5.10) instead of (4.3). ⊓⊔

Remark 5.1 (Equilibrated flux σh) The equilibrated flux σh in Theorems 4.1 and 5.1 and in Corollary 5.1
is aH(div, Ω)-conforming reconstruction of the flux ∇uh−ph I. It is related to the decomposition (2.6)–
(2.7). It will typically apply to such numerical methods where ph 6∈ H1(Ω). The equilibrated flux σh
in Corollary 5.2 is instead a H(div, Ω)-conforming reconstruction of the flux ∇uh. It is related to the
decomposition (2.9)–(2.10). It will typically apply to such numerical methods where ph ∈ H1(Ω).
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6 Local efficiencies

In this section, we prove the local efficiencies of the estimates introduced above.
First, we make the following assumption. Note that this assumption is only needed in this section.

Assumption 6.1 (Local efficiency) We suppose that, for some k ≥ 1,

– uh ∈ [Pk(Th)]d, ph ∈ Pk(Th), and f ∈ [Pk(Th)]d,
– there exists a shape-regular matching simplicial submesh Sh of Th,
– the reconstructed flux σh ∈ [Pk(Sh)]d×d.

When Th is itself simplicial and matching, we will in many cases simply use Sh = Th. A mesh Sh 6= Th
will be needed for conforming methods or when Th is not a simplicial mesh or is nonmatching.

We next introduce some new notation. We use A . B when there exists a positive constant C,
independent of mesh size, of Ω, and of u and p but dependent on the space dimension d, on the shape
regularity parameter of the mesh Sh, and on the maximal polynomial degree k, such that A ≤ CB.

In order to proceed without specifying a particular numerical method, we will now make the following
additional assumption. In Section 7 below, this assumption will be verified for the methods in question.
Recalling, for T ∈ Th, the classical local residual error indicator (cf. [33,47])

η2res,T :=
∑

T∈TT

{

h2T ‖f +∆uh −∇ph‖2T + ‖∇·uh‖2T
}

+
∑

F∈Fint
T

hF ‖[[(∇uh − phI)nF ]]‖2F +
∑

F∈FT

h−1
F ‖[[uh]]‖2F ,

(6.1)

the assumption is.

Assumption 6.2 (Approximation property) For all T ∈ Th, there holds

‖∇uh − phI − σh‖T . ηres,T (6.2)

in the case where σh satisfies (4.3) and

‖∇uh − σh‖T . ηres,T (6.3)

in the case where σh satisfies (5.10).

By Iav : [Pk(Sh)]d → [Pk(Sh)]d ∩ V we denote the operator averaging the values at each degree of
freedom inside Ω and setting 0 on ∂Ω. For the analysis we need the following result [1,35,19,52].

Lemma 6.3 (Averaging approximation estimate) For sh = Iav(uh), there holds, for all T ∈ Th,

‖∇(uh − sh)‖T .

{

∑

F∈FT

h−1
F ‖[[uh]]‖2F

}1/2

, (6.4a)

‖uh − sh‖T .

{

∑

F∈FT

hF ‖[[uh]]‖2F

}1/2

. (6.4b)

We now state and prove the main result of this section.

Theorem 6.1 (Local efficiency) Let Assumptions 6.1 and 6.2 be satisfied. Let sh = Iav(uh) and let,
for T ∈ Th, any of the following possibilities hold:

– ηR,T and ηDF,T are given by (4.1)–(4.2),
– ηNC,T , ηD,T , ηR,T , and ηDF,T are given by (5.1)–(5.4),
– ηNC,T and ηD,T are given by (5.1)–(5.2) and ηR,T and ηDF,T are given by (5.8)–(5.9).
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Let finally (u, p) ∈ V×Q be the weak solution of (2.3a)–(2.3b). Then it holds

ηT . |||(u− uh, p− ph)|||TT
+

{

∑

F∈FT

h−1
F ‖[[uh]]‖2F

}1/2

for all the local estimators ηT = ηNC,T , ηD,T , ηR,T , and ηDF,T .

Proof Let T ∈ Th. We will first bound the individual estimators by ηres,T or by its components.
For ηDF,T given by (4.2), we have ηDF,T . ηres,T by Assumption 6.2. For ηDF,T given by (5.4), the

triangle inequality gives

ηDF,T ≤ ‖∇sh −∇uh‖T + ‖∇uh − phI − σh‖T ,

whence ηDF,T . ηres,T by combining Assumption 6.2 and (6.4a). For the third alternative, ηDF,T given
by (5.9), using the triangle inequality,

ηDF,T ≤ ‖∇sh −∇uh‖T + ‖∇uh − σh‖T ,

whence once again ηDF,T . ηres,T by Assumption 6.2 and (6.4a).
The estimator ηNC,T is bounded directly by (6.4a).
For the estimator ηR,T of (4.1), we have

ηR,T . hT ‖f +∆uh −∇ph‖T + hT ‖ −∆uh +∇ph +∇·σh‖T
= hT ‖f +∆uh −∇ph‖T + hT ‖∇·(∇uh − phI − σh)‖T
. hT ‖f +∆uh −∇ph‖T + ‖∇uh − phI − σh‖T

by the triangle inequality and by the inverse inequality. The bound ηR,T . ηres,T thus follows by As-
sumption 6.2. For ηR,T given by (5.8), we similarly have

ηR,T . hT ‖f +∆uh −∇ph‖T + hT ‖ −∆uh +∇·σh‖T
. hT ‖f +∆uh −∇ph‖T + ‖∇uh − σh‖T ,

whence ηR,T . ηres,T by Assumption 6.2.
We are left with bounding ηD,T . We have

ηD,T ≤ 1

β
(‖∇·(sh − uh)‖T + ‖∇·uh‖T ) .

1

β
(h−1
T ‖sh − uh‖T + ‖∇·uh‖T ),

whence, by (6.4b), ηD,T . ηres,T .
We have now bounded all the local error indicators by ηres,T . The assertion of the theorem follows

by the fact that this classical residual a posteriori error estimate is a lower bound for the energy error,
up to the term {

∑

F∈FT
h−1
F ‖[[uh]]‖2F }1/2, cf., e.g., [47,48,22]. ⊓⊔

Remark 6.1 (The jump seminorm in Theorem 6.1) For conforming approximations, i.e., uh ∈ V, [[uh]] =
0 and the jump seminorm contribution

{

∑

F∈FT

h−1
F ‖[[uh]]‖2F

}1/2

vanishes. Consequently, we have the global upper and local lower bounds in the energy norm. In order
to obtain both-sided estimates in the same (semi-)norm when uh 6∈ V, several options are possible. Most
easily, noticing that

‖[[uh]]‖F = ‖[[u− uh]]‖F , F ∈ ∂Th,
we can add {

∑

F∈∂Th
h−1
F ‖[[u− uh]]‖2F }1/2 to both the energy (semi-)norm and the estimate as usually

done in the discontinuous Galerkin method, cf., e.g. [33]. Alternatively, when 〈[[uh]], ei〉F = 0 for all
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F ∈ ∂Th and i = 1, . . . , d (this is in particular the case in the Crouzeix–Raviart nonconforming finite
element method and can be achieved for a postprocessed ũh in place of uh in mixed finite element
methods), proceeding as in [1, Theorem 10], one can show that

{

∑

F∈FT

h−1
F ‖[[uh]]‖2F

}1/2

. ‖∇(u− uh)‖TT
.

Finally, following [3] or [30], the jump seminorm contribution in the discontinuous Galerkin method may
be bounded by the energy (semi-)norm even when the above mean value condition does not hold.

7 Application to different numerical methods

In this section, we derive a posteriori error estimates for different numerical methods using Theorem 4.1
and Corollary 5.1, Theorem 5.1, or Corollary 5.2. This consists in specifying a way for constructing the
flux σh ∈ H(div, Ω) satisfying (4.3) or (5.10). Remark that this construction is always local. We also
check, via Theorem 6.1, that the local efficiency holds for the derived estimates. This consists in verifying
Assumption 6.2.

