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Antti Hannukainen - Rolf Stenberg - Martin Vohralik

A unified framework for a posteriori error estimation
for the Stokes problem

Abstract In this paper, a unified framework for a posteriori error estimation for the Stokes problem is
developed. It is based on [H} (£2)]¢-conforming velocity reconstruction and H (div, £2)-conforming, locally
conservative flux (stress) reconstruction. It gives guaranteed, fully computable global upper bounds as
well as local lower bounds on the energy error. In order to apply this framework to a given numerical
method, two simple conditions need to be checked. We show how to do this for various conforming and
conforming stabilized finite element methods, the discontinuous Galerkin method, the Crouzeix—Raviart
nonconforming finite element method, the mixed finite element method, and a general class of finite
volume methods. Numerical experiments illustrate the theoretical developments.

Keywords Stokes problem - a posteriori error estimate - guaranteed upper bound - unified framework -
conforming finite element method - discontinuous Galerkin method - nonconforming finite element
method - mixed finite element method - finite volume method

Mathematics Subject Classification (2000) 65N15, 76M12, 76505

1 Introduction

The purpose of this paper is to develop a unified framework for a posteriori error estimation for the
Stokes problem discretized by different numerical methods. In particular, we apply this framework to
conforming divergence-free, discontinuous Galerkin, conforming (stabilized), nonconforming, mixed, and
finite volume methods. Our estimates give a guaranteed (that is, not featuring any undetermined con-
stant) upper bound on the error measured in the energy (semi-)norm. They are easily, fully, and locally
computable. They are also locally efficient in the sense that they represent local lower bounds for the
energy error. Numerical experiments show that their effectivity index (the ratio of the estimated and
exact error) is relatively close to the optimal value of one.
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Our estimates are based on [H}(£2)]?-conforming velocity reconstruction and H (div, {2)-conforming,
locally conservative flux (stress) reconstructions. Such an approach has recently become popular in
the framework of second-order elliptic equations, see, e.g., [37,32,43,4,23,38,2,36,50,3,27,51] and the
references cited therein. Its main ideas are very physical and can be traced back at least to the Prager—
Synge equality [41]. Equilibrated flux estimates have recently been shown to be robust with respect
to inhomogeneities, anisotropies, and reaction or convection dominance in [53,20,28] and with respect
to the polynomial degree in [13]. In a unifying spirit, similar to the present paper, they have been
extended to the heat equation in [30]. Stokes a posterior error estimates related to the present approach
have previously been studied in [25,42,10]. However, these estimates are valid only for certain type of
numerical approximations.

Locally conservative H (div, £2)-conforming flux reconstruction is straightforward in so-called locally
conservative methods [2,50,36,3,27,52,29,28,54,30]. For finite element-type methods, which are not
locally conservative by construction, this is less straightforward. However, for such methods, the recon-
struction can be achieved by the equilibration procedure, see [4,23,13] and the references therein. We
follow here the approach for lowest-order methods of [38,51,53], where no equilibration is needed. We
generalize this approach here to higher-order methods. It turns out that only small local problems of
fixed size (d + 1) x (d + 1) for each mesh element, where d is the space dimension, need to be solved in
order to obtain the equilibrated side normal fluxes.

This paper is organized as follows. In Section 2, we state the considered Stokes problem. In Section 3,
we specify our notation and give some preliminary results. Sections 4 and 5 collect our a posteriori error
estimates, first for conforming divergence-free approximations and then for arbitrary ones. These results
are stated in a general form independent of the numerical method at hand; we only suppose the existence
of a locally conservative H (div, 2)-conforming flux reconstruction g, (cf. assumptions (4.3) and (5.10)
below). Section 6 then presents the efficiency of the estimates, still in a general form independent of the
numerical method at hand, only based on Assumption 6.2. In Section 7, we apply the previous results to
different numerical methods. This consists in specifying the way of construction of g;, and in verifying the
assumptions (4.3) or (5.10) and Assumption 6.2. Section 8 presents numerical experiments. A technical
result on the the inf-sup condition is proven in Appendix A.

2 The Stokes problem

Here, we describe the Stokes problem considered in this paper. We use standard notation; some details
on the notation are given in Section 3 below.

Let 2 C R%, d = 2,3, be a polygonal (polyhedral) domain (open, bounded, and connected set). We
consider the Stokes problem: given f € [L2(£2)]%, find u, the “velocity”, and p, the “pressure”, such that

—Au+Vp=f in {2, (2.1a)
Vu=0 in £, (2.1b)
u=0 on 02 (2.1¢c)

Denote by V the space [Hg(£2)]? and by @ the space of L?({2) functions having zero mean value over
0. Foru,v €V and q € Q, set

a(u,v) := (Vu, Vv), (2.2a)
b(v,q) == —(q,V-v). (2.2b)
The weak formulation of (2.1a)—(2.1¢) reads: find (u,p) € V x @Q such that
a(u,v) +b(v,p) = (f,v) VweV, (2.3a)
b(u,q) =0 Vg € Q. (2.3b)
The above problem is well-posed (cf. [31]) due to the inf-sup condition
inf sup bv.a) > B, (2.4)

€@ vev Vv {lgll —



where (3 is a positive constant. Denote the divergence-free subspace of V by
Vo :={veV;Vv=0}
The velocity u can be equivalently characterized as: find u € Vg such that
a(u,v) = (f,v) Vv e V. (2.5)

Recall also that by introducing the “stress” tensor g € H (div, §2), the problem (2.1a)—(2.1c) can be
written as a system consisting of the constitutive law

o =Vu-—ypl, (2.6)
the equilibrium equation
Va+f=0, (2.7)
and the divergence constraint
Vau=0, (2.8)

for which the pressure p is the Lagrange multiplier. Here I is the d x d identity matrix. Alternatively,
(2.6)—(2.7) may be replaced by
o =Vu (2.9)

and
Vo' —Vp+f=0. (2.10)

3 Notation and preliminaries

Here, we summarize the notation used throughout the paper and give some preliminary results.

3.1 Notation

Let D C R%. By (-,-)p, we denote the scalar product in L?(D): (p,q)p := [, pgdx. When D coincides
with {2, the subscript {2 will be dropped. We use the same symbol (-,-)p for the scalar product in
L2(D) := [L2(D)]? and in L*(D) := [L*(D)}**<. More precisely, (u,v)p := 30 (uf,v?)p for u,v €
L%(D) and (o, 7)p = S0, Z?Zl(gm,f’j)[) for o, 7 € L*(D). The associated norm is denoted by
|- |lp- We denote by (,-) the scalar product in L?(D), D C R?! and its vector and tensor versions.
For vectors u,v € R4, u® v defines a tensor o € R4*? such that g/ := u'vJ. Finally, for D ¢ R?,
1 < d <d, |D| stands for the d’-dimensional Lebesgue measure of D and we denote by e; € R¢ the i-th
Euclidean unit vector.

Let T be a polygonal (polyhedral) partition of {2, whose elements can be nonconvex or non star-
shaped. The partition 75 can be nonmatching, that is, the intersection of two elements T, T’ of Ty,
is not necessarily their common face, edge, or vertex or an empty set (so-called hanging nodes are
allowed). We denote by hr the diameter of T € T,. We say that F is an interior side of Ty, if it has
a positive (d — 1)-dimensional Lebesgue measure and if there are distinct 77 (F) and T (F) in 7
such that F = 9T~ (F) N dT*(F). We define np as the unit normal vector to F pointing from 7'~ (F)
towards T+ (F). Similarly, we say that F is a boundary side of Ty, if it has a positive (d — 1)-dimensional
Lebesgue measure and if there is T(F') € T, such that F = 9T (F) N Jf2 and we define np as the unit
outward normal to 0f2. The arbitrariness in the orientation of np is irrelevant in the sequel. All the
interior (resp., boundary) sides of the mesh are collected into the set 7," (resp., OT,**) and we set
Ty = 8’72‘“ U dT*t. For F € 0Ty, hp stands for its diameter. For T' € Ty, we denote by Fr all its
sides and by FI** those sides of 7' which belong to 97,™*. We will also use the notation Tr (resp., Fr)
for the elements (resp., sides) of 7j, sharing a vertex with 7. We denote by Ft® those sides of F7 which
belong to 97,"*. The notation Vj, (resp., Vi"*) will be used for the set of all (resp., interior) vertices of
T Let V € V. Then Ty, denotes all the elements of 7;, having V' as vertex.



For a (sufficiently smooth) scalar, vector, or tensor function v that is double-valued on an interior
side F, its jump and average on F' are defined as

[vF := vlr-(F) — Vo (F), {wr = 2 (lr- () + V|7 (m)- (3.1)
We set [v]r := v|rp and {v}r := v|Fp on boundary sides. The subscript F' in the above jumps and

averages is omitted if there is no ambiguity. We denote by V(7) the space of piecewise smooth vector
functions on 7,

V(Tp) = {vn € L2(2); vi|r € [HY(T)]? VT € Tp}.
Note that V(T) ¢ V. We employ the notation P (7) for piecewise polynomials of order k on Tj. In the

sequel, we use the signs V, A, and V- respectively for the elementwise gradient, Laplace, and divergence
operators. Some additional notation will also be introduced later where needed.

3.2 Preliminaries

Let T € Ty, and denote by ¢ the average of ¢ over T, i.e., p& = (p,e;)r/|T|,i =1,...,d. Then the
Poincaré inequality states

le = erlr < Cerhr|Vellr Ve € [HY(T)]Y, (3.2)

where the constant Cp 1 is independent of hA7. It depends only on the shape of T'. For a convex T', we
have the estimate Cp r < 1/7 [39,9].
Set

B((v,q),(z,7)) == a(v,z) + b(z,q) + b(v,r). (3.3)
The problem (2.3a)—(2.3b) can then be stated as: find (u,p) € V x @ such that

B((u,p), (v,q) = (£,v) V(v,q) €V xQ. (3-4)
We define the energy (semi-)norm for (v,q) € V(Tr) X @ as

v, )lI* = IV vIl® + B2l (3-5)

where (3 is the constant from the inf—sup condition (2.4). We refer to Appendix A for the proof of the
following stability estimate:

Lemma 3.1 (The inf—sup condition on V x Q) There is a positive constant Cs such that

- B((v.0), (2,7))

sup > Cs (3.6)
V.0eVxQ zrevxe Iz )V, gl

with

2V/3 > (3.7)

1
Cs’



4 A posteriori error estimate for conforming divergence-free approximations

In this section, we derive an a posteriori error estimate valid for arbitrary conforming and divergence-free
approximations, i.e., approximation u; € V. It can be considered as an intermediate result, as standard
approximation methods do not lead to up € V. There exist, however, methods fulfilling this constraint,
like that of [44].

