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such that
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Real solutions to control, approximation,

factorization, representation, Hankel and Toeplitz

problems

Kalle Mikkola

Abstract: Infinite-dimensional control theory often provides complex solutions to
various control problems. However, in practical applications one would like to have
real solutions. We show that the standard solutions are real given real data.

We call a (possibly matrix- or operator-valued) holomorphic function G real (real-
symmetric) if G(z̄) = G(z) for every z. We show that if such a function can be
presented as G = NM−1, where N, M ∈ H∞, then we have G = NRM−1

R , where
NR, MR ∈ H∞ are real and weakly right coprime. Consequently, if a real function G

has a stabilizing compensator (a function K such that
[

I −K
−G I

]−1 ∈ H∞), then G has
a real doubly coprime factorization and a Youla parameterization of all real stabilizing
controllers.

If a system of the form ẋ = Ax + Bu, y = Cx + Du or of the form xn+1 =
Axn + Bun, yn = Cxn + Dun has real (possibly unbounded, constant) coefficients
A, B, C and D, then the system is stabilizable iff it is stabilizable by a real state-
feedback operator. This holds for both exponential and output stabilization. A real
stabilizing state-feedback operator is then the standard LQR feedback operator, hence
the standard (complex) formulae can be used to find this real solution. Analogous
results are established for other optimization, factorization, approximation and rep-
resentation problems too, covering also standard problems on Hankel and Toeplitz
operators.
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1 Introduction

In much of mathematical infinite-dimensional control theory, only complex for-
mulae for the solutions are obtained. This is particularly natural when complex
function theory or related tools are applied. However, in practical applications
one would usually like to obtain solutions that are real numbers, real sequences,
real-symmetric functions—or that are matrices (or operators) having such en-
tries. We show how for many output-feedback, state-feedback and other control
problems, the standard methods yield real solutions if the original system or
transfer function is real (that is, real-symmetric: G(·) = G(·)). Both state-
space and frequency-domain problems are treated, including optimal control,
stabilization, factorization, approximation and representation.

We cover weakly coprime and Bézout coprime factorizations, Youla parame-
terization of stabilizing compensators (for dynamic output feedback), exponen-
tial stabilization and output-stabilization by state feedback, the LQR problem
and other, possibly indefinite optimal control problems (such as the H∞ mini-
max control), spectral factorization, Nehari, Hartman and Lax–Halmos Theo-
rems, inner-outer factorization etc.

In Section 2 we give the exact definition of “real”. Then we show that if
a real function has a weakly coprime factorization, then it has a weakly co-
prime factorization with real factors. If it has a coprime factorization, then it
has a real doubly coprime factorization and the corresponding Youla formula
parameterizes all real stabilizing controllers, that is, all real functions K such
that

[
I −K
−G I

]−1 ∈ H∞). We recall that also the converse holds [Ino88] [Smi89]
[Mik07a]: if a function has a stabilizing controller, then it has a coprime factor-
ization.

A related problem, namely the existence of “stable” (that is, K ∈ H∞)
real stabilizing compensators, have been studied in, e.g., [MW09], [Wic10] and
[Sta92], and Bass stable rank for real-H∞ is 2 [MW09].

The real versions of Tolokonnikov’s Lemma and of the inner-outer factoriza-
tion were established in [MS07]. For the Corona Theorem, the symmetrization
of any solution yields a solution (i.e., a left inverse). In Section 3 we show that
the same symmetrization method applies to the Hartman and Nehari Theorems
and that other methods yield real spectral factorization. Also further results on
real-symmetric functions are obtained for later use.

Discrete-time systems and state feedback are defined in Section 4: the ”next
state” equation is xn+1 = Axn + Bun with the initial state x0 given, u being
the input sequence, and yn = Cxn +Dun being the output of the system.

In Section 5 we show that if a real system is output-stabilizable by state
feedback, then the “LQ-optimal” state-feedback operator is real. This provides
a real output-stabilizing state-feedback operator for the system. Moreover, if a
real system is power stabilizable, then it is power stabilizable by a real state-
feedback operator. On the other hand, the LQ-optimal control always deter-
mines a ”canonical” weakly coprime factorization of the transfer function; this
canonical factorization is then real too. Corresponding proofs are given in Sec-
tion 6, where analogous ”real results” are given also for indefinite cost functions.
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In Section 7 we show that every real holomorphic function defined on a
neighborhood of the origin has a real realization. Using this and the results of
Section 5 we prove the results of Section 2.

Above we refer to discrete-time systems, but essentially all results of previous
sections hold for continuous-time systems too (where ẋ(t) = Ax(t)+Bu(t) with
x(0) given, and A and B possibly unbounded), as shown in Section 8.

In Section 9 we derive further ”real variants” of standard (complex) Han-
kel and Toeplitz operator results, including the Lax–Halmos Theorem and the
H2

strong inner–outer factorization.
Almost everything presented in this report has been submitted as [Mik10]

except Section 9, Lemma 3.3, Lemma 3.1(iii)–(v), the nonseparable case of
Theorem 3.6, and some additional details in proofs and elsewhere. Links to
some reference articles can be found at www.math.hut.fi/˜kmikkola/research/

Notation. The following notation is defined later in the following order.
Section 2: U, X, Y, Z; B(X, Y), H∞; D, T, N; J , K; Ajk, A; Ω; UR; `2, L2(T; U),
H2(D; U); i =

√−1; AR, AI ; “real”, “real-symmetric”, H∞R , `2R; “proper”, “right
coprime”, “weakly right coprime”, “normalized”.
Section 3: fR, fI ; L∞strong;
Lemma 3.3: UR, Reu, AR and AI generalized to the non-Hilbert (Banach) case.
Section 4: “system” ( A B

C D
), “transfer function” G, “realization”; Z-transform

û; “state-feedback” F ; “closed-loop system”, N , M ; “output-stable”, “power-
stable”.
Section 5: “LQR, LQ”, “Finite Cost Condition”.
Section 6: J , “cost function J (x0, u)”, “J-minimal”; C ,D ; U(x0); “J-optimal”;
UR(x0), Reu; “J-optimal cost operator” P; “J-optimal state-feedback’.
Section 8: C+ and the continuous-time terminology.
Section 9: S, S∗, P+, P−; “Hankel operator”, ΓF ; H2

strong; L2
R(R; U), “real”.

2 Coprime factorization and stabilizing compen-
sators

In this section we define “real” and “coprime”. Then we show that if a real
function G can be written as G = NM−1, where N,M ∈ H∞, then the same
can be done with N and M real and weakly coprime. If Bézout coprime N and
M can be found, then we can simultaneously have them real and Bézout coprime,
and they are contained in a real doubly coprime factorization. Moreover, in the
latter case we obtain the Youla parameterization of all real stabilizing controllers
for the function G. Conversely, if a real function has a stabilizing controller,
then it has a real Bézout coprime factorization and hence also a real stabilizing
controller.

By B(X, Y) we denote the Banach space of bounded linear operators X→ Y; by
H∞(Z) we denote the Banach space of bounded holomorphic functions D→ Z,
where D = {z ∈ C

∣∣ |z| < 1} is the unit disc, X and Y are Hilbert spaces and Z is a
Banach space. We set B(X) := B(X, X), T := {z ∈ C

∣∣ |z| = 1}, N := {0, 1, 2, . . .}.
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In this article U, X and Y denote complex Hilbert spaces with fixed orthonor-
mal bases, say J , E and K, respectively. Then any u ∈ U equals

∑
j∈J ujj,

where uj := 〈u, j〉, and any A ∈ B(U, Y) can be identified with the (possibly
uncountable) matrix (Ajk)j∈J , k∈K, where A 7→ Ajk := 〈Aj, k〉 j ∈ J , k ∈ K
is bilinear and continuous B(U, Y) → C with norm one. Obviously, (Au)j =∑
j Ajkuj (j ∈ J ). However, to make it simple, the reader could consider our

”input/output” dimensions finite (i.e., U = Cn, Y = Cm), as the main results
seem to be new even in that setting.

The conjugate A is well defined through Ajk := Ajk for every j, k. One easily
verifies that αA+B = αA+ B, AB = A B, (A) = A, A

∗
= A∗, A−1 = (A)−1,

‖A‖ = ‖A‖, and (A∗)jk := Akj for every j, k when α ∈ C and A and B are
linear operators or vectors of compatible dimensions. Moreover, for any B(U, Y)-
valued function f we have f ∈ H∞ iff f(·) ∈ H∞. If Ω ⊂ C is a set, then
Ω := {z ∣∣ z ∈ Ω} denotes the set of complex conjugates of the elements of Ω.