7.1 Discontinuous Galerkin method

We apply here Theorems 5.1 and 6.1 for deriving locally efficient a posteriori error estimates for the
discontinuous Galerkin method. For simplicity, we suppose that Th consists of simplices and is matching.
The straightforward modifications to general meshes Th can be carried out along the lines of [29] or [28,
Appendix].

Define

Vh := [Pk(Th)]d, (7.1a)

Qh := Pk−1(Th) ∩Q, (7.1b)

k ≥ 1. Next, set

ah(uh,vh) :=
∑

T∈Th

(∇uh,∇vh)T +
∑

F∈∂Th

γFh
−1
F 〈[[uh]], [[vh]]〉F

−
∑

F∈∂Th

{

〈{{∇uh}}nF , [[vh]]〉F + θ〈{{∇vh}}nF , [[uh]]〉F
}

(7.2)

and

bh(vh, qh) := −
∑

T∈Th

(qh,∇·vh)T +
∑

F∈∂Th

〈{{qh}}, [[vh]]·nF 〉F . (7.3)

Here, γF > 0, F ∈ ∂Th, is a parameter (chosen sufficiency large), and θ = {−1, 0, 1}. The discontinuous
Galerkin method for the problem (2.3a)–(2.3b) reads: find (uh, ph) ∈ Vh ×Qh such that

ah(uh,vh) + bh(vh, ph) = (f ,vh) ∀vh ∈ Vh, (7.4a)

bh(uh, qh) = 0 ∀qh ∈ Qh. (7.4b)

We now specify σh ∈H(div, Ω) satisfying (4.3). We follow [36,27] in the second-order elliptic setting.
For a recent similar reconstruction for the Stokes problem, we refer to [10]. Our postprocessed flux σh
will belong to the Raviart–Thomas–Nédélec space of tensor functions,

Σl(Th) =
{

υh ∈H(div, Ω); υh|T ∈ Σl(T ) ∀T ∈ Th
}

, (7.5)
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where l is either k − 1 or k and

Σl(T ) = [Pl(T )]
d×d + [Pl(T )]

d ⊗ x.

In particular, υh ∈ Σl(Th) is such that ∇·υh|T ∈ [Pl(T )]
d for all T ∈ Th, υhnF ∈ [Pl(F )]

d for all F ∈ FT
and all T ∈ Th, and such that its normal trace is continuous, cf. [17].

We prescribe σh ∈ Σl(Th) locally on all T ∈ Th as follows: for all F ∈ FT and all qh ∈ [Pl(F )]
d,

〈σhnF ,qh〉F = 〈{{∇uh − phI}}nF − γFh
−1
F [[uh]],qh〉F , (7.6)

and for all τh ∈ [Pl−1(T )]
d×d,

(σh, τh)T = (∇uh − phI, τ h)T − θ
∑

F∈FT

〈ωFτ hnF , [[uh]]〉F , (7.7)

where ωF := 1
2 for F ∈ ∂T int

h and ωF := 1 for F ∈ ∂T ext
h . Observe that the quantities prescribing the

moments of σhnF are uniquely defined for each side F ∈ ∂Th, whence the continuity of the normal trace
of σh. The two following lemmas are of paramount importance, implying (4.3) and (6.2), respectively.

Lemma 7.1 (Reconstructed flux in the discontinuous Galerkin method) For T ∈ Th, let σh
be defined by (7.6)–(7.7). Then, there holds

(∇·σh + f ,vh)T = 0 ∀vh ∈ [Pl(T )]
d, (7.8)

i.e.,

(∇·σh)|T = −(Πlf)|T , (7.9)

where Πl is the L2-orthogonal projection onto [Pl(Th)]d. Thus, in particular, (4.3) holds.

Proof Let T ∈ Th and let vh ∈ [Pl(T )]
d. Owing to the Green theorem, it holds

(∇·σh,vh)T = −(σh,∇vh)T +
∑

F∈FT

〈σhnT ,vh〉F =: T1 + T2.

Since ∇vh|T ∈ [Pl−1(T )]
d×d, using (7.7) yields

T1 = −(∇uh − phI,∇vh)T + θ
∑

F∈FT

〈ωF∇vhnF , [[uh]]〉F .

Furthermore, the fact that vh|F ∈ [Pl(F )]
d for all F ∈ FT and (7.6) yield

T2 =
∑

F∈FT

〈{{∇uh − phI}}nF − γFh
−1
F [[uh]],nT ·nFvh〉F .

Extend vh by 0 outside of T . Using the above identities, (7.2), (7.3), and (7.4a) yields

T1 + T2 = −ah(uh,vh)− bh(vh, ph) = −(f ,vh)T ,

whence (7.8) is valid. Finally, (7.9) results from (7.8) and the fact that ∇·σh|T ∈ [Pl(T )]
d. ⊓⊔

Lemma 7.2 (Approximation property of the reconstructed flux in the discontinuous Galerkin
method) For T ∈ Th, let σh be defined by (7.6)–(7.7). Then (6.2) holds.
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Proof The proof follows the lines of that in the case of second-order elliptic equations. Recall that in
the present case (Sh = Th), Th is shape-regular by Assumption 6.1. Using the equivalence of norms on
finite-dimensional spaces, the Piola transformation, and scaling arguments, one shows that for all T ∈ Th
and all υh ∈ Σl(T )

‖υh‖2T .

{

hT
∑

F∈FT

‖υhnF ‖2F +

(

sup
τ

h
∈[Pl−1(T )]d×d

(υh, τh)T
‖τh‖T

)2}

. (7.10)

Define υh := ∇uh − phI − σh. Then, using (7.7) and the Cauchy–Schwarz and inverse inequalities, we
get

(υh, τ h)T = θ
∑

F∈FT

〈ωFτ hnF , [[uh]]〉F . |θ|h−1/2
T ‖τh‖T

∑

F∈FT

‖[[uh]]‖F .

Note that (7.6) gives

σhnF |F = {{∇uh − phI}}nF − γFh
−1
F Πl([[uh]]).

Thus, using (7.10) and the above developments, we have

‖υh‖2T .

{

hT
∑

F∈F int
T

‖[[∇uh − phI]]nF ‖2F + hT
∑

F∈FT

‖γFh−1
F Πl([[uh]])‖2F

+ |θ|2h−1
T

∑

F∈FT

‖[[uh]]‖2F

}

,

whence (6.2) follows. ⊓⊔

7.2 Conforming and conforming stabilized methods

We will show here how locally efficient a posteriori error estimates can be obtained for conforming and
conforming stabilized methods using Corollary 5.2 and Theorem 6.1. We suppose that Th consists of
simplices and is matching. In this section, Vh ⊂ V, so that we systematically set sh = uh throughout
this section.

The conforming methods for the problem (2.3a)–(2.3b) that we consider read: find (uh, ph) ∈ Vh×Qh
such that

a(uh,vh) + b(vh, ph) = (f ,vh) ∀vh ∈ Vh, (7.11a)

b(uh, qh) = 0 ∀qh ∈ Qh. (7.11b)

In Figures 7.1–7.2, we illustrate by • the velocity degrees of freedom and by � the pressure degrees of
freedom. In particular, we consider the Taylor–Hood family [46,16], where, for k ≥ 1,

Vh = [Pk+1(Th)]d ∩V, Qh = Pk(Th) ∩ C(Ω) ∩Q.

The mini element [7], where

Vh := [Pb
1(Th)]d ∩V, Qh = P1(Th) ∩ C(Ω) ∩Q,

where P
b
1(Th) stands for P1(Th) enriched by bubbles, is likewise considered. We also include the lowest-

order methods, namely the cross-grid P1–P1 element [40], where

Vh := [P1(T c
h )]

d ∩V, Qh = P1(Th) ∩ C(Ω) ∩Q,
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Fig. 7.1 Cross-grid P1–P1 (left) and P1 iso P2–P1 (right) conforming finite elements

Fig. 7.2 P2–P1 Taylor–Hood conforming finite elements (left) and P1–P1 stabilized conforming finite elements
(right)

with T c
h formed from Th as indicated in the left part of Figure 7.1 and the P1 iso P2–P1 element [12],

where

Vh := [P1(Th/2)]d ∩V, Qh = P1(Th) ∩ C(Ω) ∩Q,

with Th/2 formed from Th as indicated in the right part of Figure 7.1.