Given an approximation (up,pn) € Vo X @, not necessarily the numerical solution, the a posteriori
error estimators on T' € Ty, are defined as follows. Let o, € H(div, §2). We define the residual estimator

nrr = Cprhr||V-a, +f|r, (4.1)
where Cp r is the constant from the the Poincaré inequality (3.2), and the diffusive fluz estimator

nor,7 = |Vuy, —prd — a7 (4.2)
We then have the following estimate.

Theorem 4.1 (Velocity estimate for conforming divergence-free approximations.) Let u € Vj
be the weak solution given by (2.5) and let (up,pn) € Vo x Q be arbitrary. Let o, € H(div, 2) be such
that

(Va, +f,e)r=0, i=1,...,d, VT €T, (4.3)
Then

1/2
[V(u—up)| < { > (o + nDF,T)Q} : (4.4)
TETh

Proof Using (2.5), we have

caluw, 09
IV(u—w,)| = ( o ||V(u—11h)||>

a(u— un, )
Sup ———————+
eevo  Vell
£ 0) —
— p B ol o)
PeVo IVell
Let ¢ € Vj be fixed. Then, using that V- = 0,

0= (pn, V) = (prL, Vep).
Moreover, using the Green theorem (o, V) = —(V-0,,, ¢) and adding and subtracting (o}, V),

IN

(f,¢) — a(un, ¢)

= (f,¢) = (Vun, Vo) + (pr, Vo) + (@, Vo) — (@), Vo)

= (f + V'gha ‘P) - (VUh 7phl — Oy, VCP)
For T € Ty, let % := (p,e;)7/|T|,i=1,...,d. Then, using the assumption (4.3), the Cauchy—Schwarz
inequality, the Poincaré inequality (3.2), and the definition (4.1), we get

(Vea, +f.0)r=(Va, +f,¢—or)r <nrr|Velr
Next, the estimate
(Vup, —prd — @, Vo)r < norrl|Velr

is immediate by the Cauchy—Schwarz inequality and definition (4.2). The above developments give

V(0 — wy)[ < sup 2renllmr tmor ) Vel
#EVo Vel

whence (4.4) follows by the Cauchy—Schwarz inequality. O



5 A posteriori error estimate for general approximations

In this section we derive our main a posteriori error estimate. This estimate is valid for an approximation
(up,pr) € V(Tr) x Q, not necessarily the numerical solution. Note that the approximation can also be
nonconforming and non-divergence-free.

The a posteriori error estimators on 7' € T, are defined as follows. The possible nonconformity of uy,
i.e., the fact that uj is not necessarily in V, is estimated by the nonconformity estimator

nne,r = [V(un —su)llr, (5.1)
where s, € V is arbitrary. Next, the divergence estimator, related to the divergence-free constraint (2.8),
is given by
Mp,T = —— - (5.2)
5

As in Section 4, the key for our a posteriori error estimates is to construct a flux (stress field) o, €
H (div, £2) that is in approximate local equilibrium, i.e., satisfying (4.3). It enters in the residual estimator

e, = Cp rhr||V-a, + f|1, (5.3)

related to the possible violation of the equilibrium equation (2.7) in the approximate solution (here Cp
is the constant from the the Poincaré inequality (3.2)), and in the diffusive fluz estimator

nor, 7 = ||Vsy —prd — a7, (5.4)

related to the fact that the constitutive law (2.6) is not satisfied exactly by the approximate solution.
Recall the definition (3.5) of the energy (semi-)norm.
Our main theorem is the following.

Theorem 5.1 (Estimate for general approximations) Let (u,p) € V x Q be the weak solution
of (2.3a)~(2.3b) and let (un,pn) € V(T) x Q be arbitrary. Choose an arbitrary s, € V and o), €
H(div, 2) which satisfies (4.3). Then it holds

1t —an,p = pa)ll

1/2 1/2
1
< { > 771%C,T} + —{ > {mrr +m0E7)* + n%,T}} :

C
TETh S \reT,

(5.5)

Proof By the triangle inequality we have
1w = an, p = pu)lll < IV (un = sn)|| + l[[(@ = sn,p = pa)lll-
Using the stability estimate (3.6) (note that u —s;, € V), we obtain

1 B((u—sn,p—pn), (p, 7))
u—sp,p—pu)lll < 5 sup
lll( h Il S A e Dl

Let (¢,1) € V x @ be fixed. Employing the definitions (3.3) and (3.4), we have

B((a—sn,p—pn), (¢,?))
= B((u,p), (#,¢)) = B(sn, pn), (¢, ¢¥)) (5.6)
= (£,¢) = (Vs1, Vo) + (V. pp) + (Vesp, ¥).
Next, using the fact that V-u = 0, adding and subtracting (¢, V), and using the Green theorem, we
get
B((u—sn,p = pn), (¥,¥))
= (£,¢) = (Vsn, Vo) + (prL, Vo) + (V-sp, V) + (a4, V) — (a4, Vi)
= (Vg +1£,¢) = (Vs —pnd — 0, Vo) + (Vesn, ).



We estimate the first two terms as in the proof of Theorem 4.1, using the equilibrium condition (4.3)
and the Poincaré inequality (3.2). For the last term, we use the Cauchy—Schwarz inequality to obtain

B((u —sn,p — pn), (v, 1))

B
< E (UR,TJFUDF,T)HVSOHTJFEHV'ShHH?/JH
TeTh

1/2
{ > {tmr +morr) +77%,T}} 1, )II-

TETh

IN

The assertion then follows by collecting the above estimates. 0O

Let for T € Ty, nr,r and npr,r be given by (4.1) and (4.2), respectively. Set s;, = uy. Theorem 5.1
then gives the following additional result to Theorem 4.1 for conforming divergence-free approximations.

Corollary 5.1 (Pressure estimate for conforming divergence-free approximations) Let (u,p) €
V X @Q be the weak solution of (2.3a)—(2.3b). Further, let (up,pp) € Vo X Q be arbitrary. Assume that
o, € H(div, 2) satisfies (4.3). Then it holds

1/2

1
Bllp —pall < C’_{ Z (mr,7 + UDF,T)Q} . (5.7)

S

TETh
Let, for T' € Ty, nne,r and np 7 by given respectively by (5.1) and (5.2) and set
nr,r = Cp rhr||V-a), — Vpr + |7 (5.8)
and

nor, 7 = ||Vsy —apllT- (5.9)

In the sequel, we will also need the following modified version of Theorem 5.1.
Corollary 5.2 (An alternative version of Theorem 5.1) Let (u,p) € V x Q be the weak solution
of (2.3a)—(2.3b) and let (up,pr) € V(Tn) x [Q N HY($2)] be arbitrary. Choose an arbitrary s, € V and
o, € H(div, 2) such that
(Va, —Vprn+f,e)r=0, i=1,...,d, VT € Ts. (5.10)
Then it holds

[1(a = up, p = pn)ll

1/2 1/2
1
< { Z Uﬁc,T} + C_s{ Z {(r7 +1oET)* + UIQD,T}} :

TeTh TeTh

(5.11)

Proof We proceed as in the proof of Theorem 5.1; only the term (V-¢, pp,) in (5.6) is treated differently.
By the assumption p, € H'(£2) and the Green theorem, we get (V-@,pn) = —(Vpn, ). The rest of the
proof follows easily while using assumption (5.10) instead of (4.3). O

Remark 5.1 (Equilibrated flux o, ) The equilibrated flux g, in Theorems 4.1 and 5.1 and in Corollary 5.1
is a H (div, £2)-conforming reconstruction of the flux Vuy, —pp, I. It is related to the decomposition (2.6)—
(2.7). It will typically apply to such numerical methods where p, &€ H'(£2). The equilibrated flux o,
in Corollary 5.2 is instead a H (div, £2)-conforming reconstruction of the flux Vuy. It is related to the
decomposition (2.9)—(2.10). It will typically apply to such numerical methods where p, € H'(2).



6 Local efficiencies

In this section, we prove the local efficiencies of the estimates introduced above.
First, we make the following assumption. Note that this assumption is only needed in this section.

Assumption 6.1 (Local efficiency) We suppose that, for some k > 1,

— uy, € [Pr(Ta)]?, pr € Pe(Th), and £ € [Py(Tn)]%,
— there exists a shape-reqular matching simplicial submesh S of T,
— the reconstructed flur o, € [Pr(Sy)]4*?.

When 7}, is itself simplicial and matching, we will in many cases simply use S, = Ty,. A mesh S, # Tp,
will be needed for conforming methods or when 7}, is not a simplicial mesh or is nonmatching.

We next introduce some new notation. We use A < B when there exists a positive constant C,
independent of mesh size, of {2, and of u and p but dependent on the space dimension d, on the shape
regularity parameter of the mesh Sy, and on the maximal polynomial degree k, such that A < CB.

In order to proceed without specifying a particular numerical method, we will now make the following
additional assumption. In Section 7 below, this assumption will be verified for the methods in question.
Recalling, for T € Tp, the classical local residual error indicator (cf. [33,47])

Moosr = > {h7lIf + Aup — Vi |7 + [|V-un |7}
TeX

+ Y el - e+ Y hE o
Fegipt Fe3r
the assumption is.
Assumption 6.2 (Approximation property) For all T € Ty, there holds
IVap, —prd — apll7 S Mhes,7 (6.2)
in the case where o, satisfies (4.3) and
IVun — opllr < res,r (6.3)

in the case where g, satisfies (5.10).

By Zay : [Px(Sh)]? — [Px(Sk)]¢ NV we denote the operator averaging the values at each degree of
freedom inside (2 and setting 0 on 9f2. For the analysis we need the following result [1,35,19,52].

Lemma 6.3 (Averaging approximation estimate) For s, = Z,,(uy), there holds, for all T € Ty,

1/2
IV(up =sp)lr < { > hpllﬂuhHI%} : (6.4a)

Fegr

1/2
lan = snllr S { > hFl[[uh]H%} : (6.4b)

Fegr
We now state and prove the main result of this section.

Theorem 6.1 (Local efficiency) Let Assumptions 6.1 and 6.2 be satisfied. Let sp = Loy (up) and let,
for T € Trn, any of the following possibilities hold:

— nr,r and npr, 7 are gven by (4.1)—(4.2),
— nNC.Ts DT, MR,T, and npr. 1 are given by (5.1)—(5.4),
— nne,r and np,r are given by (5.1)~(5.2) and nr,r and npr,r are given by (5.8)—(5.9).