By UR we denote the real Hilbert space having the same basis J as U; e.g.,
(Cn)R = Rn and `2(N; C)R = `2(N; R), which stands for square-summable func-
tions N→ R. Note that we use the natural bases of Cn and `2. For L2(T; U) or
H2(D; U) the functions znj serve as the fixed basis, so a function

∑
n z

nun ∈ L2

is real iff un is real (i.e., un ∈ UR) for every n.
Obviously, U = UR + iUR, and u+ iu′ = u − iu′ for every u, u′ ∈ UR. By

Lemma 3.2(g) below, ‖u+ iu′‖2 = ‖u‖2 + ‖u′‖2, so U = UR ⊕ iUR.
Moreover, every A ∈ B(U, Y) can be written (uniquely) as AR + iAI , where

AR := 1
2 (A+A) and AI := −i(A−AR) are real, and then A = AR − iAI . For

example, the matrix A =
[

2 i
−i 2

]
= A∗ ≥ I is positive but not real: AR = [ 2 0

0 2 ],
AI =

[
0 1−1 0

]
.

A basic reference on real operator algebras is [Li03].
A vector or operator A is called real iff its entries are real. A function∑∞
k=0 akz

k is called real iff the coefficients ak are real. An equivalent definition
is given below.

Definition 2.1 Let Ω = Ω ⊂ C be open. A holomorphic function f : Ω →
B(U, Y) is called real (or real-symmetric) if

f(z) = f(z) (z ∈ Ω). (1)

By H∞R (B(U, Y)) we denote set (real Banach space) of real elements of H∞(B(U, Y)).
A sequence is called real if its elements are real. By `2R(N; U) we denote set

(real Hilbert space) of real elements of `2(N; U), i.e., the set of square-summable
real sequences. An operator A ∈ B(U, Y) or vector A ∈ U is called real if A = A,
i.e., if A is real as a constant function.

An element f ∈ H∞(B(U, Y)) is real iff its Fourier coefficients are real (by
Lemma 3.1 below), or equivalently, iff it is the Z-transform of a real sequence
N → B(U, Y). One more equivalent condition is that f(z) is real for real z.
Obviously, f : Ω → B(U, Y) is real iff fjk is real (i.e., real-symmetric) for each
j ∈ J , k ∈ K. In particular, A ∈ B(U, Y) is real iff Ajk ∈ R for each j ∈ J , k ∈
K.
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The requirement of a fixed basis in the definition of ”real” for vectors, matri-
ces or operators is unavoidable—as in the finite-dimensional case too—but very
natural. Indeed, any new ”real” basis—that is, any ”real” coordinate change—
preserves the sets of real vectors, matrices and operators and real-symmetric
transfer functions. Thus, e.g., any basis of `2 consisting of real sequences leads
to an equivalent definition of ”real”.

Next we present coprime factorizations.

Definition 2.2 (Coprime) Let N ∈ H∞(B(U, Y)) and M ∈ H∞(B(U)).
(a) A function defined and holomorphic on a neighborhood of 0 is called proper.
(b) We call N and M right coprime if AM−BN ≡ I on D for some A,B ∈ H∞.
(c) We call N and M weakly right coprime1 [Smi89] [Mik09b] if Mf,Nf ∈
H∞ =⇒ f ∈ H∞ for every proper holomorphic U-valued function f .
(d) We call N and M normalized if [ NM ] is inner (i.e., if ‖ [ NM ]u0‖ = ‖u0‖ a.e.
on T for every u0 ∈ U).

Any real function that can be written as NM−1 with N,M ∈ H∞ can be
written so with N and M weakly right coprime and normalized:

Theorem 2.3 Let N ∈ H∞(B(U, Y)), M ∈ H∞(B(U)), and let M(0) be invert-
ible.

If the function NM−1 is real, then there exist Nc ∈ H∞R (B(U, Y)), Mc ∈
H∞R (B(U)) such that Mc(0) is invertible, NM−1 = NcM

−1
c on a neighborhood

of 0, and Nc and Mc are normalized and weakly right coprime.
If N and M are right coprime, then so are Nc and Mc.

As shown in the proof (Theorems 2.3, 2.4, and 2.5 are proved in Section 7),
we can use the standard LQR constructive formulae for Nc and Mc, using the
Riccati equation.

If dim U < ∞, then the N and M in Theorem 2.3 are weakly right coprime
iff gcd(N,M) = 1 [Smi89] [Mik08b, Theorem 2.16], i.e., iff all common divisors
are units, that is, M = AX, N = BX, A,B ∈ H∞, X ∈ H∞(B(U)) =⇒
X−1 ∈ H∞. Further equivalent characterizations of weak coprimeness are given
in [Mik09b] and [Mik08b]. Naturally, we may replace 0 by any α ∈ D in Theorem
2.3.

Any stabilizable real transfer function is stabilizable by a real compensator:

Theorem 2.4 (Stabilizing compensator) Let G be a real proper B(U, Y)-
valued function. If there exists a proper B(Y, U)-valued function K such that[
I −K
−G I

]−1 ∈ H∞(B(U×Y)), then there exists a real proper B(Y, U)-valued func-

tion K such that
[
I −K
−G I

]−1 ∈ H∞R (B(U× Y)).

Further details on (internal, or dynamic output-feedback) stabilization are
given in, e.g., [Mik07a], [Smi89] and [Vid85].

1Equivalence with the standard definition requires coercivity at 0. This difference is re-
dundant in this article, because in applications we have M(0) invertible. Moreover, in the
operator-valued case this definition is more useful. Note: when f is a holomorphic function
Ω → U, we mean by “f ∈ H∞” that f |Ω∩D is the restriction of an element of H∞(U).
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Using the above results, we can present the Youla parameterization of all
real stabilizing compensators for G.

Theorem 2.5 (Youla parameterization) Let G be a real proper B(U, Y)-valued
function. The condition in Theorem 2.4 holds iff G = NM−1, where M(0) is
invertible in B(U) and N and M are right coprime. If the condition holds, then
N and M can be chosen so that they are real, by Theorem 2.3. Assume that
such real N and M exist.

Then there exist real X,Y ∈ H∞ such that X(0) is invertible and [M Y
N X ]

is invertible in H∞(B(U× Y)). Moreover, all proper B(Y, U)-valued functions K
satisfying

[
I −K
−G I

]−1 ∈ H∞(B(U×Y)) are given by the Youla parameterization

K = (Y +MQ)(X +NQ)−1 (2)

where Q ∈ H∞(B(Y, U)) is such that (X + NQ)−1 is proper. The map Q 7→ K
in (2) is one-to-one. The function K is real iff Q is real.

In some engineering applications one might wish to use (real) non-proper
controllers [CWW01] [WC97], which are parameterized by (2) without the re-
quirement that (X +NQ)−1 is proper [Mik07a, Theorem 1.1 and Section 3].

Remark 2.6 Theorem 2.5 holds even if we remove “X(0) is invertible and”, as
one observes from the proof. Thus, any real extension of [MN ] to an invertible
element of H∞ will do in the theorem. /

In the matrix-valued case (dim U,dim Y < ∞) it is always possible to have
K ∈ H∞ (”stabilization by a stable controller”), but then we cannot require
that K is real unless the real poles and zeros of G satisfy the ”positive on real
zeros” condition (or ”parity interlacing condition”), in which case the problem
was solved in [Wic10] in the scalar-valued case. Unlike in that problem, in the
problems studied in this article the existence of a solution always implies the
existence of a real solution.

The domains of M−1 and G require some attention in the operator-valued
case:

Remark 2.7 (domains of M−1 and G) If dim U <∞ andM(0) is invertible,
then detM and hence also M is invertible on D minus some isolated points. If
dim U = ∞, then one has to be particularly careful with the (possibly discon-
nected) domains of M−1, G and K in Theorem 2.5. One way to solve this
problem would be to consider “=” and “∈” on sufficiently small neighborhoods
of the origin only. However, if G and K are holomorphic on any open and con-
nected Ω ⊂ D, then the equations G = NM−1 and (2) actually hold on Ω. In
particular, then M and X +NQ are invertible on Ω. [Mik07a, Lemma 6.1] /

There are several explicit formulae for N , M , X and Y in the literature,
mostly corresponding to the solutions of Riccati equations corresponding to
an arbitrary output-stabilizable realization of G. We refer below to the most
general formulae and observe that they become real if G is real and we use, e.g.,
the realization of Theorem 7.1.
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Remark 2.8 (Constructive formulae) Explicit formulae for N , M , X and
Y and robust stabilizing compensators are provided in, e.g., [CO06] and [Cur06]
(both in continuous time, but results are analogous in discrete time too [CO07]).