We also consider the conforming stabilized methods written in the general form: find (uh, ph) ∈
Vh ×Qh such that

a(uh,vh) + b(vh, ph) = (f ,vh) ∀vh ∈ Vh, (7.12a)

sh(uh, ph; qh) + b(uh, qh) = 0 ∀qh ∈ Qh, (7.12b)

where

Vh := [Pk(Th)]d ∩V, Qh = Pk(Th) ∩ C(Ω) ∩Q,

k ≥ 1. Let δ > 0 be a parameter. In particular, we consider the Brezzi–Pitkäranta stabilized method [18],
where

sh(uh, ph; qh) = −δ
∑

T∈Th

h2T (∇ph,∇qh),

the Hughes–Franca–Balestra stabilized method [34], where

sh(uh, ph; qh) = δ
∑

T∈Th

h2T (f +∆uh −∇ph,∇qh)T ,

and the Brezzi–Douglas stabilized method [15], where

sh(uh, ph; qh) = δ
∑

T∈Th

h2T {(f −∇ph,∇qh)T + 〈∆uh·nT , qh〉∂T∩∂Ω}.
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7.2.1 Lowest-order continuous pressure elements

We consider here the lowest-order methods with the velocity and pressure spaces formed by continuous
piecewise P1 polynomials, namely the cross-grid P1–P1 element, the P1 iso P2–P1 element, and all the
above stabilized methods with k = 1. In the sequel, for the first two methods, T c

h or Th/2 is to be
substituted systematically in place of Th. We follow the approach introduced in [38,51,53].

First, we need to introduce some more notation. Let the dual mesh Dh be formed around each vertex
of Th using the edge, elements, (and face in 3D) barycenters as indicated in the left part of Figure 7.3.
Let Dint

h correspond to the interior vertices and Dext
h to the boundary ones. Finally, we cut each D ∈ Dh

into a simplicial mesh SD as indicated in the right part of Figure 7.3; the matching simplicial submesh
Sh of Th (and of Dh), needed in Assumption 6.1, is created by collecting the local meshes SD. We denote
by FD all the sides of a given D ∈ Dh, by ∂Sh all the sides of Sh, and by ∂S int

h all the interior sides
of Sh. Similarly, for D ∈ Dh, we will employ the notation ∂SD for all the sides of SD, ∂S int

D for all the
interior sides of SD, and ∂Sext

D for all the boundary sides of SD. The notation introduced in Section 3.1
for the mesh Th will be used in this section also for the meshes Dh and Sh. For a vertex V ∈ Vh, let
ψV be the associated P1 finite element “hat” basis function. Let ψV,i, i = 1, . . . , d, be its vector variants

such that ψiV,i = ψV , ψ
j
V,i = 0 for j = 1, . . . , d, j 6= i.

For a side F ∈ ∂S int
h such that F ⊂ ∂D for some D ∈ Dh, define the normal flux functions

ΥF (uh) := (∇uhnF )|F . (7.13)

Note that all such sides lie inside some T ∈ Th, cf. Figure 7.3, so that ∇uh is indeed univalued thereon.
The following important property holds for all the above-listed methods.

Lemma 7.3 (Local conservativity of lowest-order conforming methods) Let f be piecewise
constant on Th and let (uh, ph) ∈ Vh ×Qh be given by (7.11a)–(7.11b) or by (7.12a)–(7.12b) for any of
the spaces described above. Let ΥF (uh) be given by (7.13). Then

∑

F∈FD

〈ΥF (uh)nD·nF , ei〉F − (∇ph, ei)D + (f , ei)D = 0,

i = 1, . . . , d ∀D ∈ Dint
h .

(7.14)

Proof For a given dual volume D ∈ Dint
h and associated vertex V , fix i ∈ {1, . . . , d} and consider ψV,i as

the test function vh in (7.11a) or (7.12a). Recall that the support of ψV,i is given by TV , all the elements
of Th sharing V . Then, under the assumption that f is piecewise constant on Th,

(f ,ψV,i)TV
= (f , ei)D (7.15)

easily follows as |D ∩ T | = |T |/(d+ 1) for all T ∈ TV , (cf., e.g., [53, Lemma 3.11]). Next, one derives

(∇uh,∇ψV,i)TV
= −〈∇uhnD, ei〉∂D

as in [8, Lemma 3] or [53, Lemma 3.8]. Thus, using (7.13),

(∇uh,∇ψV,i)TV
= −

∑

F∈FD

〈ΥF (uh)nD·nF , ei〉F .

Next, using the assumption ph ∈ P1(Th)∩C(Ω), implying ph ∈ H1(Ω), the Green theorem, and the fact
that ψV,i = 0 on ∂TV , one comes to

b(ψV,i, ph) = −(∇·ψV,i, ph)TV
= (ψV,i,∇ph)TV

.

The above right-hand side can still be rewritten equivalently as

(ψV,i,∇ph)TV
= (ei,∇ph)D. (7.16)

This follows from the fact that ∇ph is piecewise constant on Th, so we can use the same arguments as
for obtaining (7.15). Thus, combining the above arguments, (7.14) is implied by (7.11a) or by (7.12a).
⊓⊔
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Th

Dh

D

SD

Fig. 7.3 Dual mesh Dh (left) and a simplicial submesh SD of D ∈ Dh (right) for conforming methods in two
space dimensions

Remark 7.1 (Lemma 7.3) Note that, actually, only (7.11a) or (7.12a), neither (7.11b) nor (7.12b), is
needed in Lemma 7.3.

We will now define a suitable σh ∈ H(div, Ω); more precisely, we will construct σh in the space
Σ0(Sh), see (7.5), on the fine simplicial mesh Sh. Prior to proceeding to a construction ensuring (5.10)
(that is, a local conservation property on the mesh Th), let us make the following remark.

Remark 7.2 (Simple construction of σh) Following [51,53], the simplest construction of σh ∈ Σ0(Sh) is
by

σhnF := {{∇uhnF }} ∀F ∈ ∂Sh, (7.17)

that is, we merely prescribe the degrees of freedom of σh by averaging the normal components of the
discontinuous approximate flux ∇uh over those sides of the mesh Sh which are contained in ∂Th and
by setting directly ∇uhnF on those sides of the mesh Sh which are not contained in ∂Th. The flux
σh defined by (7.17) (which is consistent with (7.13)) in virtue of (7.14) clearly satisfies (5.10), but
on the mesh Dint

h and not on the mesh Th. The upper bound would then needed to be written on the
mesh Dh instead of Th, following [51,53]. The proof of the approximation property (6.3) is in this case
straightforward: using (7.17) and (7.10), on T ∈ Sh,

‖∇uh − σh‖T .

{

hF
∑

F∈FT

‖[[∇uh]]nF ‖2F

}1/2

,

whence (6.3) follows taking into account the fact that [[phInF ]] is zero since ph ∈ C(Ω).

Let us now define σh ∈ Σ0(Sh) such that (5.10) holds, that is, such that the local conservation
property is satisfied on the original mesh Th. For this purpose, we adapt to the present setting the
approach of [29,53]. It consists in mixed finite element solutions of local Neumann/Dirichlet problems.
A local linear system on each D ∈ Dh has to be solved here but numerical experiments reveal better
performance of this approach.