Let finally (u,p) € V x @ be the weak solution of (2.3a)—(2.3b). Then it holds

1/2
nr S (w—=wap,p—pu)ll<, + { > hpll[[uh]llfw}

Fe3r
for all the local estimators nr = nnc, 7, MD,7, MR, T, ANd NDF,T-

Proof Let T € Ty,. We will first bound the individual estimators by nes, or by its components.
For npr,r given by (4.2), we have npr.r S fres,r by Assumption 6.2. For npp r given by (5.4), the
triangle inequality gives

nor,7 < ||Vsp — V|7 + [|[Vuy — prd — ay,||r,

whence 1pp, 7 S Mres, 7 by combining Assumption 6.2 and (6.4a). For the third alternative, npr r given
by (5.9), using the triangle inequality,

nor,r < [|Vsy — Vuy |7 + || Vuy — o7,

whence once again npr.1 S Mres,r by Assumption 6.2 and (6.4a).
The estimator nnc,7 is bounded directly by (6.4a).
For the estimator ng, 7 of (4.1), we have

nrr S hr|f + Aup — Vop|lr + byl — Aup + Vi + Va1
= hr||f + Auy, — Vpp |z + he||V-(Vup, — prd — op)|l1
S hrllf + Au, = Vpp||r + [[Vun — prd — o7

by the triangle inequality and by the inverse inequality. The bound nr 7 < 7res, 7 thus follows by As-
sumption 6.2. For nr 1 given by (5.8), we similarly have

MR, T ,S hTHf + Auy, — Vph”T + hTH — Auy, + V'thT
S hrllf + Auy, — Vpill7 + [Vuyn — a7,

whence nr. 7 S Tres,7 by Assumption 6.2.
We are left with bounding np 7. We have
1 1,
mo,r < B(I\V-(Sh —w)lr + [[V-upr) S B(h‘T [sn = unllr + [|V-un|/7),
Whencev by (64b)7 D, T 5 Thres,T-
We have now bounded all the local error indicators by nes,7. The assertion of the theorem follows

by the fact that this classical residual a posteriori error estimate is a lower bound for the energy error,
up to the term {3 < Rt | Tanl %312, cf., e.g., [47,48,22]. O

Remark 6.1 (The jump seminorm in Theorem 6.1) For conforming approximations, i.e., up, € V, [us] =
0 and the jump seminorm contribution

1/2
{ > hFlu[uh]n%}

Fe3r

vanishes. Consequently, we have the global upper and local lower bounds in the energy norm. In order
to obtain both-sided estimates in the same (semi-)norm when u, ¢ V, several options are possible. Most
easily, noticing that

IMur]lle = [0 —wr]llr,  F €T,

we can add {} pcy7 hpt|[[u —un]||%2}'/? to both the energy (semi-)norm and the estimate as usually
done in the discontinuous Galerkin method, cf., e.g. [33]. Alternatively, when ([u],e;)r = 0 for all
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F € 9T, and i = 1,...,d (this is in particular the case in the Crouzeix—Raviart nonconforming finite
element method and can be achieved for a postprocessed uy in place of uy in mixed finite element
methods), proceeding as in [1, Theorem 10], one can show that

1/2
{ > h?ll[[ﬂh]]llfv} SV -z,

Fe3r

Finally, following [3] or [30], the jump seminorm contribution in the discontinuous Galerkin method may
be bounded by the energy (semi-)norm even when the above mean value condition does not hold.

7 Application to different numerical methods

In this section, we derive a posteriori error estimates for different numerical methods using Theorem 4.1
and Corollary 5.1, Theorem 5.1, or Corollary 5.2. This consists in specifying a way for constructing the
flux o), € H(div, 2) satisfying (4.3) or (5.10). Remark that this construction is always local. We also
check, via Theorem 6.1, that the local efficiency holds for the derived estimates. This consists in verifying
Assumption 6.2.

7.1 Discontinuous Galerkin method

We apply here Theorems 5.1 and 6.1 for deriving locally efficient a posteriori error estimates for the
discontinuous Galerkin method. For simplicity, we suppose that 7T, consists of simplices and is matching.
The straightforward modifications to general meshes T, can be carried out along the lines of [29] or [28,
Appendix].
Define
Vi = [Pr(Th)]%, (7.1a)
Qn=Pra(Th) N Q, (7.1b)

k > 1. Next, set

an(n,va) =Y (Vun, Vvi)r + > yrhp!([usl, [val)r
TeTh FeoTn

= > {{vuwdnr. vl r + 0 Vvidnr, [un])r}

FeoTn

(7.2)

and

(Vo gn) == > (g, Vvi)r + > ({an} [Vl nr)e. (7.3)

TeTh FeoTy

Here, vp > 0, F € 0Ty, is a parameter (chosen sufficiency large), and § = {—1,0, 1}. The discontinuous
Galerkin method for the problem (2.3a)—(2.3b) reads: find (un,pp) € Vi, x Qp, such that

ah(uh, Vh) + bh("h;ph) = (f, Vh> Vv, € Vh, (74&)

bh(uh, qh) =0 th S Qh. (7.4b)

We now specify o, € H(div, £2) satisfying (4.3). We follow [36,27] in the second-order elliptic setting.
For a recent similar reconstruction for the Stokes problem, we refer to [10]. Our postprocessed flux o,
will belong to the Raviart—Thomas—Nédélec space of tensor functions,

2NTh) = {v), € H(div, 2); v,|r € Z(T) VT € Tu}, (7.5)
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where [ is either kK — 1 or k£ and
2UT) = [P(T)] > + [Py(T))* @ x.

In particular, v, € X'(75,) is such that Vv, |r € [Py(T)]¢ for all T € Ty, v,np € [Py(F)]¢ for all F € Fr
and all T € Tj, and such that its normal trace is continuous, cf. [17].

We prescribe o, € El(ﬁ) locally on all 7' € Ty, as follows: for all F' € Fr and all q;, € [P;(F)]4,
(gpnp, an)r = ({Vun —ppI}np — yphy' [un], an)r, (7.6)

and for all 7, € [Pl—l(T)]dde

(@h:Tp)r = (Vap, —pud,7))7 — 0 Z (wrTpnr, [un])r, (7.7)
FeFr

where wp := £ for F € T and wp := 1 for F' € 9T,%*. Observe that the quantities prescribing the
moments of g, nr are uniquely defined for each side F' € 97}, whence the continuity of the normal trace

of g;,. The two following lemmas are of paramount importance, implying (4.3) an .2), respectively.
f g;,. The two following I fp t import implying (4.3 d (6.2 pectively

Lemma 7.1 (Reconstructed flux in the discontinuous Galerkin method) For T € Ty, let o},
be defined by (7.6)—~(7.7). Then, there holds

(V-a), +£,vi)r =0 Vv, € [P(T)]%, (7.8)

(V-gp)lr = —(ILf)|r, (7.9)

where II; is the L2-orthogonal projection onto [Py(T)|%. Thus, in particular, (4.3) holds.

Proof Let T € Ty, and let vy, € [P(T)]¢. Owing to the Green theorem, it holds

(Vg vi)r = —(a,, Vvi)r + Z (gpnr,vi)p =T + 1.
FeFr

Since Vv |7 € [P1—1(T)]4*4, using (7.7) yields

Ty = —(Vuy —ppL,Vvy)r +0 Z (wrVvpng, [up])r.
FeFr

Furthermore, the fact that vy,|r € [P;(F)]¢ for all F € Fr and (7.6) yield

T, = Z {Vu, — prI}np — 'yphgl[[uh]], nr-npvy)r.
FeFr

Extend vy, by 0 outside of T'. Using the above identities, (7.2), (7.3), and (7.4a) yields
Ty + Ty = —an(un, vi) = bu(vi, pn) = — (£, va)r,
whence (7.8) is valid. Finally, (7.9) results from (7.8) and the fact that V-a,|r € [P)(T)]¢. O

Lemma 7.2 (Approximation property of the reconstructed flux in the discontinuous Galerkin
method) For T € Ty, let o), be defined by (7.6)~(7.7). Then (6.2) holds.
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Proof The proof follows the lines of that in the case of second-order elliptic equations. Recall that in
the present case (S, = Tp), Tr is shape-regular by Assumption 6.1. Using the equivalence of norms on
finite-dimensional spaces, the Piola transformation, and scaling arguments, one shows that for all T € Ty,
and all v, € ZY(T)

2
Up, T
lvpll7 S {hT > ||EhnF|%+< 5 M) } (7.10)
T,€

FeFr By (1)exd || ThllT

Define v, := Vuy, — ppl — g,. Then, using (7.7) and the Cauchy—Schwarz and inverse inequalities, we
get

W z)r =0 > (wrrnr, [wl)e S 100z, e S [Tuadle
FeFr FeFr

Note that (7.6) gives
ayrlr = {Vu, — ppline — yphp Th([us]).

Thus, using (7.10) and the above developments, we have

luall? S {hT > MVun = prIlnp|F+he > vehp TL([ua])]| 7
FeFint FeFr

+10Phst > |[[uh]]|%},
FeFr

whence (6.2) follows. O

7.2 Conforming and conforming stabilized methods

We will show here how locally efficient a posteriori error estimates can be obtained for conforming and
conforming stabilized methods using Corollary 5.2 and Theorem 6.1. We suppose that 7} consists of
simplices and is matching. In this section, V;, C V, so that we systematically set s, = u; throughout
this section.