All these formulae are given in terms of a realization Σ of G such that Σ
and its dual are output-stabilizable. A constructive algorithm for finding such
a realization is given in [Mik09b, Remark 5.3]. Moreover, that algorithm and
the formulae mentioned above yield real results if the data is real, by Theorems
7.1 and 5.3. /

3 Real operators

In this section we further elaborate the concept ”real” and obtain related results
used in the later sections. We also show the existence of real solutions to the
Nehari, Hartman, and spectral factorization problems (provided that the data
is real and a complex solution exists).

We first present some equivalent characterizations of real-symmetric func-
tions. Recall that a set is nondiscrete it contains a non-isolated point.

Lemma 3.1 Let f : Ω → B(U, Y) be holomorphic and Ω = Ω ⊂ C open and
connected. Then the conditions (i)–(v) below are equivalent (and (vi) if Ω∩R 6=
∅, and (vii) if 0 ∈ Ω).

(i) f is real (i.e., f = f (̄·));

(ii) f = f (̄·) on a nondiscrete subset of Ω;

(iii) f ′ is real and f(z0) = f(z0) for some z0 ∈ Ω;

(iv) f(r·) is real for some (hence every) r ∈ R \ {0};
(v) f(r + ·) is real for some (hence every) r ∈ R;

(vi) f(z) is real for each z ∈ Ω ∩ R (or on a nondiscrete subset of Ω ∩ R).

(vii) Every Taylor series (at 0) coefficient f̂(n) is real (n ∈ N).

Proof: (Most of this was presented already in [MS07, Lemma 2.1].)
(i),(ii),(iv),(v): The equivalence of (i), (ii), (iv) and (v) is obvious (e.g., if

f = f (̄·) on a nondiscrete subset of Ω, then f = f (̄·) on Ω, hence then f is real).
(iii): Obviously, f ′(z) = limR3h→0 h

−1[f(z + h) − f(z)] = f ′(z) for each
z ∈ Ω if f is real. The converse follows from the Taylor series at z0 (or from the
fact that f(z)− f(z0) =

∫ z
z0
f(ζ) dζ).

(vi): If Ω ∩ R 6= ∅, then (vi) is a special case of (ii), as f (̄·) = f on Ω ∩ R.
(vii): Assume that 0 ∈ Ω. If f is real, then so is f̂(n) for every n ∈ N, as in

Lemma 3.2(b2) below. Conversely, if (vii) holds, then f(z) =
∑
n∈N f̂(n)zn is

real for each real z. �
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Next we record a few more facts on real elements. Here any functions have
a Lebesgue-measurable domain Q ⊂ C such that Q = Q (and the dimensions
are assumed to be compatible in (f)).

Lemma 3.2 (a) The functions (or constants) fR := 1
2 (f + f (̄·)) and fI :=

(−if)R are real and f = fR+ ifI when f is a function (or constant) with values
in C, U or B(U, Y). Moreover, fR and fI are unique, f (̄·) = fR − ifI , and
f(z) = fR(z)− ifI(z).

(b1) If f ∈ H∞(B(U, Y)), then fR(z) =
∑∞
n=0 f̂(n)Rzn and fI(z) =

∑∞
n=0 f̂(n)Izn.

(b2) If f ∈ L1(T;B(U, Y)) is real-symmetric, then f̂(n) := 1
2π

∫ π
−π e−inθf(eiθ) dθ

is real-valued.
(c) The operations f 7→ fR and f 7→ fI are real-linear.
(d) If f is holomorphic or bounded on D or on a right half-plane, then so

are f (̄·), fR and fI .
(e) Moreover, f is real iff f = fR.
(f) If g = gR, then (fg)R = fRg and (gh)R = ghR.
(g) If u, u′ ∈ U are real, then ‖u+ iu′‖2 = ‖u‖2 + ‖u′‖2.
(h) We have ‖fR‖p ≤ ‖f‖p = ‖f (̄·)‖p for f ∈ Lp, p ∈ [1,∞], but this does

not hold pointwise; e.g., if f(z) := 1 + iz, then fR(i) = 1 but f(i) = 0.
(i) If A ∈ B(U, Y) is real, then ‖A‖ = supu=uR∈U, ‖u‖≤1 ‖Au‖Y.
(j) If g is a real one-to-one map of Ω1 onto Ω2, where Ω1,Ω2 ⊂ C, Ω1 = Ω1,

then g−1 is real. Moreover, then a function h : Ω2 → B(U, Y) is real iff h ◦ g is
real.

From (i) we observe that the natural embedding B(UR, YR)→ B(U, Y) defined
by A(u+ iv) := Au+ iAv is a real-linear isometry, so B(UR, YR) can be identified
with the set of real elements of B(U, Y).

Note that fR = Re f if f is a constant (operator), e.g., if f ∈ B(U, Y), but
for f(z) = z we have fR = f 6= Re f . Moreover, if f = ig for some real g, then
fR ≡ 0 even if g is unbounded or nonholomorphic.
Proof of Lemma 3.2 (a)&(c)&(e) Now fR(z̄) = 1

2 [f(z) + f(z)] = 1
2 [f(z) +

f(z)] = fR(z). Moreover, fI = 1
2 (−if+if (̄·)), so fR+ifI = f . Now 0 = 0R+i0I ,

hence 0R = −i0I , so 0R(z) = 0R(z) = −i0I(z) = ī0I(z) = i0I(z) = −0R(z),
hence 0R(z) = 0 = 0I(z), for every z. Therefore, if fR + ifI = g + ih for
some real g, h, then fR − g = 0 = fI − h. The maps f 7→ fR, fI are obviously
real-linear. The rest is clear and (e) is trivial.

(b1) The subsums form convergent series [HP57, p. 97], so this follows from
the uniqueness of fR, fI (see (a)).

(b2)
∫ 0

−π · · · =
∫ π
0

einαf(e−iα) dα =
∫ π
0
· · ·, hence

∫ 0

−π +
∫ π
0

is real.
(d) Holomorphicity follows (locally) from (b1) and translation.
(f) We have f(z)g(z) + f(z)g(z) = [f(z) + f(z)]g(z).
(g) Now ‖u+ iu′‖2 =

∑
k |uk + iu′k|2 =

∑
k |uk|2 +

∑
k |iu′k|2 = ‖u‖2 +‖u′‖2.

Thus, U = UR ⊕ iUR, where UR is the real Hilbert space {u ∈ U
∣∣u = uR}.

(h) Obviously, M := ‖f‖p = ‖f (̄·)‖p = ‖f (̄·)‖p. Consequently, ‖fR‖p ≤
1
2 (M +M) = M , by Hölder’s Inequality.
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(i) Set T := A|UR
. Now A is isomorphic to A′ := [ T 0

0 T ] ∈ B(U2
R, Y

2
R), by (g),

and ‖A′‖ = max{‖T‖, ‖T‖} = ‖T‖.
(j) Now Ω2 = Ω2, because g(z̄) = g(z). Set F := g−1. For every g(z) ∈ Ω2,

we have F (g(z)) = F (g(z̄)) = z̄ = F (g(z)). Moreover, if h is real, then
h(g(z̄)) = h(g(z) = h(g(z)), so h ◦ g is real. The converse is analogous, QED.

�

Recall that f ∈ L∞strong means that fu ∈ L∞ for every u. We set ‖f‖L∞strong
:=

supu∈U, ‖u‖≤1 ‖fu‖∞. In the following lemma we establish some additional
results without requiring U and Y to be Hilbert spaces; e.g., U = H∞, UR = H∞R ,
or U = L∞strong, UR = L∞strong,R.

Lemma 3.3 (Case: U, Y Banach spaces) Even if we allowed U, Y to be ar-
bitrary complex Banach spaces, the following would hold for any real Banach
spaces UR and YR such that UR + iUR = U, UR ∩ iUR = {0}, YR + iYR = Y,
YR ∩ iYR = {0}.

(a) Then each u ∈ U has a unique representation a + ib with a, b ∈ UR, so
Reu := a, Imu := b and ū := a − ib are well defined, bounded real-
linear operations. Obviously, u = u, Reu = 1

2 (u + u), Imu = Re(−iu),
‖ Im ‖ = ‖Re ‖.

(b) We call A ∈ B(U, Y) real and write A ∈ BR(U, Y) if Au ∈ YR for every
u ∈ UR. The natural mapping T 7→ TC given by TC(u + iv) := Tu + iTv
is a real-linear isomorphism of B(UR, YR) onto BR(U, Y) and B(UR, Y) into
B(U, Y), and ‖T‖ ≤ ‖TC‖ ≤ 2‖Re ‖U→UR‖T‖.

(c) We have AR, AI ∈ BR(U, Y), where ARu := Re(AReu) + iRe(A Imu) (u ∈
U), AI := −i(A − AR), for any A ∈ B(U, Y). If A′R, A

′
I ∈ BR and Au =

ARu+ iAIu for every u ∈ UR, then A′R = AR and AI = A′I . The mapping
A 7→ AR is real-linear and bounded. Finally, A = AR iff A is real. We
set A := AR − iAI .