Let D ∈ Dh and l ≥ 0 be given. In this section, l = 0, but l ≥ 1 we will required later for higher-
order conforming methods. Let ΥF (uh) be defined by (7.13). We generalize this notation to ΥF (uh, ph),
required once again later for higher-order conforming methods. Denote

Σl
N(SD) := {υh ∈ Σl(SD); υhnF = ΥF (uh, ph) ∀F ∈ ∂S int

h , F ⊂ ∂D}. (7.18)

Let Πl denote the L2-orthogonal projection onto [Pl(Sh)]d. We then define σh ∈ Σl(Sh) by solving on
each D ∈ Dh the following minimization problem:

σh|D := arg inf
υ

h
∈Σl

N
(SD),∇·υ

h
=∇ph−Πlf

‖∇uh − υh‖D. (7.19)
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Let Σl
N,0(SD) be as Σl

N(SD) but with the normal flux condition υhnF = 0 on F ∈ ∂S int
h , F ⊂ ∂D.

Let [P∗
l (SD)]d be spanned by piecewise constant vectors on SD with zero mean on D in each component

when D ∈ Dint
h ; when D ∈ Dext

h , the mean value condition is not imposed. Then it is easy to show,

cf. [29], that (7.19) is equivalent to finding σh ∈ Σl
N(SD) and rh ∈ [P∗

l (SD)]d such that

(σh −∇uh,υh)D + (rh,∇·υh)D = 0 ∀υh ∈ Σl
N,0(SD), (7.20a)

−(∇·σh,φh)D − (f −∇ph,φh)D = 0 ∀φh ∈ [P∗
l (SD)]d. (7.20b)

The existence and uniqueness of a solution to the above system are standard. This system is a mixed finite
element approximation of a local Neumann problem on D ∈ Dint

h ; the Neumann boundary conditions are
given by the normal flux functions ΥF (uh, ph). Note in particular that ΥF (uh, ph) satisfy the Neumann
compatibility condition by (7.14). When D ∈ Dext

h , this system is a mixed finite element approximation of
a local Neumann/Dirichlet problem; homogeneous Dirichlet boundary condition is prescribed on ∂D∩∂Ω.

These developments imply.

Lemma 7.4 (Reconstructed flux in lowest-order conforming methods) Let f be piecewise con-
stant on Th and let (uh, ph) ∈ Vh×Qh be given by (7.11a)–(7.11b) or by (7.12a)–(7.12b) for any of the
lowest-order methods. Let ΥF (uh) be given by (7.13) and prescribe σh by (7.19), with l = 0. Then (5.10)
holds. More precisely,

(∇·σh)|T = (∇ph − f)|T ∀T ∈ Sh. (7.21)

To finish this section, we now check that the approximation property (6.3) holds.

Lemma 7.5 (Approximation property of the reconstructed flux in lowest-order conforming
methods) Let the assumptions of Lemma 7.4 be verified. Then the approximation property (6.3) holds.

Proof Let D ∈ Dh and let σh ∈ Σ0
N(SD) and rh ∈ [P∗

0(SD)]d be given by (7.20a)–(7.20b). Extending
the approach of [50, Section 4.1] (cf. also [6,5]) to the vector case, we define a postprocessing r̃h of rh
such that

∇r̃h|T = (σh −∇uh)|T ∀T ∈ SD, (7.22a)

(r̃h, ei)T
|T | = rih|T , i = 1, . . . , d, ∀T ∈ SD. (7.22b)

Note that this is a cheap local procedure. It follows from (7.22a), (7.22b), and (7.20a) that

(∇r̃h,υh)D + (r̃h,∇·υh)D = 0 ∀υh ∈ Σl
N,0(SD).

Fixing one F ∈ ∂S int
D , choosing the basis functions of Σl

N,0(SD) having nonzero normal trace only
across this side, and using the Green theorem, we arrive at

〈[[r̃h]], ei〉F = 0, i = 1, . . . , d. (7.23)

This means that the postprocessed r̃h has the mean value of the jump in each component equal to zero
on the interior sides of SD. Alternatively, we can say that r̃h has means of traces continuous on the
interior sides of SD.

If D ∈ Dext
h , we arrive similarly at

〈r̃h, ei〉F = 0, i = 1, . . . , d, (7.24)

for all F ∈ ∂Sext
D such that F ⊂ ∂Ω. Thus, on exterior sides of SD belonging to ∂Ω, the mean value of

each component of r̃h is zero.
Finally, for D ∈ Dint

h , we have that (rh, ei)D = 0, i = 1, . . . , d, from the definition of [P∗
0(SD)]d. From

this fact and (7.22b), we deduce that

(r̃h, ei)D = 0, i = 1, . . . , d. (7.25)
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Thus, on dual volumes not touching the boundary, the mean value of each component of r̃h is zero.
We denote by M(SD) ⊂ [P2(SD)]d the corresponding space of polynomials verifying (7.23), (7.24),

and (7.25). Using the above developments, we have

‖∇uh − σh‖D = sup
mh∈M(SD), ‖∇mh‖D=1

(∇uh − σh,∇mh)D. (7.26)

We now develop the right-hand side of (7.26). Using the Green theorem, the fact that ∇·σh = ∇ph − f
for all T ∈ SD, see (7.21), (7.23) (with r̃h replaced by mh) and the facts that ((∇uh − σh)nT )|F is in
[P0(F )]

d and that [[σhnF ]]|F = 0 for all sides F ∈ ∂S int
D , we arrive at

(∇uh − σh,∇mh)D

=
∑

T∈SD

{−(mh,∇·(∇uh − σh))T + 〈(∇uh − σh)nT ,mh〉∂T }

= −
∑

T∈SD

(mh, f +∆uh −∇ph)T +
∑

F∈∂Sint
D

〈[[∇uhnF ]],mh〉F .
(7.27)

We have also used that σhnF = ∇uhnF for all boundary sides F of SD not included in ∂Ω since
σh ∈ Σ0

N(SD), and (7.24) for all boundary sides F of SD included in ∂Ω. By the Cauchy–Schwarz

inequality and the inverse inequality ‖mh‖F . h
− 1

2

F ‖mh‖T , we can further estimate

(∇uh − σh,∇mh)D

≤
{

∑

T∈SD

h−2
T ‖mh‖2T

}1/2{
∑

T∈SD

h2T ‖f +∆uh −∇ph‖2T

}1/2

+

{

∑

F∈∂Sint
D

h−1
F ‖mh‖2F

}1/2{
∑

F∈∂Sint
D

hF ‖[[∇uhnF ]]‖2F

}1/2

. h−1
D ‖mh‖D

{

∑

T∈SD

h2T ‖f +∆uh −∇ph‖2T +
∑

F∈∂Sint
D

hF ‖[[∇uhnF ]]‖2F

}1/2

.

Recall that, as mh ∈ M(SD), we have (7.24) or (7.25) for mh. Thus, the discrete Poincaré/Friedrichs
inequality

‖mh‖D . hD‖∇mh‖D
can be easily proven along the lines of [49]. Consequently, (6.3) follows from the above estimates, the
fact that [[phInF ]] = 0 for all F ∈ S int

D since ph ∈ C(Ω), and (7.26). ⊓⊔

7.2.2 Higher-order continuous pressure elements

The approach of the previous section does not generalize directly to higher-order conforming and con-
forming stabilized methods. When Vh contains piecewise polynomials of degree higher than 1 or f is
not piecewise constant on Th, the local conservation property (7.14) does not hold. Here, we extend the
approach of Section 7.2.1 to higher-order elements, namely the Taylor–Hood elements, the mini element,
and higher-order stabilized methods.

Recall that each dual volume D ∈ Dint
h is associated with one vertex V ∈ V int

h and recall also the
definition ψV,i, i = 1, . . . , d, of the vector Lagrange basis functions, see Section 7.2.1. For V ∈ Vh, denote
by ∂Tint

V all the interior sides of the patch TV . Then, choosing vh = ψV,i, i = 1, . . . , d as the test function
in (7.11a) or (7.12a) and combining with the Green theorem, we obtain the following result.
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V1 V2

V3

F1

F2

F3

T

mV1,T,i mV2,T,i

mV3,T,i

υF1,i

υF2,i

υF3,i

Fig. 7.4 Equilibration of the correction terms inside each triangle

Lemma 7.6 (Higher-order conforming methods on a dual mesh) Let (uh, ph) ∈ Vh × Qh be
given by (7.11a)–(7.11b) or by (7.12a)–(7.12b) with Vh ⊂ V and Qh ⊂ H1(Ω). Let the normal flux
functions ΥF (uh) be given by (7.13). Then

∑

F∈FD

〈ΥF (uh)nD·nF , ei〉F − (∇ph, ei)D + (f , ei)D

= (f +∆uh −∇ph, ei)D − (f +∆uh −∇ph,ψV,i)TV

+
∑

F∈∂Tint
V

〈[[∇uhnF ]],ψV,i〉F −
∑

F∈∂Sint
D

〈[[∇uhnF ]], ei〉F ,

i = 1, . . . , d, ∀D ∈ Dint
h .