The conforming methods for the problem (2.3a)—(2.3b) that we consider read: find (up, pn) € Vi x Qn
such that

a(uh, Vh) + b(Vh,ph) = (f, Vh) Vv € Vp, (7.11&)
b(un, qn) =0 Vaqn € Q. (7.11b)

In Figures 7.1-7.2, we illustrate by e the velocity degrees of freedom and by [J the pressure degrees of
freedom. In particular, we consider the Taylor—-Hood family [46,16], where, for k > 1,

Vi = Pri1(T)]* NV, Qn=Py(Tn)NC(2)NQ.
The mini element [7], where
Vi = PYT)I NV, Qun=Pi(Th)NC(R)NQ,

where P?(73,) stands for P1(7;,) enriched by bubbles, is likewise considered. We also include the lowest-
order methods, namely the cross-grid P1—P; element [40], where

Vi = [PUT)4NV, Qn=Pi(Th)NC(N)NQ,



Fig. 7.1 Cross-grid P1—P; (left) and Py iso Po—P; (right) conforming finite elements

Fig. 7.2 P;-P; Taylor-Hood conforming finite elements (left) and P1—P; stabilized conforming finite elements
(right)

with 7,° formed from 7}, as indicated in the left part of Figure 7.1 and the P; iso Po—IP; element [12],
where

Vi = [P1(Th2)]" NV, Qun=Pi(Th) NC(2)NQ,

with 7}, /o formed from 7}, as indicated in the right part of Figure 7.1.
We also consider the conforming stabilized methods written in the general form: find (up,pp) €
V5, X @Qp, such that

a(uh, Vh) + b(Vh,ph) = (f, Vh) Yvy, € Vh, (712&)
sn(Un, Pr; qn) + 0(ap, qn) =0 Yan € Qn, (7.12b)

where
Vi = [Pr(T)]" NV, Qn=Pu(Th) NC(2)NQ,

k > 1.Let 6 > 0 be a parameter. In particular, we consider the Brezzi-Pitkdranta stabilized method [18],
where

sn(Wn,ppiqn) = —6 Z hz(Vpn, Van),
TETh

the Hughes-Franca—Balestra stabilized method [34], where

sn(Un,priqn) =9 Z hi(f + A, — Vpr, V)T,
TeTh

and the Brezzi-Douglas stabilized method [15], where

sp(Up,prign) =90 Z R3{(f — Vo, Van)r + (Aupnr, gn)ornon )
TETh
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7.2.1 Lowest-order continuous pressure elements

We consider here the lowest-order methods with the velocity and pressure spaces formed by continuous
piecewise P; polynomials, namely the cross-grid P;—P; element, the P; iso P,—P; element, and all the
above stabilized methods with & = 1. In the sequel, for the first two methods, 7,7 or 7}/, is to be
substituted systematically in place of 7,. We follow the approach introduced in [38,51,53].

First, we need to introduce some more notation. Let the dual mesh Dy, be formed around each vertex
of T;, using the edge, elements, (and face in 3D) barycenters as indicated in the left part of Figure 7.3.
Let D}l’“t correspond to the interior vertices and D§** to the boundary ones. Finally, we cut each D € Dy,
into a simplicial mesh Sp as indicated in the right part of Figure 7.3; the matching simplicial submesh
Sp, of Ty, (and of Dy,), needed in Assumption 6.1, is created by collecting the local meshes Sp. We denote
by Fp all the sides of a given D € Dy, by S, all the sides of Sy, and by dSI" all the interior sides
of 8. Similarly, for D € Dj,, we will employ the notation dSp for all the sides of Sp, dSHt for all the
interior sides of Sp, and SHK* for all the boundary sides of Sp. The notation introduced in Section 3.1
for the mesh 7; will be used in this section also for the meshes D;, and Sj. For a vertex V € Vy,, let
Yy be the associated IP; finite element “hat” basis function. Let ¥y, i = 1,...,d, be its vector variants
such that ¥i,; = ¢y, ¢y, =0for j=1,....d, j #i.

For a side F € dSi™ such that F' C 9D for some D € Dy, define the normal flux functions

TF(U.}L) = (VUhl’lF)|F. (713)

Note that all such sides lie inside some T' € Ty, cf. Figure 7.3, so that Vuy, is indeed univalued thereon.
The following important property holds for all the above-listed methods.

Lemma 7.3 (Local conservativity of lowest-order conforming methods) Let f be piecewise
constant on Tp, and let (up,pr) € Vi x Qp, be given by (7.11a)—~(7.11b) or by (7.12a)—(7.12b) for any of
the spaces described above. Let Yr(uy) be given by (7.13). Then

Y (Xr(w)npnr,e)r — (Vpne)p + (f.e)p =0,
FeFo (7.14)

i=1,...,d VYD DM,

Proof For a given dual volume D € D}L“t and associated vertex V, fix ¢ € {1,...,d} and consider ¥y, as
the test function vy, in (7.11a) or (7.12a). Recall that the support of ¥y, is given by Ty, all the elements
of Tp, sharing V. Then, under the assumption that f is piecewise constant on Ty,

(£, ¢v.i)z, = (f,e)p (7.15)
easily follows as |[DNT|=|T|/(d+1) for all T € Ty, (cf., e.g., [53, Lemma 3.11]). Next, one derives
(Vup, Vipv i)z, = —(Vupnp,e;)ap
as in [8, Lemma 3] or [53, Lemma 3.8]. Thus, using (7.13),
(Vup, Vipvi)z, = — Z (Yr(up)npnr,e)p.
FeFp

Next, using the assumption p;, € P1(7,) NC(£2), implying pp, € H(£2), the Green theorem, and the fact
that 1y; = 0 on 9Ty, one comes to

b(Yv,i,pn) = —(V-Yvi,pn)s, = (Yvi, Von)z, -

The above right-hand side can still be rewritten equivalently as

(Y¥v,i, Vpr)z, = (€, Vor)p. (7.16)

This follows from the fact that Vpy is piecewise constant on 7j, so we can use the same arguments as
for obtaining (7.15). Thus, combining the above arguments, (7.14) is implied by (7.11a) or by (7.12a).
O



15

Fig. 7.3 Dual mesh D), (left) and a simplicial submesh Sp of D € D, (right) for conforming methods in two
space dimensions

Remark 7.1 (Lemma 7.8) Note that, actually, only (7.11a) or (7.12a), neither (7.11b) nor (7.12b), is
needed in Lemma, 7.3.

We will now define a suitable o, € H(div, {2); more precisely, we will construct o, in the space
X°(S1), see (7.5), on the fine simplicial mesh Sj,. Prior to proceeding to a construction ensuring (5.10)
(that is, a local conservation property on the mesh 7;), let us make the following remark.

Remark 7.2 (Simple construction of @, ) Following [51,53], the simplest construction of g, € X%(S)) is
by
oynp = {Vuynrp} VF € 08y, (7.17)

that is, we merely prescribe the degrees of freedom of g, by averaging the normal components of the
discontinuous approximate flux Vuy over those sides of the mesh S;, which are contained in 97; and
by setting directly Vupng on those sides of the mesh S, which are not contained in 97j. The flux
o, defined by (7.17) (which is consistent with (7.13)) in virtue of (7.14) clearly satisfies (5.10), but
on the mesh D}L“t and not on the mesh 7,. The upper bound would then needed to be written on the
mesh Dy, instead of Ty, following [51,53]. The proof of the approximation property (6.3) is in this case
straightforward: using (7.17) and (7.10), on T € S,

1/2
IVup —ayllr S {hF > |[[Vuh]]nF|%} ;

FeFr

whence (6.3) follows taking into account the fact that [pyInp] is zero since p;, € C(£2).

Let us now define g, € X°(Sy,) such that (5.10) holds, that is, such that the local conservation
property is satisfied on the original mesh 7,. For this purpose, we adapt to the present setting the
approach of [29,53]. It consists in mixed finite element solutions of local Neumann/Dirichlet problems.
A local linear system on each D € Dj, has to be solved here but numerical experiments reveal better
performance of this approach.

Let D € Dy, and I > 0 be given. In this section, [ = 0, but [ > 1 we will required later for higher-
order conforming methods. Let ¥'r(up) be defined by (7.13). We generalize this notation to Y'r(un,pr),
required once again later for higher-order conforming methods. Denote

X4 (Sp) = {v,, € Z'(Sp); vynr = Tr(up,pr) VE € dS™, F C dD}. (7.18)

Let II; denote the L2-orthogonal projection onto [P;(Sy)]¢. We then define o, € X'(Sp,) by solving on
each D € Dy, the following minimization problem:

o,lp = arg inf (IVup, — v, |- (7.19)
Ehegi\](sD)av‘Eh:vPh_Hlf
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Let QQ,O(SD) be as X\ (Sp) but with the normal flux condition v,nF = 0 on F € dS™, F C dD.

Let [P;(S D)]d_ be spanned by piecewise constant vectors on Sp with zero mean on D in each component
when D € Dj™; when D € D**, the mean value condition is not imposed. Then it is easy to show,

cf. [29], that (7.19) is equivalent to finding &, € X (Sp) and rj, € [P} (Sp)]¢ such that

(@n — Vup,v,)p + (th, V-u,)p =0 Yo, € 2%\1,0(8D)a (7.20a)
—(V-ap, dn)p — (£ = Vpn,dn)p =0 Vo, € [P} (Sp)]”. (7.20b)

The existence and uniqueness of a solution to the above system are standard. This system is a mixed finite

element approximation of a local Neumann problem on D € D}Int; the Neumann boundary conditions are

given by the normal flux functions Yz (uy, pp). Note in particular that X'r(uy, pp) satisfy the Neumann

compatibility condition by (7.14). When D € D§**, this system is a mixed finite element approximation of

a local Neumann /Dirichlet problem; homogeneous Dirichlet boundary condition is prescribed on 9DNAS2.
These developments imply.

Lemma 7.4 (Reconstructed flux in lowest-order conforming methods) Let f be piecewise con-
stant on Tp, and let (up,pn) € Vi, X Qp, be given by (7.11a)—(7.11b) or by (7.12a)—~(7.12b) for any of the
lowest-order methods. Let Yp(up,) be given by (7.13) and prescribe o, by (7.19), with Il = 0. Then (5.10)
holds. More precisely,

(V'gh)h‘ = (Vph — f)|T VT € Sp,. (721)

To finish this section, we now check that the approximation property (6.3) holds.

Lemma 7.5 (Approximation property of the reconstructed flux in lowest-order conforming
methods) Let the assumptions of Lemma 7.4 be verified. Then the approxzimation property (6.3) holds.

Proof Let D € Dy, and let g;, € X%(Sp) and rj, € [P5(Sp)]¢ be given by (7.20a)-(7.20b). Extending
the approach of [50, Section 4.1] (cf. also [6,5]) to the vector case, we define a postprocessing ¥, of rj,
such that

Viu|r = (), — Vup)|r VT € Sp, (7.22a)
(rh|71:3_|z‘)T -y i=1,....d, VTeSp. (7.22b)

Note that this is a cheap local procedure. It follows from (7.22a), (7.22b), and (7.20a) that
(VEn,04)p + (Fr, Vovy)p =0 Y, € 2y o(Sp).

Fixing one F' € S, choosing the basis functions of g{mo(s p) having nonzero normal trace only
across this side, and using the Green theorem, we arrive at

([Fn].ei)r =0, i=1,....d. (7.23)

This means that the postprocessed r; has the mean value of the jump in each component equal to zero
on the interior sides of Sp. Alternatively, we can say that ¥; has means of traces continuous on the
interior sides of Sp.

If D € DJ**, we arrive similarly at

(f‘h,ei>F:0, ’iZl,...,d, (724)

for all F' € 0SE*® such that F' C 92. Thus, on exterior sides of Sp belonging to 92, the mean value of
each component of 1, is zero.