(d) Lemma 3.1 also holds in this Banach space setting, and so do Lemma
3.2(a)–(f),(j).

(e) Let now U, Y be Hilbert spaces. Let T ∈ B(UR,L∞R (Y)), and set TC(u +
iv) := Tu + iTv. This is a real-linear isomorphism B(UR,L∞R (Y)) →
BR(U,L∞(Y)), and ‖T‖ ≤ ‖TC‖ ≤ 2‖T‖.
Moreover, there exists f ∈ L∞strong,R(T;B(U, Y)) such that fu = TCu a.e.
for every u ∈ U and ‖T‖ = supT ‖f(z)‖UR→Y ≤ supT ‖f‖B(U,Y) = ‖TC‖.

Proof: (a) If un → 0 and Reun → c ∈ UR, as n → +∞, then i Imun =
un − Reun → 0 − c = −c ∈ UR ∩ iUR = {0}, hence Re is bounded, by the
closed-graph theorem.

(b) (This definition of ”real” is obviously an extension of that in Definition
2.1.)
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Now TC is bounded, by the closed-graph theorem, because if un + ivn → 0,
where un, vn ∈ UR for every n, then un, vn → 0, because Re, Im are bounded,
so then TC(un + ivn)→ 0. Trivially, ‖T‖ ≤ ‖TC‖, and for w := u+ iv we have
‖TCw‖ = ‖Tu + iTv‖ ≤ ‖T‖‖u‖ + ‖T‖‖v‖ ≤ 2‖T‖‖Re ‖‖w‖. (We may have
‖T‖ < ‖TC‖, see (e) below.) Conversely, if A ∈ BR(U, Y), then A|UR

∈ B(UR, YR).
(c) For u ∈ UR we have ARiu = iReAu = iARu, so AR is complex-

linear, hence so is AI . For u ∈ UR we have ARu = ReAu ∈ YR and AIu =
−i(Au − ARu) = −i(Au − ReAu) = −ii ImAu ∈ YR, hence AR, AI ∈ BR. Ob-
viously, ‖AR‖ ≤ 2‖Re ‖2‖A‖, and AR and AI are uniquely determined by their
restrictions to UR. But A is real iff Au = ReAu = ARu for every u ∈ UR (or
equivalently, Au = ARu for every u ∈ U).

(d) Same proofs apply.
(e) The third sentence is given in (b), because ‖Re ‖U→UR ≤ 1. Replace

X by XR (= our UR) in formula (10) of the proof of [Mik08a, Theorem 2.5]
R by T and to obtain F : T → B(UR, Y) such that supT ‖F‖ ≤ ‖T‖ (ob-
viously, supT ‖F‖ ≥ ‖T‖ too) and Fu = Tu a.e. for every u ∈ UR. Set
f(z) := F (z)C ∈ B(U, Y) (see (b)) for every z ∈ T to get f(z)u = (TCu)(z)
a.e. for every u ∈ U, so f ∈ L∞strong. Now, ‖f(z)‖UR→Y = ‖F (z)‖ for every z,
so the last claim holds (by Lemma 3.4(d), the inequality may be strict). For
u ∈ UR we have fu = Tu ∈ L∞R , hence f ∈ L∞strong,R (Lemma 3.4(b)). �

Our Nehari result and some others are based on the following.

Lemma 3.4 (L∞strongL∞strongL∞strong) (a) If f : T → B(U, Y) is Bochner-measurable, strongly
measurable, L∞ or L∞strong, then so are f̄ , f (̄·), f (̄·), fR and fI .

(b) A function f ∈ L∞strong(T;B(U, Y)) is real iff fu is real for all u ∈ UR.

(c) Moreover, we have ‖fR‖L∞strong
≤ ‖f‖L∞strong

for any f ∈ L∞strong.

(d) However, if dim U ≥ 2 and dim Y ≥ 1, then there exists a real-symmetric
f ∈ L∞strong(T;B(U, Y)) such that ‖f‖L∞strong

> supu=uR∈U, ‖u‖≤1 ‖fu‖∞.

(Claim (d) can be written as ‖f‖B(U,L∞(Y)) > ‖f‖B(UR,L∞R (Y)), where LpR is
the real-symmetric subset of Lp. In Corollary 9.1(4.3) it will be shown that
‖f‖B(U,L∞(Y)) = ‖f‖B(L2

R(U),L2
R(Y)). Claim (b) means, of course, that some function

(namely fR) in the equivalence class of f is real-symmetric if the condition
holds.)
Proof: Note: the domain of f could as well be rT + s or r+ iR for any r, s ∈ R
(the same proofs apply mutatis mutandis; use Cayley transform for (d)).

(a) The first paragraph is straight-forward. E.g., if, for each u ∈ U there
exist countably-valued and measurable functions gn : T→ Y (n ∈ N) such that
gn → fu a.e. as n → +∞, then ḡn → f̄ ū a.e. Since ū ∈ U was arbitrary, f̄ is
then strongly measurable. (All operations are well defined: if fu = gu a.e. for
each u ∈ U, then, e.g., fu = fu = gu = gu a.e. for each u.)

(b) If fu is real for all u ∈ UR, then fu = (fu)R = fRu, by Lemma 3.2(f),
for u ∈ UR, so then f = fR. The converse is obvious.
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(c) Assume that ‖f‖L∞strong
< ∞. By [Mik09a, Proposition 2.2], we can

redefine f so that M := supz∈T ‖f(z)‖ = ‖f‖L∞strong
(but fu is unchanged a.e.,

for each u ∈ U). Now ‖fR(z)u‖ = 1
2 (‖f(z)u‖+‖f(z)u‖) ≤M‖u‖ for each u ∈ U,

hence ‖fR‖L∞strong
≤M , QED. (Alternatively, use Lemma 3.3(e).)

(d) The norm of f(z) :=
[
1− z2 1 + z

]
is 2 + 4(Im z)2. Set w := f(i) =[

1 + i 2
]
. Then f ∈ L∞(T;B(R2,R)) and ‖f‖∞ = |f(i)| =

√
6, but |wu| <

|w| · |u| for u ∈ R2, because w 6∈ R2×1. Therefore, supu∈R2, |u|≤1 ‖fu‖∞ <
√

6.
�

Thus, we have proved that the Nehari (or Page) Theorem provides a real
solution for real functions.

Corollary 3.5 (Nehari) If f ∈ L∞strong(T;B(U, Y)) is real, then ming∈H∞ ‖f −
g‖L∞strong

is achieved by a real g.

Indeed, if g is minimizing, then so is gR, because f = fR and ‖f − gR‖ ≤
‖f−gR− igI‖, by Lemma 3.4(c), where gR, gI are as in Lemma 3.2(a). The fact
that a minimizing g exists, is well known [Pag70, Theorem 4] [Pel03, Theorem
2.2 and p. 70] [Mik07c, Corollary 4.5].

However, this “symmetrization” method does not similarly apply to the
Adamjan–Arov–Krein problem (as given by, e.g., [Pel03, Theorem 1.1] or [Mik07c,
Theorem 4.6]) for n > 1, because, e.g., f(z) = 1/(1 − iz/2) has Hankel rank 1
(since f(z) =

∑∞
k=0(i/2)kzk), but fR has Hankel rank 2. We omit the straight-

forward details.
Nevertheless, [BMS05, Theorems 4.1 and 3.3] yield constructive formulas for

real factors and real solutions to the Nehari–Takagi problem if the data A, B,
C and G are real (because then so are LC , LB , V , Λ, so K is real if(f) we take
the parameter Q real).

We observe that also the real version of Hartman’s Theorem holds. Indeed, if
f ∈ L∞strong(T;B(U, Y)) has a compact ”Hankel operator” Γf (see Section 9), then
Γf = Γg for some continuous g : T → BC(U, Y), where BC stands for compact
operators, by Hartman’s Theorem ([Pel03, p. 74] [Pag70, Sections 4&6] [Mik07c,
Theorem 4.7]). Moreover, gR has the same properties if f is real, because then
the coefficients f̂(n) are real, by Lemma 3.2(b2), and f̂(n) = ĝ(n) (n ≥ 1), by
Hartman’s Theorem. As ĝ(n) = ĝR(n) + iĝI(n) is real, we have ĝR(n) = ĝ(n) =
f̂(n) (for n ≥ 1). By Theorem 3.4(c) and continuity, ‖gR‖∞ ≤ ‖g‖∞.

Next we present a standard result on spectral factorization with the addi-
tional fact that the factor can be taken real if the original function is real and
coercive.

Theorem 3.6 (Spectral factorization) Let F ∈ H∞(B(U, Y)). If ε > 0 and
F ∗F ≥ εI a.e. on T, then there exists G ∈ H∞(B(U)) such that G−1 ∈ H∞ and
F ∗F = G∗G a.e. on T. If F is real, then we can ensure that G is real too.