(7.28)

Recall that lowest-order methods are locally conservative on the elements D of Dint
h , see (7.14). We

can see from (7.28) that higher-order methods are also locally conservative, up to additional correction
terms featuring the element residuals f + ∆uh − ∇ph and edge residuals [[∇uhnF ]]. We now want to
redistribute these correction terms to the normal flux functions ΥF (uh) of (7.13) to obtain new normal
flux functions ΥF (uh, ph) for which (7.14) (and not (7.28)) holds. We achieve this in a spirit similar to
equilibration techniques of [4,23,14].

For D ∈ Dint
h , the associated vertex V , T ∈ TV , and i = 1, . . . , d, denote the contribution to the

above correction terms by

mV,T,i

:= − (f +∆uh −∇ph, ei)T∩D + (f +∆uh −∇ph,ψV,i)T

− 1

2

∑

F∈F int
T

〈[[∇uhnF ]],ψV,i〉F +
1

2

∑

F∈F int
T

〈[[∇uhnF ]], ei〉F∩D.
(7.29)

We will speak about these quantities as of “normal fluxes” mV,T,i. Remark that [[∇uhnF ]] = 0 on such
sides F ∈ ∂S int

D which are not contained in ∂Th, cf. Figure 7.3. Thus, from (7.28) and the above formula,
we have

∑

F∈FD

〈ΥF (uh)nD·nF , ei〉F − (∇ph, ei)D + (f , ei)D +
∑

T∈TV

mV,T,i = 0,

i = 1, . . . , d, ∀D ∈ Dint
h .

(7.30)

For the sake of simplicity, let us define mV,T,i in the same way also for D ∈ Dext
h and the associated

vertex V .
Consider a fixed T ∈ Th and i = 1, . . . , d. We have associated the normal flux mVj ,T,i to each of the

vertices Vj of T , j = 1, . . . , d+ 1, cf. Figure 7.4. We now want to equilibrate the normal fluxes mVj ,T,i:
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the purpose is to associate to each of the sides Fm ⊂ T , m = 1, . . . , d+1, Fm ∈ ∂S int
h such that F ⊂ ∂D

for some D ∈ Dh, a correction normal flux υFm,i (in the direction of the fixed normal nF ) such that the
following holds (we give an example for d = 2, corresponding to Figure 7.4):





1 1 0
0 −1 1

−1 0 −1









υF1,i

υF2,i

υF3,i



 =





mV1,T,i

mV2,T,i

mV3,T,i



 . (7.31)

The value mV1,T,i represents the total normal flux from the element T ∩ D1 to the elements T ∩ D2

and T ∩ D3 (where Di are the dual volumes associated with the vertices Vi). We clearly want to keep
this total normal flux but to split it into the side normal fluxes υF1,i and υF2,i; we proceed similarly
for mV2,T,i and mV3,T,i. The essential feature is that the corrections normal fluxes υFm,i are univocally
defined for each side Fm, m = 1, . . . , d+ 1, cf. once again Figure 7.4.

It turns out that the system matrix in (7.31) is singular, as the sum of all the row vectors equals
zero. It is, however, easy to check that its rank is equal to d. Fortunately, the right-hand side in (7.31)
is compatible: by the fact that the basis functions ψVj ,i form a partition of unity on the chosen element
T ∈ Th,

d+1
∑

j=1

ψVj ,i|T = ei|T ,

we easily get
d+1
∑

j=1

mVj ,T,i = 0,

i = 1, . . . , d. Thus, there exists a solution to (7.31). Note that (7.31) is always a system of a fixed small
size (d+1)× (d+1) on each T ∈ Th, for approximations (7.11a)–(7.11b) or (7.12a)–(7.12b) of any order
k.

Using υFm,i for each T ∈ Th, we can now define new normal flux functions ΥF (uh, ph) for sides
F ∈ ∂S int

h such that F ⊂ ∂D for some D ∈ Dh, in a way that (7.14) holds. More precisely, let

(υF (uh, ph))
i := |F |−1υF,i, i = 1, . . . , d. (7.32)

Note that, consequently, (7.31) gives

∑

T∈TV

mV,T,i =
∑

F∈FD

υF,inD·nF =
∑

F∈FD

〈υF (uh, ph)nD·nF , ei〉F (7.33)

for every D ∈ Dint
h and the associated vertex V , i = 1, . . . , d. Let F ∈ ∂S int

h such that F ⊂ ∂D for some
D ∈ Dh and set

ΥF (uh, ph) := (∇uhnF )|F + υF (uh, ph). (7.34)

We then see that (7.30) together with (7.33) and (7.34) implies (7.14). Recall the definition of the

space Σl(SD) by (7.5). For the new normal flux functions ΥF (uh, ph) of (7.34), we can define the space

Σl
N(SD) by (7.18). We then set σh ∈ Σl(Sh) by (7.19) or, equivalently, by (7.20a)–(7.20b), where we

put l = k− 1. Note that the equation (7.14) holds for the new normal flux functions ΥF (uh, ph), whence
the local Neumann problems are well-posed for D ∈ Dint

h . As in Lemma 7.4, condition (5.10) is satisfied
by this definition of σh.

The last point consists in proving the approximation property (6.3). We proceed for this purpose
as in Lemma 7.5. Let D ∈ Dh. Firstly, we need to replace the definition (7.22a)–(7.22b), valid in the
lowest-order case, by defining r̃h ∈ M(SD) by

ΠΣh(T )(∇r̃h|T ) = (σh −∇uh)|T ∀T ∈ SD, (7.35a)

ΠVh(T )(r̃h|T ) = rh|T ∀T ∈ SD. (7.35b)
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Here ΠΣh(T ) is the L
2-orthogonal projection onto Σh(T ) and ΠVh(T ) is the L2-orthogonal projection

onto Vh(T ). The space M(SD) is a vector variant of that of [6,5]. What is important in the present
analysis is that by (7.35a)–(7.35b), the properties (7.23), (7.24), and (7.25) still hold. More precisely, the
orthogonality in (7.23) and (7.24) holds up to polynomials of order l in each component and not only
for constants in each component. Similarly to (7.26), we now have

‖∇uh − σh‖D . sup
mh∈M(SD), ‖∇mh‖D=1

(∇uh − σh,∇mh)D,

using [54, Lemma 5.4]. Suppose now for simplicity that f ∈ [Pl(Sh)]d instead of f ∈ [Pk(Sh)]d required
in Assumption 6.1. Then (7.27) still holds but with an additional factor

−
∑

F∈∂Sext
D
, F 6⊂∂Ω

〈υF (uh, ph)nD·nF ,mh〉F

in the last equality. We thus need to bound this factor, which we do by the Cauchy–Schwarz inequality
and obtain

{

∑

F∈∂Sext
D
, F 6⊂∂Ω

h−1
F ‖mh‖2F

}1/2{
∑

F∈∂Sext
D
, F 6⊂∂Ω

hF ‖υF (uh, ph)‖2F

}1/2

.