Finally, for D € Dit*| we have that (rp,e;)p = 0,i=1,...,d, from the definition of [P§(Sp)]¢. From
this fact and (7.22b), we deduce that

(Fn.ei)p =0, i=1,....d. (7.25)
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Thus, on dual volumes not touching the boundary, the mean value of each component of 1, is zero.
We denote by M(Sp) C [P2(Sp)]¢ the corresponding space of polynomials verifying (7.23), (7.24),
and (7.25). Using the above developments, we have

Vup —allp = sup (Vuy, — g, Vmy,) p. (7.26)
thM(SD), ||th||D:1

We now develop the right-hand side of (7.26). Using the Green theorem, the fact that V.o, = Vpp, — f
for all T € Sp, see (7.21), (7.23) (with T replaced by my,) and the facts that ((Vu, — aj,)nr)|F is in
[Po(F)]? and that [a,nr]|r = 0 for all sides F € OSIt, we arrive at

(Vuy, — oy, Vmy)p

= > A=, V-(Vup — a))r + {(Vu, — o )nr, mp)or}

TeSP (727)
= - Z (mhaf+Auh _vph)T+ Z ([[Vuhnp]],mh>F.
TeSp Feasgjt

We have also used that g;,nr = Vuyng for all boundary sides F' of Sp not included in 042 since
a;, € X%(Sp), and (7.24) for all boundary sides F of Sp included in 862. By the Cauchy-Schwarz

_1
inequality and the inverse inequality |[mp|| 7 S hp? |my |7, we can further estimate

(Vuy, — o), Vmy,)p

1/2 1/2
< { Z h52||mh||2T} { Z hpllf + Auy, —Vph||2T}

TeSD TeSD
1/2 1/2
+{ > h?lmhlfw} { > hFII[[VuhnF]]II%}
Feasipt Feasipt

1/2
§h51|mh|D{ > WFIE+ Ay = VpalF+ Y hF|[[VuhnF]]||%} -
TeSp Feosizt

Recall that, as mp € M(Sp), we have (7.24) or (7.25) for my,. Thus, the discrete Poincaré/Friedrichs
inequality
[mn|[p S hol[Vme|p

can be easily proven along the lines of [49]. Consequently, (6.3) follows from the above estimates, the
fact that [ppIng] = 0 for all F € SB* since py, € C(£2), and (7.26). O

7.2.2 Higher-order continuous pressure elements

The approach of the previous section does not generalize directly to higher-order conforming and con-
forming stabilized methods. When V}, contains piecewise polynomials of degree higher than 1 or f is
not piecewise constant on T, the local conservation property (7.14) does not hold. Here, we extend the
approach of Section 7.2.1 to higher-order elements, namely the Taylor—-Hood elements, the mini element,
and higher-order stabilized methods.

Recall that each dual volume D € D™ is associated with one vertex V € Vi and recall also the
definition v ;, 2 = 1,...,d, of the vector Lagrange basis functions, see Section 7.2.1. For V' € V},, denote
by 8‘?“,“ all the interior sides of the patch Ty,. Then, choosing v;, = 1y, ¢ =1,...,d as the test function
in (7.11a) or (7.12a) and combining with the Green theorem, we obtain the following result.
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Vi Va

Fig. 7.4 Equilibration of the correction terms inside each triangle

Lemma 7.6 (Higher-order conforming methods on a dual mesh) Let (up,pn) € Vi X Qp be
given by (7.11a)—~(7.11b) or by (7.12a)~(7.12b) with Vi, C V and Qp C H(£2). Let the normal flux
functions Yr(up) be given by (7.13). Then

Z (Yr(up)npmrp,e)r — (Vpr,ei)p + (f,ei)p
FeFp

= (f+ Auy, — Vpp,e;)p — (f + Aup, — Vpn, ¥vi)z,,

(7.28)
+ > ([Vung] pvir — Y ([Vurngl,ei)r,
FeaTint Feasiyt
i=1,...,d, VDeDM

Recall that lowest-order methods are locally conservative on the elements D of D}Int, see (7.14). We
can see from (7.28) that higher-order methods are also locally conservative, up to additional correction
terms featuring the element residuals f + Auy, — Vp;, and edge residuals [Vupng]. We now want to
redistribute these correction terms to the normal flux functions ¥z (uy) of (7.13) to obtain new normal
flux functions Y (up, p,) for which (7.14) (and not (7.28)) holds. We achieve this in a spirit similar to
equilibration techniques of [4,23,14].

For D € D}L‘“, the associated vertex V', T € %y, and ¢ = 1,...,d, denote the contribution to the
above correction terms by

my,T,i
= — (f+ Aup — Vpp,€;)rnp + (£ + Aup — Vpp, ¥vi)r (729)
1 1 :
—5 > (Vwnrlyvr + 5 Y ([Vainr] e rop.
Ferpt FeFip

We will speak about these quantities as of “normal fluxes” my, ;. Remark that [Vusng] = 0 on such
sides F' € 9S* which are not contained in 97y, cf. Figure 7.3. Thus, from (7.28) and the above formula,
we have

Z (Yr(up)npnp,e)r — (Vpn,€)p + (f,€;)p + Z my,r; =0,
FeFp TeSy (7.30)

i=1,...,d, VD €D,

For the sake of simplicity, let us define my r; in the same way also for D € D{** and the associated
vertex V.

Consider a fixed T' € T, and i = 1,...,d. We have associated the normal flux my; T, to each of the
vertices Vj of T', j = 1,...,d + 1, cf. Figure 7.4. We now want to equilibrate the normal fluxes my, r;:
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the purpose is to associate to each of the sides F,,, C T, m=1,...,d+1, F,, € S such that F C D
for some D € Dp, a correction normal flux v, ; (in the direction of the fixed normal ng) such that the
following holds (we give an example for d = 2, corresponding to Figure 7.4):

1 1 0 UFl,i thT’i
0 -1 1 VF,,i = mv, T, . (731)
-1 0 -1 UF;3,i mvs T,

The value my, r; represents the total normal flux from the element 7N D; to the elements TN Dy
and T N D3 (where D; are the dual volumes associated with the vertices V;). We clearly want to keep
this total normal flux but to split it into the side normal fluxes vp, ; and vE, ;; we proceed similarly
for my, r; and my;, 1;. The essential feature is that the corrections normal fluxes vf,, ; are univocally
defined for each side F,,,, m =1,...,d + 1, cf. once again Figure 7.4.

It turns out that the system matrix in (7.31) is singular, as the sum of all the row vectors equals
zero. It is, however, easy to check that its rank is equal to d. Fortunately, the right-hand side in (7.31)
is compatible: by the fact that the basis functions vy, ; form a partition of unity on the chosen element

T € Th,
d+1

Z"/’Vj,i|T = e;i|r,
i=1

we easily get
d+1

E my, 1, = 0,
=1

i=1,...,d. Thus, there exists a solution to (7.31). Note that (7.31) is always a system of a fixed small
size (d+1) x (d+1) on each T € Tp, for approximations (7.11a)—(7.11b) or (7.12a)—(7.12b) of any order
k.

Using vp,, ; for each T' € Tj, we can now define new normal flux functions Yr(up,pp) for sides
F € 98" such that F' C 9D for some D € Dy, in a way that (7.14) holds. More precisely, let

(UF(uhvph))i = |F|71/UF,’L'7 1= 17 sy d. (732)

Note that, consequently, (7.31) gives

Z my,r: = Z VpNpNp = Z (vr(up, pr)np-nr,e;)r (7.33)

TeESy FeFp FeFp

for every D € D}l“t and the associated vertex V,i=1,...,d. Let F € 68}1” such that F' C 9D for some
D € Dy, and set

Yr(un,pr) = (Vupnp)|r + vr(un, pr). (7.34)

We then see that (7.30) together with (7.33) and (7.34) implies (7.14). Recall the definition of the
space X'(Sp) by (7.5). For the new normal flux functions Yr(up, pp) of (7.34), we can define the space
X4 (Sp) by (7.18). We then set o), € X'(Sy) by (7.19) or, equivalently, by (7.20a)-(7.20b), where we
put I = k — 1. Note that the equation (7.14) holds for the new normal flux functions Y% (uy, pp), whence
the local Neumann problems are well-posed for D € Di". As in Lemma 7.4, condition (5.10) is satisfied
by this definition of g,.

The last point consists in proving the approximation property (6.3). We proceed for this purpose
as in Lemma 7.5. Let D € Dj,. Firstly, we need to replace the definition (7.22a)—(7.22b), valid in the
lowest-order case, by defining T, € M(Sp) by

5, (1)(VEilr) = (@) = Vu)|r VT € Sp, (7.35a)
Iy, (7)(Thl7T) = rhl7 VI € Sp. (7.35b)
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Here Egh(T) is the LQ—orthogonal projection onto X, (T') and Ily, (7 is the L2-orthogonal projection
onto V(7). The space M(Sp) is a vector variant of that of [6,5]. What is important in the present
analysis is that by (7.35a)—(7.35b), the properties (7.23), (7.24), and (7.25) still hold. More precisely, the
orthogonality in (7.23) and (7.24) holds up to polynomials of order [ in each component and not only
for constants in each component. Similarly to (7.26), we now have

IVun, —o,llp S sup (Vuy, — gy, Vmy,)p,
thI\/I(:SD)7 ||thHD:1

using [54, Lemma 5.4]. Suppose now for simplicity that f € [P;(Sp,)]¢ instead of £ € [Py (Sk)]¢ required
in Assumption 6.1. Then (7.27) still holds but with an additional factor
- Z (vr(un, pp)npnp, my)F
Feasst, Fgan

in the last equality. We thus need to bound this factor, which we do by the Cauchy—Schwarz inequality

and obtain
1/2 1/2
{ > hglllmhII%} { > hFlvF(Uh,ph)II%} -

FedSst, FgoQ FedSst, Fgon

The first term above can be treated as in Lemma 7.5 and we are left with bounding the second one.
Let F € 9S™, let T € Ty, be such that F C T, and let V;, D;, j =1,...,d + 1, be the vertices of T'
and the associated dual volumes. Using (7.29), (7.31), and (7.32), we arrive at

1/2
hy|loe (wn, pa)|| ¢
d+1 d

ShES TS THIEITNE + Awy — Vi eilp, — ¥v,a)rle

j=1i=1
d+1 d

+h2 3T SOS T EITH Ve eilp, — v, e e

FreFipt j=1 i=1
Letie {1,...,d},j€{l,...,d+ 1}, and F' € Fi** be given. Then,
n2|F| " (E + Awp — Vpn, eilp, — v, )7l e
— hy2|F|7Y2|(f + Auy — Vpn, eilp, — v, )7
< hy?|F|7V2 (€ + Auy, — Vipullzlleil o, — v, illr

S h?|FI7V2||f + Auy, — Vps|7| T2
< hrl||f + Aup — V|1

by the Cauchy-Schwarz inequality and the facts that ||e;|p, — Yv, illr < IT|z, |T|2/|F|z < h}/Q, and

hr < hr. Similarly,

2 1FI ([Vunnp ], eilp, — ¥v,0) e l|r
= h*| P72 ([Vunn g, eilp, — v, i)
< W2 IFI 2 [V e o lleil b, — v, il
SIFITY2[Vunp || e lleiln, — v, illr
< b2V upnp ]| e
~ 'YFr h1lF F7y
employing also the inverse inequality [|e;|p, — v, il|Fr S h;,l/2|\ei|pj —v, il|7. Combining all the above

results, we arrive at the conclusion that the approximation property (6.3) holds in the higher-order case
as well.
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Fig. 7.5 P1—Po nonconforming Crouzeix—Raviart finite elements

Fig. 7.6 Dual mesh D}, for the nonconforming Crouzeix—Raviart method in two space dimensions

Remark 7.8 (Standard equilibration techniques) The equilibration techniques of [4,23,14] can be used in
order to produce g;, € El(ﬁ) satisfying (5.10). Under the condition that (6.3) holds, they can likewise
be used in the present framework.