Proof: 1◦ Separable case: If F = fg is an inner-outer factorization with g ∈
H∞(B(U, W)) for some separable Hilbert space W, then g∗g = F ∗F a.e. on T, and
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we know that g is invertible in H∞ because of the assumption on F (see, e.g.,
the proof of [Sta97, Lemma 18], which is based on [RR85]).

Since g(0) is invertible, we have dim W = dim U ≤ ∞, so there exists a
(unitary) operator E ∈ B(W, U) that maps the fixed basis of W to that of U. Set
G := Eg ∈ H∞(B(U)) to complete the proof (if F is real, then we can have g
(and f) real, by [MS07, Theorem 2.5]; obviously, E is real and hence so is then
G).

2◦ General case: Work analogously to ”2◦” of the proof of [Mik09a, Theo-
rem 4.3] to obtain the general case from the separable case just proved (using
Theorem 9.2 below; it is independent of this). Alternatively, 1◦ above could be
modified using Theorem 9.2. �

However, if F = i = G, then GR = 0, so the symmetrization GR of a solution
is not always a solution to F ∗F = G∗G.

Also many other standard results on Toeplitz and Hankel operators can be
reproved for the real case, using the tools developed here, as shown in Section 9.

4 Discrete-time systems

We first recall some details on linear, time-invariant discrete-time systems. See,
e.g., [Mik02], [OC04], [Sta05] or [Mik09b] for further details.

A discrete-time system on (U, X, Y) is a quadruple
(A B

C D

) ∈ B(X× U, X× Y).
For each (square-summable) input (or control) u ∈ `2(N; U) and initial state
x0 ∈ X, we associate the state trajectory x : N → X and output y : N → Y
through {

xk+1 = Axk +Buk,

yk = Cxk +Duk,
k ∈ N. (3)

The transfer function G := D + C(·−1 − A)−1B = D + ·C(I − ·A)−1B of(A B

C D

)
is holomorphic r−1D → B(U, Y), where r−1D = {z ∈ C

∣∣ |z| < r} and
r := r(A) is the spectral radius of A. We call

(A B

C D

)
a realization of G. The

Z-transform û of u : N → U is defined by û(z) :=
∑
n z

nun (for those z for
which the sum converges absolutely). For x0 = 0, we have ŷ = Gû on D∩ r−1D
for every u ∈ `2(N; U), hence the name ”transfer function”.

State feedback means that, for some state-feedback operator F ∈ B(X, U),
we use the function u := Fx + u	 as the input, where u	 : N → U denotes
an exogenous input (or disturbance) u	. Thus, equation (3) together with
u = Fx + u	 defines the “closed-loop system” that maps x0 and u	 to x and
[ yu ]. The solution is given by (in place of

(A B

C D

)
) A+BF B[

C +DF
F

] [
D
I

]  , (4)
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The transfer function of the closed-loop system (4) is obviously given by[
N(z)
M(z)

]
=
[
D
I

]
+
[
C +DF

F

]
(z−1 −A−BF )−1B. (5)

We conclude from the above that G = NM−1. Later we shall see that if F
is chosen to be the “LQ-optimal feedback” and

(A B

C D

)
is real, then N and

M are real and weakly coprime. The same holds even if we use the standard
normalization. This will lead to a proof of Theorem 2.3.

The system (3) is called output-stable if y ∈ `2 whenever x0 ∈ X and u = 0;
power-stable if x ∈ `2 whenever x0 ∈ X and u = 0. The system (3) is called
output-stabilizable (resp. power-stabilizable) if the system (5) is output-stable
(resp. power-stable) for some F ∈ B(X, U).

5 LQ-optimal control

We observe here that the “LQ-optimal” state-feedback operator is real if the
system is real, and, consequently, any output- or power-stabilizable system can
be output- or power-stabilized by a real state-feedback operator. The proofs
will be given in Section 6. We assume that

(A B

C D

) ∈ B(X× U, X× Y), as above.
The LQR problem (Linear Quadratic Regulator problem) means, given an

initial state x0 ∈ X, finding u ∈ `2 such that the LQR cost function ‖y‖22 + ‖u‖22
is minimized. It is probably the most popular control problem in the literature.
In this section we shall now see how the solution of this problem is connected
to stabilization by (the LQ-optimal) state feedback.

It is well known that if a system can be formally stabilized, then it can
be stabilized by state feedback, as stated in Theorem 5.1 below. By formal
stabilization we mean the Finite Cost Condition:

for each x0 ∈ X there exists u ∈ `2(N; U) such that y ∈ `2. (6)

If
(A B

C D

)
are real, then, by linearity, an equivalent condition is:

for each real x0 ∈ X there exists u ∈ `2(N; U) such that y ∈ `2. (7)

We could require the u in (7) to be real-valued, by Theorem 5.1 below. By (3),
then x and y become real too.

Theorem 5.1 Assume the Finite Cost Condition (7). Then there exists a
unique F ∈ B(X, U) such that for each x0 ∈ X the (state-feedback) input given by
uj = F (A+BF )jx0 (j ∈ N) strictly minimizes the function ‖y‖22 + ‖u‖22.

If A, B, C and D are real, then so is F . The functions N and M in (5) are
weakly right coprime and F is output-stabilizing.

(Theorems 5.1 and 5.3 will be proved after Lemma 6.4 below, although only
F etc. being real is new.)
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The Finite Cost Condition is trivially also necessary to make to function
‖y‖22 + ‖u‖22 finite; moreover, it is equivalent to output-stabilizability. The
operator F is called the LQ-optimal state-feedback operator.

Thus, if a real system is output-stabilizable, then it is output-stabilizable by
a real state-feedback operator (namely the LQ-optimal one), which, in addition,
makes the closed-loop transfer functions H∞ and weakly right coprime.

It will be shown in [Mik07b] that this LQ-optimal operator F is also has
the best possible stabilizability properties under many alternative stabilizability
assumptions (e.g., that operator might make the state x bounded or even xj → 0
as j → +∞, for every initial state x0 and every external disturbance input u	 ∈
`2(N; U) to the closed-loop system (4), whenever achievable by some feedback).

If also the dual system
(
A∗ C∗

B∗ D∗

)
is output-stabilizable, then the functions

N and M in Theorem 5.1 are right coprime [CO06].
Theorem 5.1 implies the following (set C = I and D = 0 to have y = x and

get the claim in parenthesis below).

Corollary 5.2 (stabilizing feedback) Assume that A, B, C and D are real.
If the system is output-stabilizable (resp. power stabilizable), then it is output-
stabilizable (resp. power stabilizable) by a real state-feedback operator.

It is well known that the Finite Cost Condition (6) can be verified by solving
the LQR Riccati equation given below and that the solution of this equation
determines the LQ-optimal F .

Theorem 5.3 The system
(A B

C D

)
satisfies the Finite Cost Condition (6) iff

there exists a nonnegative solution P ∈ B(X) of the LQR Riccati equation

A∗PA− P + C∗C (8)

= (C∗D +A∗PB)(I +D∗D +B∗PB)−1 (9)
(D∗C +B∗PA). (10)

Assume (6). Then there exists a smallest nonnegative solution Pmin and the
LQ-optimal state-feedback F ∈ B(X, U) is given by

S := I +D∗D +B∗PminB, (11)

F := −S−1(D∗C +B∗PminA). (12)

Moreover, if A, B, C and D are real, then so are Pmin, S and F . Thus, then
also S−1/2 and the functions NS−1/2 and MS−1/2 are real; these two functions
are also weakly coprime and normalized.

Recall from ((5)) that G = NM−1. Also G = NM−1 is a weakly coprime
factorization but not necessarily normalized.

Most of this section can be considered as well known. Indeed, for some
less general settings there are LQR and H∞ control results for real Hilbert
spaces in the literature. For (continuous-time; cf. Section 8 below) Pritchard–
Salamon systems such results are given in [vK93]. The fact that the LQ-optimal
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F determines a weakly coprime factorization was established in [Mik09b]. In
the case of finite-dimensional systems this has been well known, because, for
rational functions, weak coprimeness is equivalent to coprimeness.

6 Optimal control

In this section we shall prove the results of Section 5 in a more general setting,
covering also indefinite cost functions in place of the above “LQR cost function”
‖y‖22 +‖u‖22. The main result of this section is that in real problems the optimal
cost operator is real (and so is the optimal state feedback operator etc.).

In this section we assume that operators
(A B

C D

) ∈ B(X × U, X × Y) and a
“cost operator” J = J∗ ∈ B(Y) are given.