The first term above can be treated as in Lemma 7.5 and we are left with bounding the second one.
Let F ∈ ∂S int

h , let T ∈ Th be such that F ⊂ T , and let Vj , Dj , j = 1, . . . , d+ 1, be the vertices of T
and the associated dual volumes. Using (7.29), (7.31), and (7.32), we arrive at

h
1/2
F ‖υF (uh, ph)‖F

. h
1/2
F

d+1
∑

j=1

d
∑

i=1

‖|F |−1(f +∆uh −∇ph, ei|Dj
−ψVj ,i)T ‖F

+ h
1/2
F

∑

F ′∈F int
T

d+1
∑

j=1

d
∑

i=1

‖|F |−1〈[[∇uhnF ′ ]], ei|Dj
−ψVj ,i〉F ′‖F .

Let i ∈ {1, . . . , d}, j ∈ {1, . . . , d+ 1}, and F ′ ∈ F int
T be given. Then,

h
1/2
F ‖|F |−1(f +∆uh −∇ph, ei|Dj

−ψVj ,i)T ‖F
= h

1/2
F |F |−1/2|(f +∆uh −∇ph, ei|Dj

−ψVj ,i)T |
≤ h

1/2
F |F |−1/2‖f +∆uh −∇ph‖T ‖ei|Dj

−ψVj ,i‖T
. h

1/2
F |F |−1/2‖f +∆uh −∇ph‖T |T |

1
2

. hT ‖f +∆uh −∇ph‖T

by the Cauchy–Schwarz inequality and the facts that ‖ei|Dj
− ψVj ,i‖T . |T | 12 , |T | 12 /|F | 12 . h

1/2
F , and

hF . hT . Similarly,

h
1/2
F ‖|F |−1〈[[∇uhnF ′ ]], ei|Dj

−ψVj ,i〉F ′‖F
= h

1/2
F |F |−1/2|〈[[∇uhnF ′ ]], ei|Dj

−ψVj ,i〉F ′ |
. h

1/2
F |F |−1/2‖[[∇uhnF ′ ]]‖F ′‖ei|Dj

−ψVj ,i‖F ′

. |F |−1/2‖[[∇uhnF ′ ]]‖F ′‖ei|Dj
−ψVj ,i‖T

. h
1/2
F ′ ‖[[∇uhnF ′ ]]‖F ′ ,

employing also the inverse inequality ‖ei|Dj
−ψVj,i‖F ′ . h

−1/2
F ′ ‖ei|Dj

−ψVj,i‖T . Combining all the above
results, we arrive at the conclusion that the approximation property (6.3) holds in the higher-order case
as well.
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Fig. 7.5 P1–P0 nonconforming Crouzeix–Raviart finite elements

Th

Dh

Fig. 7.6 Dual mesh Dh for the nonconforming Crouzeix–Raviart method in two space dimensions

Remark 7.3 (Standard equilibration techniques) The equilibration techniques of [4,23,14] can be used in

order to produce σh ∈ Σl(Th) satisfying (5.10). Under the condition that (6.3) holds, they can likewise
be used in the present framework.

7.3 Nonconforming methods

Here, we derive locally efficient a posteriori error estimates for the lowest-order nonconforming Crouzeix–
Raviart method using Theorems 5.1 and 6.1. We follow the approach of Section 7.2.1. Extension to
higher-order methods is possible along the lines of the approach of Section 7.2.2.

Let Th be simplicial and matching and let

Vh := {vh ∈ [P1(Th)]d; 〈[[vh]], ei〉F = 0, i = 1, . . . , d, ∀F ∈ ∂Th},
Qh := P0(Th) ∩Q,

cf. Figure 7.5. The lowest-order nonconforming Crouzeix–Raviart method for the problem (2.3a)–(2.3b)
reads, see [21]: find (uh, ph) ∈ Vh ×Qh such that

a(uh,vh) + b(vh, ph) = (f ,vh) ∀vh ∈ Vh, (7.36a)

b(uh, qh) = 0 ∀qh ∈ Qh. (7.36b)

Let the dual mesh Dh be formed around each side of Th using the element barycenters as indicated in
Figure 7.6; Dint

h correspond to the interior sides and Dext
h to the boundary ones. For a side F ∈ ∂Th, let

ψF be the P1 nonconforming finite element basis function. Let ψF,i, i = 1, . . . , d, be its vector variants

such that ψiF,i = ψF , ψ
j
F,i = 0 for j = 1, . . . , d, j 6= i. We will also need the fine simplicial mesh Sh

formed by the d+ 1 subsimplices of each T ∈ Th, cf. once again Figure 7.6.
For a side F ∈ ∂S int

h such that F ⊂ ∂D for some D ∈ Dh, define the normal flux functions

ΥF (uh, ph) := (∇uh − phI)nF . (7.37)

Note that, as in the conforming setting of Section 7.2, all such sides lie inside some T ∈ Th, cf. Figure 7.6,
so that ∇uh and ph are indeed univalued thereon.

As in Lemma 7.3 in the conforming case, the following important property holds.
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Lemma 7.7 (Local conservativity of the nonconforming Crouzeix–Raviart method) Let f be
piecewise constant on Th and let (uh, ph) ∈ Vh×Qh be given by (7.36a)–(7.36b). Let ΥF (uh, ph) be given
by (7.37). Then

∑

F∈FD

〈ΥF (uh, ph)nD·nF , ei〉F + (f , ei)D = 0,

i = 1, . . . , d, ∀D ∈ Dint
h .

(7.38)

Proof For a given dual volume D ∈ Dint
h and associated side F , fix i ∈ {1, . . . , d} and consider ψF,i as

the test function vh in (7.36a). Recall that the support of ψF,i is given by the two elements sharing F ,
denoted by TF . Then, under the assumption that f is piecewise constant on Th,

(f ,ψF,i)TF
= (f , ei)D

easily follows as |D ∩ T | = |T |/(d+ 1) for all T ∈ TF . Next, consider T ∈ TF . One has

(∇uh,∇ψF,i)T = (∇uih,∇ψF )T = −(∆uih, ψF )T + 〈∇uih·nT , ψF 〉∂T
= 〈∇uih·nT , ψF 〉F = 〈∇uih·nT , 1〉F
= −

∑

F ′∈FD, F ′⊂T

〈∇uih·nD, 1〉F ′

= −
∑

F ′∈FD, F ′⊂T

〈∇uhnD, ei〉F ′ ,

(7.39)

using the fact that ∆uih = 0 as uh|T ∈ [P1(T )]
d, the facts that ∇uih·nT is constant on all sides F ∈ FT ,

that 〈1, ψF 〉F ′ = 0 for F ′ ∈ FT , F ′ 6= F , and that 〈1, ψF 〉F = 〈1, 1〉F , and finally once again the Green
theorem and the fact that ∆uih = 0. Finally,

b(ψF,i, ph) = −(∇·ψF,i, ph)TF
= −(∇ψF,i, phI)TF

= −
∑

T∈TF

(∇ψF ,∇(phx
i))T =

∑

F ′∈FD,

〈∇(phx
i)·nD, 1〉F ′

=
∑

F ′∈FD

〈phei·nD, 1〉F ′ =
∑

F ′∈FD

〈phInD, ei〉F ′

by the same arguments as in (7.39) and using that ph ∈ P0(Th). Combining the above results, the
assertion of the lemma follows. ⊓⊔

We will now construct σh in the space Σ0(Sh), see (7.5), on the fine simplicial mesh Sh. For a given
D ∈ Dh and ΥF (uh, ph) given by (7.37), let

Σ0
N(SD) := {υh ∈ Σ0(SD); υhnF = ΥF (uh, ph) ∀F ∈ ∂S int

h , F ⊂ ∂D}.
We define σh ∈ Σ0(Sh) by solving on each D ∈ Dh the following minimization problem:

σh|D := arg inf
υ

h
∈Σ0

N
(SD),∇·υ

h
=−Π0f

‖∇uh − phI − υh‖D. (7.40)

Note that as we only have to set the normal fluxes over the side F associated with the given D ∈ Dh,
the linear system (7.40), contrarily to (7.19), is trivial, with a diagonal d × d matrix; thus a direct flux
formula follows from (7.40). We have the following result.