7.3 Nonconforming methods

Here, we derive locally efficient a posteriori error estimates for the lowest-order nonconforming Crouzeix—
Raviart method using Theorems 5.1 and 6.1. We follow the approach of Section 7.2.1. Extension to
higher-order methods is possible along the lines of the approach of Section 7.2.2.

Let T be simplicial and matching and let

Vh = {Vh S [Pl(n)]da <|Ivh]]aei>F = Oa 1= 13 .- 'ada VF € 8771}3
@n :=Po(Tn) N Q,

cf. Figure 7.5. The lowest-order nonconforming Crouzeix—Raviart method for the problem (2.3a)—(2.3b)
reads, see [21]: find (up, pn) € Vi, X Qp, such that

a(up,vp) +0(va,pn) = (£,vi)  Vvi €V, (7.36a)
b(un, qn) =0 Yan € Qn. (7.36b)

Let the dual mesh Dj, be formed around each side of 7, using the element barycenters as indicated in
Figure 7.6; Di'* correspond to the interior sides and D§** to the boundary ones. For a side F' € 97Ty, let
1r be the Py nonconforming finite element basis function. Let 1r;, i = 1,...,d, be its vector variants
such that 1#}71- = Yp, 1#%71- =0for j =1,...,d, j # i. We will also need the fine simplicial mesh Sy,
formed by the d + 1 subsimplices of each T' € Tp,, cf. once again Figure 7.6.

For a side F' € Si™ such that F' C 9D for some D € Dy, define the normal flux functions

Yr(un,pr) := (Vu, —prl)np. (7.37)

Note that, as in the conforming setting of Section 7.2, all such sides lie inside some T € Ty, cf. Figure 7.6,
so that Vuy, and pj are indeed univalued thereon.
As in Lemma 7.3 in the conforming case, the following important property holds.
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Lemma 7.7 (Local conservativity of the nonconforming Crouzeix—Raviart method) Let f be
piecewise constant on Ty, and let (up,pn) € Vi X Qp be given by (7.36a)—(7.36b). Let Yr(uy, pn) be given
by (7.37). Then

> (Ye(un,pu)npnp,e)r + (f,e;)p =0,
FeFp (7.38)
i=1,....d, VDeDy"
Proof For a given dual volume D € D}L“t and associated side F, fix i € {1,...,d} and consider ¥r; as

the test function vy, in (7.36a). Recall that the support of @ r; is given by the two elements sharing F,
denoted by Tr. Then, under the assumption that f is piecewise constant on 7y,

(£, %ri)7 = (f,e)p
easily follows as |[DNT|=|T|/(d+ 1) for all T € Tr. Next, consider T' € Tr. One has
(Vun, Vpri)r = (Vuy, Vir)r = —(Au, ¢r)r + (Vuj, nr, ¢r)or

= (Vuj, nr, ¢Yp)p = (Vuj,nr, 1)p

S Z (Vul, np,1)p (7.39)

F'eFp,F'CT

=— Z (Vupnp,e;)pr,

F'eFp,F'CT

using the fact that Aul, = 0 as u|r € [P1(T)]4, the facts that Vu! -nr is constant on all sides F' € Fr,
that (1,9p)r = 0 for F' € Fr, F' # F, and that (1,9r)r = (1,1)F, and finally once again the Green
theorem and the fact that Auj, = 0. Finally,

b(Yri,pn) = —(VYri,pn)7 = —(Vr, pul) 7
== (VYr,Vinx)r = Y (V(pnx')np, 1)p

TeETr F'eFp,
= E (phe;mp, 1) p = E (prdnp,e;)p
FIeFp F'eFp

by the same arguments as in (7.39) and using that p;, € Py(75). Combining the above results, the
assertion of the lemma follows. 0O

We will now construct g, in the space X°(S},), see (7.5), on the fine simplicial mesh Sj,. For a given
D € Dy, and Yr(up, pp) given by (7.37), let

2%(Sp) == {v), € Z°(Sp); vpnp = Yr(up,py) VF € 0SP, F C 9D}
We define o, € X°(Sy) by solving on each D € Dy, the following minimization problem:

o = ar inf Vu, —ppd —v . 7.40
alp gghegﬂN(sD),vgh:—nofH n—pnd —vyllp (7.40)

Note that as we only have to set the normal fluxes over the side F' associated with the given D € Dy,
the linear system (7.40), contrarily to (7.19), is trivial, with a diagonal d x d matrix; thus a direct flux
formula follows from (7.40). We have the following result.

Lemma 7.8 (Reconstructed flux in the nonconforming Crouzeix—Raviart method) Let f be
piecewise constant on Ty and let (up,pp) € Vi, X Qn be given by (7.36a)—(7.36b). Let o, be defined
by (7.40). Then (4.3) holds. More precisely,

(V-a)lr =—f|r VT € Sp,. (7.41)
Finally, the next result follows along the lines of the proof of Lemma 7.5.

Lemma 7.9 (Approximation property of the nonconforming Crouzeix—Raviart method) Let
the assumptions of Lemma 7.8 be verified. Then the approzimation property (6.2) holds.
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7.4 Finite volume and related locally conservative methods

This section is devoted to the application of the estimates of Theorems 5.1 and 6.1 to finite volume
methods, cf., e.g., [26], and, in a larger sense, to general locally conservative methods such as the mimetic
finite difference one, cf., e.g., [11].

A general locally conservative method for the problem (2.3a)—(2.3b) enables to find the side normal
fluxes X, constant d-dimensional vectors for each side F' € 07}, such that

> Yi(nrmp)+ (fe)r =0, i=1,...,.d VI€ET,. (7.42)
FeFr

Usually, velocities u, € [Po(75)]¢ and pressures py, € Py(75,) are also obtained from the given numerical
scheme.

Suppose first that 7j, is simplicial and matching. In order to obtain a posteriori error estimates in
this case, we define a flux (stress) @, € X°(T), see (7.5), prescribing its degrees of freedom by

Yr

7 VF € Fr, VYT €Ty. (7.43)

o,np|p =
Then (4.3) immediately follows from (7.42), (7.43), and the Green theorem. Consequently, Theorem 5.1
could directly be applied to obtain an a posteriori error estimate for |[|(u — upn,p — pr)|||- As, however,
uy, € [Po(7)]4, Vu, is a zero tensor and such an estimate would be of very little practical value. We
thus, following [50,52], introduce a postprocessed velocity @y, € [P2(75)]¢ satisfying

Viu|r —prllr =aulr VT € T, (7.44a)
(uh|,jf‘r)T :uZ|T7 § = 17“.,d, VTE% (744b)

Note that such a postprocessing is local on each mesh element 7" and is cheap, as we merely prescribe the
degrees of freedom of u;,. The advantage of this postprocessing is twofold: firstly, Vuy, is no more a zero
tensor and it gives a good sense to estimate |||(u—1y, p—pp)|||; secondly, by (7.44a), |Var—ppl—o|lr =
0. Thus, (6.2) (with uy, replaced by 1) is trivially satisfied. This is perfectly in agreement with the “flux-
conforming” nature of locally conservative methods.

Meshes consisting of general polygons (polyhedrons), possibly nonconvex and not star-shaped, and
nonmatching meshes can be taken into account following [52, Section 5]: one introduces a simplicial
submesh Sy of each T' € T}, such that St form a conforming simplicial mesh Sy of £2. One then uses the
validity of the balance equation (7.42) on each T' € T}, in order to solve on the mesh St of each T € Tj,
a local Stokes problem, yielding a side normal flux ¥ for each side F' € 9S;, and uy, € [Po(Sp)]¢ and
pr € Po(Sp). Then the approach of the previous paragraph can be applied directly.

Remark 7.4 (Estimates for the fluxes o, ) Estimates on the error directly in the fluxes o, can be estab-
lished along the lines of the analysis in [54].

7.5 Mixed finite element methods

Here, we derive locally efficient a posteriori error estimates for mixed finite element methods using
Corollary 5.2 and Theorem 6.1. We suppose that 7}, is simplicial and matching.

The mixed finite element method for problem (2.3a)—(2.3b) reads: find (o, un,pr) € X, X Vi X Qp,
the approximation to the stress tensor o, the velocity u, and the pressure p, respectively, such that

(@p, 1) + (ap, Vozy,) =0 V1), € X, (7.45a)

—(Vea,,vi)+ (Vpn,vp) = (£, vp) Vv, € Vy, (7.45Db)
(un, Van) =0 Van € Qn. (7.45¢)
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Here, X, := X"(T5) (see (7.5)), Vi, := [Pu(Th)]% and Qp = Pry1(Tn) N C(2) N Q, k > 0. Brezzi-
Douglas—Marini/Brezzi-Douglas—Durdn—Fortin finite element spaces can also be considered instead of
the Raviart—Thomas—Nédélec ones, as in [45].