We define the cost function (to be optimized) by

J (x0, u) := 〈y, Jy〉`2 =
∞∑
j=0

〈yj , Jyj〉Y (x0 ∈ X, u ∈ `2(N; U)). (13)

Recall that the output y is defined by (3). Thus, if J = I, we get J (x0, u) =
‖y‖22. By extending C and D (by, e.g., 0 and I and/or I and 0, respectively),
we can add copies of u and/or x to the output. Therefore, the cost (13) is very
general and covers the LQR cost ‖y‖22 + ‖u‖22 (but (13) may also be indefinite).

Given an initial state x0 ∈ X, an input v ∈ `2(N; U) is called J-minimal for
x0 if J (x0, v) ≤ J (x0, u) for every u ∈ `2(N; U).

Denote the maps x0 7→ y and u 7→ y by C := CA· and D , respectively. Note
that

(Cx0)k = CAkx0 and (Du)k =
∞∑
j=0

CAjBk−j−1 +Duk for each k ∈ N. (14)

Admissible inputs for x0 are denoted by U(x0) := {u ∈ `2(N; U)
∣∣ y ∈ `2}. An

input u ∈ U(x0) is called J-optimal for x0 if 〈y, JDη〉`2 = 0 for each η ∈ U(0).
One can easily verify that a control is J-optimal iff it is a zero of the Fréchet

derivative of 〈y, Jy〉`2 [Mik02, Lemma 8.3.6]. Moreover, if J ≥ 0, then J-optimal
and J-minimal are equivalent, but in minimax problems a J-optimal control can
correspond to a saddle point such as the ”H∞ minimax control” [Sta98] [Mik02].

By UR(x0) we denote the set of real elements of U(x0). Given a sequence
u : N→ U, by Reu := 1

2 (u+ u) we denote the sequence of real parts of u.
We leave the straightforward proof of the following result to the reader.

Lemma 6.1 Assume that
(A B

C D

)
is real. If x1, x2 ∈ X are real, then U(x1 +

ix2) = U(x1) + iU(x2) = UR(x1) + iUR(x2) (the set U(x1 + ix2) is empty if any
of the other four sets is empty). Moreover, if x0 ∈ X is real and u ∈ U(x0), then
Reu ∈ UR(x0).

The following operator is very important in applications. It is usually ob-
tained as the (stabilizing) solution of the Riccati equation corresponding to the
problem, which is a generalization of (8)–(10).
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Definition 6.2 (PPP) We call P ∈ B(X) the J-optimal cost operator for
(A B

C D

)
if, for each x0 ∈ X, there exists at least one J-optimal control u with J (x0, u) =
〈x0,Px0〉X.

It follows that J (x0, u) = 〈x0,Px0〉X for every J-optimal control u for x0

[Mik06]2; in particular, P is unique.
We can now prove that P is necessarily real in real problems.

Theorem 6.3 (P is real) Assume that A, B, C, D and J are real. If x0 ∈ X
is real and u ∈ `2(N; U) is J-optimal for x0, then Reu is J-optimal for x0.
Moreover, the J-optimal cost operator, if any, is real.

Proof: 1◦ Assume that x0, u1 and u2 are real and u = u1 + u2. By Lemma
6.1, we have U(0) = {η1 + iη2

∣∣ η1, η2 ∈ UR(0)}, so u is J-optimal for x0 iff
〈y, JDη〉 = 0 for each η ∈ UR(0), by linearity. But y = y1 + iy2, where

y1 := Cx0 + Du1, y2 := Du2. (15)

Obviously, y1 and y2 are real and 〈y, JDη〉 = 〈y1, JDη〉+ i〈y2, JDη〉, hence
u is J-optimal for x0 iff u1 is J-optimal for x0 and u2 is J-optimal for 0.

2◦ Let x1, x2 ∈ X be real. If uk is real and J-optimal for xk (k = 1, 2), then
〈x1,Px2〉 = 〈Cx1 + Du1, J(Cx2 + Du2)〉 ∈ R (expand 〈x1 + x2,P(x1 + x2)〉 to
obtain this; use the fact that u1 + u2 is J-optimal for x1 + x2). Since x1 and x2

were arbitrary, P is real. �

We call F ∈ B(X, U) a J-optimal state-feedback operator if the corresponding
feedback input k 7→ F (A+BF )kx0 (i.e., the input u = Fx) is J-optimal for x0,
for every x0 ∈ X (see above (4)). In real problems, F is real:

Lemma 6.4 (F is real) Assume that A, B, C, D and J are real. If F is a
J-optimal state-feedback operator and the J-optimal control for 0 is unique, then
F is real.

Proof: Since the J-optimal control for 0 is unique, so is that for any x0 ∈ X
(since the difference of two J-optimal controls for x0 is J-optimal for 0). Let a
real x0 ∈ X be given. Then u := F (A + BF )·x0 satisfies u = Reu, by unique-
ness and Theorem 6.3, hence u is real, hence u0 = Fx0 is real. Since x0 was
arbitrary, F is real. �

Proof of Theorems 5.1 and 5.3 This follows from [Mik09b, Theorem 1.2 &
Proposition 3.1] except that the realness of P and F and the uniqueness of F
are from Theorem 6.3 and Lemma 6.4 (with [ I 0

0 I ], [C0 ], [DI ] and Y × U in place
of J , C, D and Y, respectively); by (11), also S is real; by (5) also N and M
are real (also S−1/2 is real, by [Chr02, Lemma A.6.7], because S ≥ 0 and S is
real). �

2Actually, [Mik06] treats the continuous-time case but the proof is analogous. Even if the
J-optimal control were non-unique, the corresponding cost is always unique [Mik06, Lemma
3.5].
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7 Proofs for Section 2

In this section we prove the results of Section 2.
Typical feedback stabilization problems are solvable only for transfer func-

tions that can be factorized as NM−1, where N,M ∈ H∞. Many equivalent
characterizations of this “factorizability” are given in [Mik09b, Theorem 1.2].

Here we record the fact that every real “factorizable” function is the transfer
function of some real output-stabilizable realization (also the converse holds).

Theorem 7.1 (realization) If G is a real proper B(U, Y)-valued function and
G = NM−1 for some N,M ∈ H∞ such that M(0) is invertible, then the shift
realization

(A B

C D

)
of G in [Mik09b, Theorem 5.2] is real and output-stabilizable.

We omit the straightforward proof. The equations G(z) = N(z)M(z)−1 and
G(z) = D + C(z−1 − A)−1B are to hold near the origin. By the realization
being real we mean that A, B, C and D are real.
Proof of Theorem 2.3 By Theorem 7.1, NM−1 has a real output-stabilizable
realization. Theorem 5.3 provides a real normalized “weakly coprime factoriza-
tion” NcM

−1
c of NM−1. The last claim follows from [Mik09b, Theorem 1.1].

�

Proof of Theorems 2.5 and 2.4 1◦ Without the words “real”, Theorem 2.5
is contained in [Mik07a, Theorem 1.1].

2◦ Assume G is real and as in the theorem. The coprime N and M can be
taken real, by Theorem 2.3, and so can Y and X, by [MS07]; assume that they
are real. Moreover, as in the proof of [Mik07a, Lemma A.5], we can choose the
real X,Y ∈ H∞ so that X(0) = I and Y (0) = 0.

3◦ Because
[
M Y+MV
N X+NV

]
= [M X

N Y ] [ I V0 I ], we observe that Y +MV and X+NV
are real iff V is real.

4◦ Let V ∈ H∞ be such that the K = Y1X
−1
1 in (2) is real, where X1 :=

X+NV and Y1 := Y +MV . By [Sta05, Theorem 8.5.7], X1 and Y1 are coprime.
Now V = VR + iVI , where VR, VI ∈ H∞ are real. Moreover,

Y +MVR + iMVI = Y1 = KX1 = KX +KNVR + iKNVI . (16)

Therefore, (M − KN)VI = 0, hence VI = 0, because (M − KN) = M−1(I −
KNM−1) = M−1(I −KG) has a proper inverse [Mik07a, equation (1)]. Thus,
V is real.

5◦ Conversely, if V is real, then so is K, by 3◦, so Theorem 2.5 holds.
6◦ Take V = 0 to observe that Theorem 2.4 holds. �

8 Continuous time results

In this section we prove that the analogies of almost all results of previous
sections hold for continuous-time systems too, such as well-posed linear systems
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(Salamon–Weiss systems). In particular, the unit disc D is replaced by the
right half-plane C+ := {z ∈ C

∣∣ Re z > 0} and equation (3) is replaced by
ẋ = Ax+Bu, y = Cx+Du, x(0) = x0, where A, B and C may be moderately
unbounded and D not necessarily well defined. It is often easier to describe the
system as

[A Bτ

C D

]
: [ x0

u ] 7→ [ xy ] with the requirements that the system is linear
and time-invariant and maps x0 ∈ X, u ∈ L2

loc([0,∞); U) boundedly to x(t) ∈ X,
y ∈ L2

loc([0,∞); Y) for some (hence any) t > 0. Further details can be found in,
e.g., [SW02] [Sta05] [Mik06] [Mik08b, Section 5] [Mik02] [WC97].