Lemma 7.8 (Reconstructed flux in the nonconforming Crouzeix–Raviart method) Let f be
piecewise constant on Th and let (uh, ph) ∈ Vh × Qh be given by (7.36a)–(7.36b). Let σh be defined
by (7.40). Then (4.3) holds. More precisely,

(∇·σh)|T = −f |T ∀T ∈ Sh. (7.41)

Finally, the next result follows along the lines of the proof of Lemma 7.5.

Lemma 7.9 (Approximation property of the nonconforming Crouzeix–Raviart method) Let
the assumptions of Lemma 7.8 be verified. Then the approximation property (6.2) holds.
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7.4 Finite volume and related locally conservative methods

This section is devoted to the application of the estimates of Theorems 5.1 and 6.1 to finite volume
methods, cf., e.g., [26], and, in a larger sense, to general locally conservative methods such as the mimetic
finite difference one, cf., e.g., [11].

A general locally conservative method for the problem (2.3a)–(2.3b) enables to find the side normal
fluxes ΥF , constant d-dimensional vectors for each side F ∈ ∂Th, such that

∑

F∈FT

Υ iF (nT ·nF ) + (f , ei)T = 0, i = 1, . . . , d, ∀T ∈ Th. (7.42)

Usually, velocities uh ∈ [P0(Th)]d and pressures ph ∈ P0(Th) are also obtained from the given numerical
scheme.

Suppose first that Th is simplicial and matching. In order to obtain a posteriori error estimates in
this case, we define a flux (stress) σh ∈ Σ0(Th), see (7.5), prescribing its degrees of freedom by

σhnF |F =
ΥF

|F | ∀F ∈ FT , ∀T ∈ Th. (7.43)

Then (4.3) immediately follows from (7.42), (7.43), and the Green theorem. Consequently, Theorem 5.1
could directly be applied to obtain an a posteriori error estimate for |||(u − uh, p − ph)|||. As, however,
uh ∈ [P0(Th)]d, ∇uh is a zero tensor and such an estimate would be of very little practical value. We
thus, following [50,52], introduce a postprocessed velocity ũh ∈ [P2(Th)]d satisfying

∇ũh|T − phI|T = σh|T ∀T ∈ Th, (7.44a)

(ũh, ei)T
|T | = uih|T , i = 1, . . . , d, ∀T ∈ Th. (7.44b)

Note that such a postprocessing is local on each mesh element T and is cheap, as we merely prescribe the
degrees of freedom of ũh. The advantage of this postprocessing is twofold: firstly, ∇ũh is no more a zero
tensor and it gives a good sense to estimate |||(u−ũh, p−ph)|||; secondly, by (7.44a), ‖∇ũh−phI−σh‖T =
0. Thus, (6.2) (with uh replaced by ũh) is trivially satisfied. This is perfectly in agreement with the “flux-
conforming” nature of locally conservative methods.

Meshes consisting of general polygons (polyhedrons), possibly nonconvex and not star-shaped, and
nonmatching meshes can be taken into account following [52, Section 5]: one introduces a simplicial
submesh ST of each T ∈ Th such that ST form a conforming simplicial mesh Sh of Ω. One then uses the
validity of the balance equation (7.42) on each T ∈ Th in order to solve on the mesh ST of each T ∈ Th
a local Stokes problem, yielding a side normal flux ΥF for each side F ∈ ∂Sh and uh ∈ [P0(Sh)]d and
ph ∈ P0(Sh). Then the approach of the previous paragraph can be applied directly.

Remark 7.4 (Estimates for the fluxes σh) Estimates on the error directly in the fluxes σh can be estab-
lished along the lines of the analysis in [54].

7.5 Mixed finite element methods

Here, we derive locally efficient a posteriori error estimates for mixed finite element methods using
Corollary 5.2 and Theorem 6.1. We suppose that Th is simplicial and matching.

The mixed finite element method for problem (2.3a)–(2.3b) reads: find (σh,uh, ph) ∈ Σh×Vh×Qh,
the approximation to the stress tensor σ, the velocity u, and the pressure p, respectively, such that

(σh, τh) + (uh,∇·τh) = 0 ∀τ h ∈ Σh, (7.45a)

−(∇·σh,vh) + (∇ph,vh) = (f ,vh) ∀vh ∈ Vh, (7.45b)

(uh,∇qh) = 0 ∀qh ∈ Qh. (7.45c)
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Here, Σh := Σk(Th) (see (7.5)), Vh := [Pk(Th)]d, and Qh := Pk+1(Th) ∩ C(Ω) ∩ Q, k ≥ 0. Brezzi–
Douglas–Marini/Brezzi–Douglas–Durán–Fortin finite element spaces can also be considered instead of
the Raviart–Thomas–Nédélec ones, as in [45].

In order to obtain an upper bound on the error |||(u − uh, p − ph)|||, we could now directly apply
Corollary 5.2. Indeed, σh ∈ Σh, so that σh belongs to H(div, Ω) by definition, and (5.10) follows
from (7.45b). As, however, explained in Section 7.4, such a direct application is not too wise. Thus,
following [6,5,50,54], we once again introduce a cheap elementwise postprocessing of the velocity uh.
Let T ∈ Th and let Σh(T ) denote the restriction of Σh onto T and similarly for Vh(T ). We look for
ũh|T ∈ Mh(T ) such that

(∇ũh − σh, τh)T = 0 ∀τ h ∈ Σh(T ), (7.46a)

(ũh − uh,vh) = 0 ∀vh ∈ Vh(T ). (7.46b)

Equivalently, the above definition can be expressed as

ΠΣh(T )(∇ũh|T ) = σh|T , (7.47a)

ΠVh(T )(ũh|T ) = uh|T , (7.47b)

where ΠΣh(T ) is the L
2-orthogonal projection onto Σh(T ) and ΠVh(T ) is the L2-orthogonal projection

ontoVh(T ). The spacesMh(T ) are vector variants of those of [6,5]. They are typically [Pk+1(Th)]d spaces
enriched by bubbles. Moreover, in the lowest-order case (k = 0), as in (7.44a)–(7.44b) (cf. also (7.22a)–
(7.22b)), following [50], one can easily build ũh such that

∇ũh|T = σh|T ∀T ∈ Th, (7.48a)

(ũh, ei)T
|T | = uih|T , i = 1, . . . , d, ∀T ∈ Th. (7.48b)

We then apply Corollary 5.2 in order to estimate |||(u− ũh, p−ph)|||. In the lowest-order case (k = 0) and
constructing ũh by (7.48a)–(7.48b), ‖∇ũh−σh‖T = 0. Hence in this case, (6.3) is trivially satisfied, once
again in agreement with the flux-conforming nature of mixed finite elements. For k ≥ 1, this property
does not hold exactly anymore. By (7.47a), however, ‖∇ũh − σh‖T is expected to be small and act as
a numerical quadrature. Finally, we note that Remark 7.4 applies here as well. Proceeding as in [54],
rigorous both-sided estimates, also including the estimates on the error directly in the fluxes σh, can be
obtained.

8 Numerical experiments

In this section, we illustrate the theory using discontinuous, conforming, and nonconforming methods.
As a discontinuous method, we consider first- and second-order symmetric discontinuous Galerkin (DG)
method of Section 7.1, i.e., (7.2) with θ = 1 and k = 1, 2. The conforming example will be computed using
the P1 iso P2–P1 method of Section 7.2, and the nonconforming example using the Crouzeix–Raviart
method of Section 7.3.