In order to obtain an upper bound on the error |[|[(u — upn,p — pr)||l, we could now directly apply
Corollary 5.2. Indeed, o, € X, so that o, belongs to H(div,{2) by definition, and (5.10) follows
from (7.45b). As, however, explained in Section 7.4, such a direct application is not too wise. Thus,
following [6,5,50,54], we once again introduce a cheap elementwise postprocessing of the velocity uy,.
Let T € Ty, and let X, (T) denote the restriction of X, onto T and similarly for V(T). We look for
ap|r € My (T) such that

(Va, —ay,,7,)r =0 VT, € X, (T), (7.46a)
(flh — Up, Vh) =0 Vv € Vh(T> (746b)
Equivalently, the above definition can be expressed as
II5 (1)(Van|r) = oy, (7.47a)
Iy, (r)(An|7) = uplr, (7.47b)

where EE;L(T) is the LQ—orthogonal projection onto X, (T') and Iy, (1) is the L2-orthogonal projection

onto V(T). The spaces M, (T)) are vector variants of those of [6,5]. They are typically [Px1(75)] spaces
enriched by bubbles. Moreover, in the lowest-order case (k = 0), as in (7.44a)—(7.44b) (cf. also (7.22a)-
(7.22D)), following [50], one can easily build @), such that

Vi|r = aylr VT € Th, (7.48a)
%um, i=1,....d, VTeT. (7.48b)

We then apply Corollary 5.2 in order to estimate |||(u—p,p—pp)|||- In the lowest-order case (k = 0) and
constructing a1y, by (7.48a)—(7.48Db), ||[Vay, —o,,||r = 0. Hence in this case, (6.3) is trivially satisfied, once
again in agreement with the flux-conforming nature of mixed finite elements. For k > 1, this property
does not hold exactly anymore. By (7.47a), however, |[Va, — o, |7 is expected to be small and act as
a numerical quadrature. Finally, we note that Remark 7.4 applies here as well. Proceeding as in [54],
rigorous both-sided estimates, also including the estimates on the error directly in the fluxes g, can be
obtained.

8 Numerical experiments

In this section, we illustrate the theory using discontinuous, conforming, and nonconforming methods.
As a discontinuous method, we consider first- and second-order symmetric discontinuous Galerkin (DG)
method of Section 7.1, i.e., (7.2) with § = 1 and k = 1, 2. The conforming example will be computed using
the P; iso Po—P; method of Section 7.2, and the nonconforming example using the Crouzeix—Raviart
method of Section 7.3.

The a posteriori error estimates for these methods are obtained by recovering the equilibrated flux o,
and applying Theorem 5.1 or Corollary 5.2, depending on the method. For the discontinuous Galerkin
method of order k, we recover the flux from the space gk(ﬁ) The error estimator is obtained by
applying Theorem 5.1. For such flux and sufficiently regular f, Lemma 7.1 guarantees superconvergence
for the residual error estimators nr 7. As we will see, this is not true if f is not sufficiently regular. For
the P; iso Po—P; and Crouzeix—Raviart methods, the flux is recovered by solving local minimization
problems (7.19) and (7.40), respectively. In order for Lemmas 7.4 and 7.8 hold, we, as usual, implement
these methods with f replaced by ITof, where Il is the L2-orthogonal projection onto [Po(75)]?. We then
include the data oscillation in the residual error estimators ng 7 (5.8) and (5.3) as Cp rhy||f — Iof]| 7,
which are once again superconvergent for smooth f. The error estimate for the P; iso Po—P; method is
obtained by applying Corollary 5.2 and for the Crouzeix—Raviart method by applying Theorem 5.1.



25

Throughout this section, we will consider domain 2 = (0, 1)2. To evaluate the energy (semi-)norm (3.5)
and the divergence error estimator 7np r of (5.2) the inf-sup constant 5 has to be estimated. Although
the inf-sup constant can be estimated analytically for rectangular domains, we have computed S with
the procedure from [24]. Based on these computations, the value 8 = 0.44 is used.

The load function f is chosen to correspond to the solution

u=Vx(z—1)>2%2""y - 1)*’3, p=z+y—1 (8.1)

For a > 0, the velocity field u has a zero divergence, V-u = 0, and satisfies the zero Dirichlet boundary
condition, u = 0 on 2. The regularity of u is [HzT*(£2)]¢ for a & N and [C°°(£2)]* for o € N.

For all methods, we will first consider problem with a smooth solution. For this purpose, the parameter
a is chosen as a = 1. To compare the error estimator with the exact error in uniform refinement, we
have solved the problem at hand with each of the mentioned methods on a set of uniformly refined
meshes. The error and estimates behavior for the different schemes are visualized in Figure 8.1. The
corresponding effectivity indices, given as the ratios of the estimate over the error, are presented in
Figure 8.2. The different estimators, namely

1/2
{ > 77%} , (8.2)

TETh

with nr = 9~o,7,MoF, 7, MR, 7, and np 7, are plotted in Figure 8.3. For each method, the predicted
superconvergence for the nr 7 part is observed.

The error distributions from refinement step 5 for discontinuous Galerkin methods, the Py iso PPy
method, and the Crouzeix—Raviart method are given respectively in Figures 8.4, 8.5, 8.6, and 8.7. As the
error bounds given in Theorem 5.1 or Corollary 5.2 are not in an elementwise form, we have estimated
the upper bound as

a=wn,p—pu)lI> <2 {nker + 120m.1r + 1or1)* + 0d 1}
TeTh

using also the bound (3.7) on the constant Cs; we have used the term nr = {2(n%¢c 7 + 12(nr. 7 +

nor.r)? + n3 1) }/? as elementwise error estimator. Note that the estimated and exact distributions
match very well.

In the second example, we set o = 0.75, so that the velocity u is in [H!25(£2)]¢ and there is a
boundary singularity on the edge x = 0. In this example, all computations were performed using the
first-order DG method. The problem was solved either on uniformly refined meshes or using a simple
adaptive procedure. In the adaptive routine, we refine ten percents of elements in each step. The elements
are chosen such that they have the largest element estimators 7.

The error behavior in the adaptive and uniform refinement procedures is visualized in Figure 8.8 and
the corresponding effectivity index in Figure 8.9. The adaptive refinement procedure has considerably
faster, optimal with respect to the number of mesh elements, convergence rate compared to the uniform
mesh refinement, where the convergence rate is in agreement with the [H'25(£2)]¢ regularity of the weak
solution (h%-2%). As in the smooth test case, the error estimate overestimates the error, but decreases
with the same speed as the exact error. Figure 8.10 shows the estimated and exact error distributions
in this case. They once again match very well; in particular the boundary singularity is well detected.
The superconvergence of nr,r does not appear anymore as f is not sufficiently regular. For the sake of
completeness, initial, third, and fifth adaptive mesh are visualized in Figure 8.11. One can observe the
expected refinement towards the boundary singularity.

A Appendix: the inf-sup condition on V X Q

We prove in this appendix Lemma 3.1, giving the Babuska—Brezzi splitting for the Stokes problem. We proceed
in five steps.
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Fig. 8.2 Effectivity indices for the first-order DG, second-order DG, P; iso Po—P;, and Crouzeix—Raviart methods

for the smooth test case

1) It is immediate to see from the definition (3.3) of B and (2.2a) of a that for an arbitrary (v,q) € V x Q,

B((V7 q)7 (V7 _Q)) = HVVH2

2) The inf-sup condition (2.4), using a scaling argument, ensures that for a given ¢ € Q, there exists w € V

such that

(4, V-w) > Blla* and [|Vw]| = [|q]-

Recall also the arithmetic-geometric-mean inequality:

—|ab] >

€ 2 1 5
—Za®—=b
@ T

Ya,b € R, Ve > 0.
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case

Using these ingredients and the Cauchy—Schwarz inequality, we obtain

B((v,q)

;(=w,0))

i\

= —(Vv, VW) + (¢, V-w) > — | V][ Vwl]| + B]lq]®
1 2 € 2
5 IVl +5(1 - Slall?).

3) For 6 > 0 arbitrary, we have, using the results of steps 1) and 2),

B((v. ), (v — 3w, —a)) = B(v, ), (v, ~)) + 6B((v. q). (~w,0))
> [V = 5o Vvl + 65(1 = Slal?).
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Choosing § = 8 and € = 1, we arrive at
B > 1 2, 1oy o 1 2
(v, ), (v = Bw, =) > S IVVIF + 56al* = S I(v, I
4) For z = v — fw and r = —q, we thus have

B((v,a), (7)) > 3 lI(v. 0)lI*
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EFFECTIVITY INDEX

195 .

185 \

1 2 3 4 5 6 7 8 9 10
REFINEMENT LEVEL

Fig. 8.9 Effectivity indices for the first-order DG method in the singular test case
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Fig. 8.10 Estimated (left) and exact (right) error distributions for the first-order DG method in the singular

test case

Next,

(2 MII* = V(v = Bw)|* + 8% [lall®

<2|vv|? + 287 Vw|* + 82|lql®
<3([vv* + 82lql*)
=3|(v,)lI>.
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hod in the singular test case

5) Combining the results of the previous steps, we see that for an arbitrary (v,q) € V X @, there exists

11
B((v,q),(z,7)) = Eﬁlll(wq)lll Gz )l

ch is precisely the statement of the lemma.

ferences

Acupou, Y., BERNARDI, C., AND COQUEL, F. A priori and a posteriori analysis of finite volume discretiza-
tions of Darcy’s equations. Numer. Math. 96, 1 (2003), 17—42.

AINSWORTH, M. A synthesis of a posteriori error estimation techniques for conforming, non-conforming
and discontinuous Galerkin finite element methods. In Recent advances in adaptive computation, vol. 383 of
Contemp. Math. Amer. Math. Soc., Providence, RI, 2005, pp. 1-14.

AINSWORTH, M. A posteriori error estimation for discontinuous Galerkin finite element approximation.
SIAM J. Numer. Anal. 45, 4 (2007), 1777-1798.

AINSWORTH, M., AND ODEN, J. T. A posteriori error estimation in finite element analysis. Pure and
Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2000.

ARBOGAST, T., AND CHEN, Z. On the implementation of mixed methods as nonconforming methods for
second-order elliptic problems. Math. Comp. 64, 211 (1995), 943-972.

ARrNOLD, D. N.; AND BrezzI, F. Mixed and nonconforming finite element methods: implementation, post-
processing and error estimates. RAIRO Modél. Math. Anal. Numér. 19, 1 (1985), 7-32.

ARNOLD, D. N., Brezzl, F., AND FORTIN, M. A stable finite element for the Stokes equations. Calcolo 21,

4 (1984), 337-344 (1985).
BANK, R. E., AND ROSE, D. J. Some error estimates for the box method. SIAM J. Numer. Anal. 24, 4

(1987), 777-787.
BEBENDORF, M. A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen 22, 4 (2003),

751-756.
BECKER, R., CAPATINA, D., AND JOIE, J. A dG method for the Stokes equations related to nonconforming

approximations. HAL preprint 00380772, 2009.

BEIRAO DA VEIGA, L., GYRYA, V., LiPNIKOV, K., AND MANZzINI, G. Mimetic finite difference method for
the Stokes problem on polygonal meshes. J. Comp. Phys. 228, 19 (2009), 7215-7232.