Most results of Section 2 are obtained for C+ merely by Cayley transforming,
as stated in Remark 8.1(b) below. The standard form of ”proper” can also be
obtained (see (c) below).

In [Mik06], it was shown that formal output stabilizability (i.e., the Finite
Cost Condition) implies stabilizability by well-posed state feedback, by showing
that the LQ-optimal state-feedback is well-posed (for parabolic systems this
was already known). If the system is real, then the LQ-optimal state-feedback
is real too, so any real output-stabilizable (resp., exponentially stabilizable)
system is stabilized by well-posed real state feedback (by (e) and (f) below). In
the proofs we use the tools developed above, and the same tools can be used to
obtain ”real” forms of many other standard results too.

Remark 8.1 (a) A Laplace-transformable function f : [0,∞) → Z is (es-
sentially) real-valued iff its Laplace-transform f̂(z) =

∫∞
0

e−tzf(t) dt is real-
symmetric.

(b) Let r > 0. The results of Sections 2–3 (except Lemma 3.1(vii) and
Lemma 3.2(b1)&(b2)) also hold with C+, R and r in place of D, T and 0, re-
spectively (in the domains of functions, hence in the definition of H∞, ”proper”,
”coprime” etc.)

(c) The above result (b) also holds if ”proper” is redefined as ”defined on
some right half-plane” (i.e., on {Re z > ω} for some ω ∈ R) except that in
Theorem 2.5 it is not known whether X−1 can always be taken proper (it can be
if, e.g., limRe z→+∞G(z) exists).

(d) Lemmata 6.1 and 6.4 and Theorem 6.3 also hold if we replace
(A B

C D

)
by a linear map [ C D ] : (x0, u) 7→ y and F (in Lemma 6.4) by any map F	
such that F	(x0) is J-optimal for each x0 ∈ X.

(e) Real version of [Mik06]. Assume that the map [ C D ] of [Mik06] is
real and that the Finite Cost Condition holds i.e., for each x0 ∈ X there exists
u ∈ L2([0,∞); U) such that Cx0 + Du ∈ L2 (we can assume x0 to be real and
require u to be real, cf. (7)).

Then there exists a real LQ-optimal state-feedback pair [ F	 G	 ] such that
(in [Mik06]) the corresponding N and M are real, normalized and weakly co-
prime, [ F G ] are real and S = I.

(f) If [ A B ] of [Mik06] are real and the system is exponentially stabiliz-
able, then the system is exponentially stabilizable by a real state-feedback pair.

(It obvious that a real state-feedback pair corresponds to a real state-feedback
operator, as defined in, e.g., [Sta05], [Mik02] and [Mik08b].)
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Proof: (a) This is straight-forward (use the Laplace inversion formula for “if”
[HP57, Theorem 6.3.2]). Recall that “Laplace-transformable” means that e−r·f ∈
L1 for some r ∈ R.

Note: Similarly, a function f ∈ L2(R; U) is essentially real-valued iff its
Plancherel transform f̂ : iR→ U is essentially real-symmetric. For test functions
this follows from the above by continuity, for others by density of test functions
in L2 (and by the pointwise convergence a.e. of a subsequence).

(b) The Cayley transform φ(z) := (r − z)/(r + z) maps C+ one-to-one and
onto D, and φ(r) = 0. It preserves real-symmetricity, by Lemma 3.2(j). There-
fore, Theorem 3.6 and the results of Section 2 follow and those of Section 3 arise
from same proofs, mutatis mutandis.

(c) This follows from (b) and [Mik08b, Theorem 3.1(b)] (and if N,M,M−1

are H∞ over {Re z > ω} for some ω ≥ 0, then all a ”weakly coprime factoriza-
tion” in the r-sense are ”weakly coprime factorizations” in the half-plane sense
too, and vice versa, for any r > ω).

Assume then that D := limRe z→+∞G(z) exists. Then, for F := G−D there
exists [M Y

N X ] =
[
T −U
−S R

]−1 ∈ H∞(B(U×Y)) such that F = NM−1 = R−1S and
that X−1 and T−1 are proper, by [Mik07a, Theorem 7.4].

Now
[
MG YG

NG XG

]
:= [ I 0

D I ] [M Y
N X ]

[
I −TY
0 I

] ∈ H∞(B(U× Y)) is obviously invert-
ible, NGM−1

G = (N+DM)M−1 = F+D = G, and MT−Y S = I, i.e., I−MT =
Y S. Consequently, XG−X = DY −NTY −DMTY = −NTY +D(I−MT )Y =
−NTY + DY SY = −FMTY + DY RF , so ‖XG(z) − X(z)‖ ≤ γ‖F (z)‖ → 0,
as Re z → +∞. Therefore, also X−1

G is uniformly bounded for Re z big enough.
(d) This is obvious from the proofs. Note that the other two components of

a well-posed linear system, namely A and B, need not be real and they do not
affect J , P, S, N , M etc.

(e) Now G := D̂ has a normalized, weakly coprime factorization N1M
−1
1 , by

[Mik06, Corollary 5.1]. By (b) and Theorem 2.3, G also has a real, normalized,
weakly coprime factorization NM−1. By [Mik09b, Theorem 1.1] normalized
weakly coprime factorizations are unique modulo a unitary operator, so [Mik06,
Lemmata A.5 & 4.4] yield another LQ-optimal pair corresponding to the fac-
torization NM−1.

Also N and M obviously are real (i.e., they map real-valued functions to
real-valued functions, by (a); or equivalently, N and M are real as elements of
B(L2), where the basis of L2 consists of real-valued functions). By (the proof
of) [Mik06, Lemmata 4.4], S = I. By [Mik06, (2.7)], [ F G ] are real.

(f) This follows from (e) and the proof of [Mik06, Corollary 5.4]. (So Corol-
lary 5.2 holds also in continuous-time setting.) �

In Remark 8.1(c), the assumption that limRe z→+∞G(z) exists can be re-
placed by a more general assumption, but a necessary assumption for a proper
real stabilizing compensator K to exist is the so-called “parity interlacing con-
dition” (or “positive on real zeros” ) [Sta92] [Wic10] on some right half-plane.
For scalar-valued G = NM−1, N,M ∈ H∞, this means that M must have the
same sign at every zero of N on some right half-axis {z > R}.
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9 Hankel and Toeplitz operators

In Section 3 we presented ”real” variants of some standard (complex) Hankel
and Toeplitz operator results including the Nehari Theorem and spectral fac-
torization. In this section we present many more ”real” variants, also of most
standard results extended in [Mik07c] to general Hilbert spaces as well as the
operator diagonalization method of [Mik07c].

First we recall some notation from [Mik07c], again in the discrete-time set-
ting, the functions being defined on the unit circle or disc. By S we denote the
shift f 7→ zf , i.e., (Sf)(z) = zf(z). Similarly, (S∗f)(z) = z−1f(z). By

P+ :
∞∑

k=−∞
zkxk 7→

∞∑
k=0

zkxk

we denote the orthogonal projection L2 → H2, and we set P− := I − P+.
The operators Γ ∈ B(H2

−(X ),H2(Y)) that satisfy P+S
∗Γ = ΓS∗ are called

Hankel operators. (In the literature, Hankel operators are often defined in an
equivalent way L2 → H2

−, with z−1 in place of z.)
The Hankel operator ΓF ∈ B(H2

−(X ),H2(Y)) of a function F ∈ L∞strong(X ,Y)
is defined by ΓF := P+MFP−.

Finally, a (necessarily holomorphic) function F : D → B(U, Y) is H2
strong if

Fu ∈ H2 for every u ∈ U. We set ‖F‖H2
strong

:= sup‖u‖≤1 ‖Fu‖H2 .

Corollary 9.1 In this corollary, the spaces X and Y are assumed to be real
Hilbert spaces. The numbering of items below refers to corresponding complex
results in [Mik07c]. The following claims are true.

(4.3) Every operator T ∈ B(L2
R(X + iX ),L2

R(Y + iY)) that satisfies ST = TS
equals MF : f 7→ Ff for some F ∈ L∞strong,R(X + iX ,Y + iY). Moreover,

‖MF ‖B(L2
R(X+iX ),L2

R(Y+iY)) = ‖MF ‖B(L2(X+iX ),L2(Y+iY)) = ‖F‖L∞strong

for every F ∈ L∞strong,R(X + iX ,Y + iY).