The a posteriori error estimates for these methods are obtained by recovering the equilibrated flux σh
and applying Theorem 5.1 or Corollary 5.2, depending on the method. For the discontinuous Galerkin
method of order k, we recover the flux from the space Σk(Th). The error estimator is obtained by
applying Theorem 5.1. For such flux and sufficiently regular f , Lemma 7.1 guarantees superconvergence
for the residual error estimators ηR,T . As we will see, this is not true if f is not sufficiently regular. For
the P1 iso P2–P1 and Crouzeix–Raviart methods, the flux is recovered by solving local minimization
problems (7.19) and (7.40), respectively. In order for Lemmas 7.4 and 7.8 hold, we, as usual, implement
these methods with f replaced by Π0f , where Π0 is the L

2-orthogonal projection onto [P0(Th)]d. We then
include the data oscillation in the residual error estimators ηR,T (5.8) and (5.3) as CP,ThT ‖f −Π0f‖T ,
which are once again superconvergent for smooth f . The error estimate for the P1 iso P2–P1 method is
obtained by applying Corollary 5.2 and for the Crouzeix–Raviart method by applying Theorem 5.1.
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Throughout this section, we will consider domainΩ = (0, 1)2. To evaluate the energy (semi-)norm (3.5)
and the divergence error estimator ηD,T of (5.2) the inf–sup constant β has to be estimated. Although
the inf–sup constant can be estimated analytically for rectangular domains, we have computed β with
the procedure from [24]. Based on these computations, the value β = 0.44 is used.

The load function f is chosen to correspond to the solution

u = ∇× (x− 1)2x1+α(y − 1)2y2e3, p = x+ y − 1. (8.1)

For α > 0, the velocity field u has a zero divergence, ∇·u = 0, and satisfies the zero Dirichlet boundary

condition, u = 0 on ∂Ω. The regularity of u is [H
1
2
+α(Ω)]d for α 6∈ N and [C∞(Ω)]d for α ∈ N.

For all methods, we will first consider problem with a smooth solution. For this purpose, the parameter
α is chosen as α = 1. To compare the error estimator with the exact error in uniform refinement, we
have solved the problem at hand with each of the mentioned methods on a set of uniformly refined
meshes. The error and estimates behavior for the different schemes are visualized in Figure 8.1. The
corresponding effectivity indices, given as the ratios of the estimate over the error, are presented in
Figure 8.2. The different estimators, namely

{

∑

T∈Th

η2T

}1/2

, (8.2)

with ηT = ηNC,T , ηDF,T , ηR,T , and ηD,T , are plotted in Figure 8.3. For each method, the predicted
superconvergence for the ηR,T part is observed.

The error distributions from refinement step 5 for discontinuous Galerkin methods, the P1 iso P2–P1

method, and the Crouzeix–Raviart method are given respectively in Figures 8.4, 8.5, 8.6, and 8.7. As the
error bounds given in Theorem 5.1 or Corollary 5.2 are not in an elementwise form, we have estimated
the upper bound as

|||(u− uh, p− ph)|||2 ≤ 2
∑

T∈Th

{

η2NC,T + 12(ηR,T + ηDF,T )
2 + η2D,T

}

,

using also the bound (3.7) on the constant CS; we have used the term ηT := {2(η2NC,T + 12(ηR,T +

ηDF,T )
2 + η2D,T )}1/2 as elementwise error estimator. Note that the estimated and exact distributions

match very well.
In the second example, we set α = 0.75, so that the velocity u is in [H1.25(Ω)]d and there is a

boundary singularity on the edge x = 0. In this example, all computations were performed using the
first-order DG method. The problem was solved either on uniformly refined meshes or using a simple
adaptive procedure. In the adaptive routine, we refine ten percents of elements in each step. The elements
are chosen such that they have the largest element estimators ηT .

The error behavior in the adaptive and uniform refinement procedures is visualized in Figure 8.8 and
the corresponding effectivity index in Figure 8.9. The adaptive refinement procedure has considerably
faster, optimal with respect to the number of mesh elements, convergence rate compared to the uniform
mesh refinement, where the convergence rate is in agreement with the [H1.25(Ω)]d regularity of the weak
solution (h0.25). As in the smooth test case, the error estimate overestimates the error, but decreases
with the same speed as the exact error. Figure 8.10 shows the estimated and exact error distributions
in this case. They once again match very well; in particular the boundary singularity is well detected.
The superconvergence of ηR,T does not appear anymore as f is not sufficiently regular. For the sake of
completeness, initial, third, and fifth adaptive mesh are visualized in Figure 8.11. One can observe the
expected refinement towards the boundary singularity.

A Appendix: the inf–sup condition on V × Q

We prove in this appendix Lemma 3.1, giving the Babuška–Brezzi splitting for the Stokes problem. We proceed
in five steps.
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Fig. 8.1 Estimated and exact errors for the first-order DG, second-order DG, P1 iso P2–P1, and Crouzeix–Raviart
methods for the smooth test case
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Fig. 8.2 Effectivity indices for the first-order DG, second-order DG, P1 iso P2–P1, and Crouzeix–Raviart methods
for the smooth test case

1) It is immediate to see from the definition (3.3) of B and (2.2a) of a that for an arbitrary (v, q) ∈ V ×Q,

B((v, q), (v,−q)) = ‖∇v‖2.

2) The inf–sup condition (2.4), using a scaling argument, ensures that for a given q ∈ Q, there exists w ∈ V
such that

(q,∇·w) ≥ β‖q‖2 and ‖∇w‖ = ‖q‖.
Recall also the arithmetic–geometric–mean inequality:

−|ab| ≥ − ε

2
a
2 − 1

2ε
b
2
, ∀a, b ∈ R, ∀ε > 0.
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Fig. 8.3 Different estimators for the first-order DG, second-order DG, P1 iso P2–P1, and Crouzeix–Raviart
methods for the smooth test case

0 0.5 1
0

0.5

1  
ESTIMATED

 

2

3

4

5

6

7

8

9

10

11

x 10
−6

0 0.5 1
0

0.5

1  
EXACT

 

2

2.5

3

3.5

4

4.5

5

5.5

6

x 10
−8

Fig. 8.4 Estimated (left) and exact (right) error distributions for the first-order DG method in the smooth test
case

Using these ingredients and the Cauchy–Schwarz inequality, we obtain

B((v, q), (−w, 0)) = −(∇v,∇w) + (q,∇·w) ≥ −‖∇v‖‖∇w‖+ β‖q‖2

≥ − 1

2βε
‖∇v‖2 + β

(

1− ε

2
‖q‖2

)

.

3) For δ > 0 arbitrary, we have, using the results of steps 1) and 2),

B((v, q), (v − δw,−q)) = B((v, q), (v,−q)) + δB((v, q), (−w, 0))

≥ ‖∇v‖2 − δ

2βε
‖∇v‖2 + βδ

(

1− ε

2
‖q‖2

)

.
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Fig. 8.5 Estimated (left) and exact (right) error distributions for the second-order DG method in the smooth
test case
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Fig. 8.6 Estimated (left) and exact (right) error distributions for the P1 iso P2–P1 method in the smooth test
case
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Fig. 8.7 Estimated (left) and exact (right) error distributions for the nonconforming Crouzeix–Raviart method
in the smooth test case

Choosing δ = β and ε = 1, we arrive at

B((v, q), (v − βw,−q)) ≥ 1

2
‖∇v‖2 +

1

2
β
2‖q‖2 =

1

2
|||(v, q)|||2.

4) For z = v − βw and r = −q, we thus have

B((v, q), (z, r)) ≥ 1

2
|||(v, q)|||2.
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Fig. 8.8 Estimated and exact errors in uniform/adaptive refinement (left) and components of the error estimator
in adaptive refinement (right) for the first-order DG method in the singular test case
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Fig. 8.10 Estimated (left) and exact (right) error distributions for the first-order DG method in the singular
test case

Next,

|||(z, r)|||2 = ‖∇(v − βw)‖2 + β
2‖q‖2

≤ 2‖∇v‖2 + 2β2‖∇w‖2 + β
2‖q‖2

≤ 3(‖∇v‖2 + β
2‖q‖2)

= 3|||(v, q)|||2.
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Fig. 8.11 Initial (left), third (middle), and fifth (right) mesh for the adaptive refinement for the first-order DG
method in the singular test case

5) Combining the results of the previous steps, we see that for an arbitrary (v, q) ∈ V × Q, there exists
(z, r) ∈ V ×Q such that

B((v, q), (z, r)) ≥ 1

2

1√
3
|||(v, q)||| |||(z, r)|||,

which is precisely the statement of the lemma.
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