BERCOVIER, M., AND PIRONNEAU, O. Error estimates for finite element method solution of the Stokes
problem in the primitive variables. Numer. Math. 83, 2 (1979), 211-224.

BrAESs, D., PILLWEIN, V., AND SCHOBERL, J. Equilibrated residual error estimates are p-robust. Comput.
Methods Appl. Mech. Engrg. 198, 13-14 (2009), 1189-1197.

BRAESS, D., AND SCHOBERL, J. Equilibrated residual error estimator for edge elements. Math. Comp. 77,

262 (2008), 651-672.
Brezzi, F., AND DouqgLAs, JRr., J. Stabilized mixed methods for the Stokes problem. Numer. Math. 53,

1-2 (1988), 225-235.
BRrEzz1, F., AND FALK, R. S. Stability of higher-order Hood—Taylor methods. SIAM J. Numer. Anal. 28,

3 (1991), 581-590.
BrEezz1, F., AND FORTIN, M. Mized and hybrid finite element methods, vol. 15 of Springer Series in Com-

putational Mathematics. Springer-Verlag, New York, 1991.
BREzz1, F., AND PITKARANTA, J. On the stabilization of finite element approximations of the Stokes

equations. In Efficient solutions of elliptic systems (Kiel, 1984), vol. 10 of Notes Numer. Fluid Mech.

Vieweg, Braunschweig, 1984, pp. 11-19.
BurMAN, E.; AND ERN, A. Continuous interior penalty hp-finite element methods for advection and

advection-diffusion equations. Math. Comp. 76, 259 (2007), 1119-1140.



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.
37.
38.
39.
40.
41.
42.

43.

44.

45.
46.

47.
48.

31

CHEDDADI, 1., FUGIK, R., PRIETO, M. 1., AND VOHRALIK, M. Guaranteed and robust a posteriori error
estimates for singularly perturbed reaction—diffusion problems. M2AN Math. Model. Numer. Anal. 43, 5
(2009), 867-888.

CROUZEIX, M., AND RAVIART, P.-A. Conforming and nonconforming finite element methods for solving the
stationary Stokes equations. I. Rev. Francaise Automat. Informat. Recherche Opérationnelle Sér. Rouge 7,
R-3 (1973), 33-75.

DaARI, E., DURAN, R., AND PADRA, C. Error estimators for nonconforming finite element approximations
of the Stokes problem. Math. Comp. 64, 211 (1995), 1017-1033.

DESTUYNDER, P., AND METIVET, B. Explicit error bounds in a conforming finite element method. Math.
Comp. 68, 228 (1999), 1379-1396.

DoBrOwOLSKI, M. On the LBB condition in the numerical analysis of the Stokes equations. Appl. Numer.
Math. 54, 3-4 (2005), 314-323.

DORFLER, W., AND AINSWORTH, M. Reliable a posteriori error control for nonconformal finite element
approximation of Stokes flow. Math. Comp. 74, 252 (2005), 1599-1619.

Droniou, J.;, AND EYMARD, R. Study of the mixed finite volume method for Stokes and Navier-Stokes
equations. Numer. Methods Partial Differential Equations 25, 1 (2009), 137-171.

ERN, A., NICAISE, S., AND VOHRAL{K, M. An accurate H(div) flux reconstruction for discontinuous Galerkin
approximations of elliptic problems. C. R. Math. Acad. Sci. Paris 845, 12 (2007), 709-712.

ERN, A., STEPHANSEN, A. F., AND VOHRALIK, M. Guaranteed and robust discontinuous Galerkin a pos-
teriori error estimates for convection—diffusion-reaction problems. J. Comput. Appl. Math. 2584, 1 (2010),
114-130.

ERN, A., AND VOHRALIK, M. Flux reconstruction and a posteriori error estimation for discontinuous Galerkin
methods on general nonmatching grids. C. R. Math. Acad. Sci. Paris 847 (2009), 441-444.

ERN, A., AND VOHRALIK, M. A posteriori error estimation based on potential and flux reconstruction for
the heat equation. SIAM J. Numer. Anal. 48, 1 (2010), 198-223.

GIRAULT, V., AND RAVIART, P.-A. Finite element methods for Navier-Stokes equations, vol. 5 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, 1986. Theory and algorithms.

HLAVACEK, 1., HASLINGER, J., NECAS, J., AND LOVISEK, J. Solution of variational inequalities in mechanics,
vol. 66 of Applied Mathematical Sciences. Springer-Verlag, New York, 1988. Translated from the Slovak by
J. Jarnik.

HousToN, P., SCHOTZAU, D., AND WIHLER, T. P. Energy norm a posteriori error estimation for mixed
discontinuous Galerkin approximations of the Stokes problem. J. Sci. Comput. 22/23 (2005), 347-370.
HucHEs, T. J. R., FRANCA, L. P., AND BALESTRA, M. A new finite element formulation for computational
fluid dynamics. V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of
the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Engrg. 59, 1
(1986), 85-99.

KARAKASHIAN, O. A., AND PAscAL, F. A posteriori error estimates for a discontinuous Galerkin approxi-
mation of second-order elliptic problems. SIAM J. Numer. Anal. 41, 6 (2003), 2374-2399.

Kim, K. Y. A posteriori error analysis for locally conservative mixed methods. Math. Comp. 76, 257 (2007),
43-66.

LADEVEZE, P., AND LEGUILLON, D. Error estimate procedure in the finite element method and applications.
SIAM J. Numer. Anal. 20, 3 (1983), 485-509.

Lucg, R., AND WOHLMUTH, B. I. A local a posteriori error estimator based on equilibrated fluxes. SIAM
J. Numer. Anal. 42, 4 (2004), 1394-1414.

PAYNE, L. E.; AND WEINBERGER, H. F. An optimal Poincaré inequality for convex domains. Arch. Rational
Mech. Anal. 5 (1960), 286-292.

PIRONNEAU, O. Finite element methods for fluids. John Wiley & Sons Ltd., Chichester, 1989. Translated
from the French.

PRAGER, W., AND SYNGE, J. L. Approximations in elasticity based on the concept of function space. Quart.
Appl. Math. 5 (1947), 241-269.

REPIN, S., AND STENBERG, R. A posteriori error estimates for the generalized Stokes problem. J. Math.
Sci. (N. Y.) 142, 1 (2007), 1828-1843. Problems in mathematical analysis. No. 34.

REPIN, S. I. A posteriori error estimation for nonlinear variational problems by duality theory. Zap. Nauchn.
Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 243, Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor.
Funktsii. 28 (1997), 201-214, 342.

ScorT, L. R., AND VOGELIUS, M. Conforming finite element methods for incompressible and nearly incom-
pressible continua. In Large-scale computations in fluid mechanics, Part 2 (La Jolla, Calif., 1983), vol. 22
of Lectures in Appl. Math. Amer. Math. Soc., Providence, RI, 1985, pp. 221-244.

STENBERG, R. Some new families of finite elements for the Stokes equations. Numer. Math. 56, 8 (1990),
827-838.

TAYLOR, C., AND HoOD, P. A numerical solution of the Navier-Stokes equations using the finite element
technique. Internat. J. Comput. & Fluids 1, 1 (1973), 73-100.

VERFURTH, R. A posteriori error estimators for the Stokes equations. Numer. Math. 55, 3 (1989), 309-325.
VERFURTH, R. A posteriori error estimators for the Stokes equations. II. Nonconforming discretizations.
Numer. Math. 60, 2 (1991), 235-249.



49.

50.

51.

52.

53.

54.

32

VOHRALIK, M. On the discrete Poincaré-Friedrichs inequalities for nonconforming approximations of the
Sobolev space H'. Numer. Funct. Anal. Optim. 26, 7-8 (2005), 925-952.

VOHRALTK, M. A posteriori error estimates for lowest-order mixed finite element discretizations of convection-
diffusion-reaction equations. SIAM J. Numer. Anal. 45, 4 (2007), 1570-1599.

VOHRALIK, M. A posteriori error estimation in the conforming finite element method based on its local
conservativity and using local minimization. C. R. Math. Acad. Sci. Paris 346, 11-12 (2008), 687-690.
VoHRALIK, M. Residual flux-based a posteriori error estimates for finite volume and related locally conser-
vative methods. Numer. Math. 111, 1 (2008), 121-158.

VOHRALIK, M. Guaranteed and fully robust a posteriori error estimates for conforming discretizations
of diffusion problems with discontinuous coefficients. HAL Preprint 00235810, version 2, submitted for
publication, 2009.

VOHRALIK, M. Unified primal formulation-based a priori and a posteriori error analysis of mixed finite
element methods. Math. Comp. (2009). Accepted for publication.



(continued from the back cover)

A581 Wolfgang Desch, Stig-Olof Londen
An L,-theory for stochastic integral equations
November 2009

A580 Juho Kdnnd, Dominik Schotzau, Rolf Stenberg
Mixed finite element methods for problems with Robin boundary conditions
November 2009

A579 Lasse Leskeld, Falk Unger
Stability of a spatial polling system with greedy myopic service
September 2009

A578 Jarno Talponen
Special symmetries of Banach spaces isomorphic to Hilbert spaces
September 2009

A577 Fernando Rambla-Barreno, Jarno Talponen
Uniformly convex-transitive function spaces
September 2009

A576 S. Ponnusamy, Antti Rasila
On zeros and boundary behavior of bounded harmonic functions
August 2009

A575 Harri Hakula, Antti Rasila, Matti Vuorinen
On moduli of rings and quadrilaterals: algorithms and experiments
August 2009

A574 Lasse Leskeld, Philippe Robert, Florian Simatos
Stability properties of linear file-sharing networks
July 2009

A573 Mika Juntunen
Finite element methods for parameter dependent problems
June 2009



HELSINKI UNIVERSITY OF TECHNOLOGY INSTITUTE OF MATHEMATICS
RESEARCH REPORTS

The reports are available at http:/math.tkk.fi/reports/ .
The list of reports is continued inside the back cover.

A586 Kui Du, Olavi Nevanlinna
Minimal residual methods for solving a class of R-linear systems of equations
May 2010

A585 Daniel Aalto
Boundedness of maximal operators and oscillation of functions in metric
measure spaces
March 2010

A584 Tapio Helin
Discretization and Bayesian modeling in inverse problems and imaging
February 2010

A583 Wolfgang Desch, Stig-Olof Londen
Semilinear stochastic integral equations in L,
December 2009

A582 Juho Konnd, Rolf Stenberg
Analysis of H(div)-conforming finite elements for the Brinkman problem
January 2010

ISBN 978-952-60-3198-9 (print)
ISBN 978-952-60-3199-6 (PDF)
ISSN 0784-3143 (print)
ISSN 1797-5867 (PDF)