(4.4) Every Hankel operator Γ : H−,R(X + iX ) → H2
R(Y + iY) equals ΓF for

some F ∈ L∞strong,R(X + iX ,Y + iY). Moreover, this F can be chosen so
that

‖F‖L∞strong
= ‖Γ‖ = ‖Γ‖H2

−(X+iX )→H2(Y+iY).

(4.15 ”Lax–Halmos”) Every closed, real-symmetric, shift-invariant subspace
M of H2

R(X+iX ) satisfiesM = MF [H2
R(X0+iX0)] for some real subspace

X0 of X and some inner F ∈ H∞R (X0 + iX0,X + iX ).

(4.17 ”Inner–Outer Factorization”) Every F ∈ H2
strong,R(X + iX ,Y + iY)

can be expressed as F = FiFo with Fi, Fo real-symmetric, Fo ∈ H2
strong,R(X+

iX ,Y0 + iY0) outer and Fi ∈ H∞R (Y0 + iY0,Y+ iY) inner, for some closed
real subspace Y0 of Y. Moreover,

‖Fo‖H2
strong

= ‖F‖H2
strong

, ‖Fo‖H∞ = ‖F‖H∞ ≤ ∞, and dimY0 ≤ dimX .
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This is contained in Theorem 9.2 below. The case of 4.17 with F ∈ H∞
was already established in [MS07]. The above results share the (discrete-time)
notation of [Mik07c, Section 4], so the above L2 spaces are defined over the unit
circle T, and L2

R refers to the subset of (essentially) real-symmetric elements, as
in Definition 2.1 .

Before presenting the remaining results, in a more messy form, we list some
observations for the continuous-time input-output maps or transfer functions
(that is essentially: Toeplitz operators or their symbols), as the theorem also
contains continuous-time variants (as in [Mik07c, Section 5]) of the above and
other results. In that setting, functions are defined on R instead of T and the
transfer functions are defined on the right half-plane instead of D.

Note first that, for any complex Hilbert space U, any orthonormal basis of
(the real Hilbert space) UR is an orthonormal basis of U. Conversely, if W
is a real Hilbert space, then W + iW with natural operations is a complex
Hilbert space. (Here i(w + iw′) := −w′ + iw. The inner product is given by
(w + iw′, v + iv′) := (w, v) + (w′, v′) + i(w′, v)− i(w, v′).)

For L2(R; U) we fix some basis that consists of real-valued functions. There-
fore, an element f of L2(R; U) is real (i.e., f ∈ L2

R(R; U)) iff it is essentially real-
valued (i.e., f ∈ L2(R; UR)). Definition 2.1, an operator A : L2(R; U)→ L2(R; Y)
is real iff it maps real elements to real elements, or equivalently, some real basis
into L2(R; YR).

The set of real operators L2(R; U)→ L2(R; Y) can be identified with the set
of operators L2(R; UR)→ L2(R; YR), by Lemma 3.3(b).

A bounded, linear, time-invariant (i.e., translation invariant) operator A :
L2(R; U) → L2(R; Y) is real iff its symbol (or transfer function, as in [Mik07c,
Theorem 5.2 & Proposition 5.3]) is real-symmetric. This can be easily de-
duced from Remark 8.1(a) or from the corresponding claim on the Plancherel
Transform, depending on whether one treats H∞ transfer functions on the right
half-plane or L∞strong symbols on the imaginary axis. Analogous claims obviously
hold for shift-invariant operators on `2 too.

Now we are ready to present the ”real variants” of most results of [Mik07c].
Note that in Sections 4 of [Mik07c] and [Mik09a], L2 refers to functions on T
(”discrete time”) and in Sections 5 to functions on R (”continuous time”).

Theorem 9.2 (Real variants of [Mik09a] & [Mik07c])
Omitting Theorems 4.6, 4.10, 5.6 and 5.10 of [Mik07c] and Theorems 4.1 and
5.4 of[Mik09a], each of the Lemmata, Propositions and Theorems of Sections
4–5 of [Mik09a] and [Mik07c] also holds in its “real” form, where the external
Banach and Hilbert spaces (including X , Y and Z) are assumed to be real,
`p(Q; C) is replaced by `p(Q; R) for any set Q, and P(C) by P(R), and C(X ,Y)
is replaced by the real Banach space CR(X + iX ,Y + iY) consisting of the real-
symmetric elements of C(X + iX ,Y + iY) (with the norm of the latter), and
C(X ) by CR(X + iX ); similarly for Lp, Lpstrong, H, Hp, Hpstrong, Hp−, or C ◦ BC
in place of C, for any Hilbert spaces X ,Y and 1 ≤ p ≤ ∞ (and PX is replaced
by PX+iX , similarly for PY , P̃X , P̃Y etc.); however, in Section 5, all L2 spaces
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must remain unchanged.
Theorem 3.1(a1)–(a3) (or (a1)–(a2) of [Mik09a]) hold for real Hilbert spaces

too. Moreover, in (the original, complex) Theorem 3.2 of [Mik09a] and Theorem
3.2(a)–(e),(g) of [Mik07c], if F is real (and X0 and Y0 in (g) are real), we can
have all pairs (X,Y ) of the form (V + iV,W + iW ), where, V and W are
real. Finally, Lemmata A.1-3,8-10 and B.1-2 of [Mik07c] and A.1-4 and B.1 of
[Mik09a] hold for real Hilbert and Banach spaces too (use, e.g., H2

R(X + iX ) in
place of H2(X ) in A.1).

(Also real variants of many other results can be established. See Theorem
3.3(e) for the ”real variant” of Proposition 2.2 of [Mik09a] and [Mik07c].)
Proof: In most cases, these results follow fairly easily from the complex ones
(often with the use of our Lemma 3.3) or from their proofs. Nehari, Hartman
and spectral factorization theorems were already handled in Section 3 above to
some extent. We present below the least trivial parts of the proofs, referring to
[Mik07c], which essentially contains all results of [Mik09a].

Theorem 4.3: Note from Lemma 3.3(b) that B(L2
R(X + iX ),L2

R(Y + iY)) =
BR(L2(X+iX ),L2(Y+iY)) Define TC as in Lemma 3.3(b). Obviously, ST = TS
iff STC = TCS. But Ff = MF f ∈ L2

R(Y+ iY) for every f ∈ L2
R, hence for every

constant f ∈ X. Consequently, F = FR, by Lemma 3.4(b). By Lemma 3.2(i),
‖T‖ = ‖TC‖.

Theorem 4.4: Obviously, a Hankel operator is real iff its Hankel matrix is
real, i.e., iff F̂ (k) is real for k ≥ 1, so FR will do, by Lemma 3.2(a) (‖Γ‖ remains
unaltered, by Lemma 3.2(i); by Lemma 3.4(c), we have ‖FR‖ ≤ ‖F‖).

Corollary 4.5: this is Corollary 3.5 (‖ΓF ‖ remains unaltered, by Lemma
3.2(i)).

Theorem 4.7: Now F = FR, so ΓF is compact on H2
− iff on H2

−,R (because
the product of compact sets is compact), But (iii) and (iv) are satisfied by GR
(‖ΓF ‖ remains unaltered, by Lemma 3.2(i); by 3.4, ‖G‖ does not increase). We
get X and Y from the separably-valued functions in the original proof.

Theorems 4.8, 4.9: modify the proof using [MS07] (in 4.8, note that ‖P−FP−(f+
ig)‖22 = ‖P−FP−f‖22 + ‖P−FP−ig‖22 for real-symmetric F, f, g, by Lemma
3.2(g)). Results 4.11–4.13, 4.16: obvious (from the old results). Theorem 4.17:
old proof.

Theorem 4.14: The old proof applies (T ∈ B(H2
R,H2

R) implies T ∈ BR(H2,H2),
by Lemma 3.3(b)). (N.B., if G ∈ H∞R is any complex left divisor of F , i.e.,
F = GK for some K ∈ H∞R , then GKR = FR = F , by Lemma 3.2(f), so then
G is a real left divisor of F , too.)

Theorem 4.15: This follows from the proof of [MS07, Theorem 2.5] (with
M + iM in place of fH2(X) and M in place of fH2

R) complemented by the
last five lines of the proof of Theorem 4.15, mutatis mutandis.

The results of Section 5 can be proved in a similar way. As noted before
the statement of Theorem 9.2 above, we can identify TI(X ,Y) with TIR(X +
iX ,Y + iY), by Lemma 3.3(b). By Lemma 3.2(i), here the two norms coincide.

�
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Recall that in the subset L∞strong,R we use the L∞strong norm, not that of Lemma
3.4(d).
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A582 Juho Könnö, Rolf Stenberg

Analysis of H(div)-conforming finite elements for the Brinkman problem

January 2010

A581 Wolfgang Desch, Stig-Olof Londen

An Lp-theory for stochastic integral equations

November 2009
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