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CONVEXITY PROPERTIES OF QUASIHYPERBOLIC
BALLS ON BANACH SPACES

ANTTI RASILA AND JARNO TALPONEN

Abstract. We study convexity and starlikeness of metric balls
on Banach spaces when the metric is the quasihyperbolic metric or
the distance ratio metric. In particular, problems related to these
metrics on convex domains, and on punctured Banach spaces, are
considered.

1. Introduction

In this paper, we deal with Banach manifolds, which are obtained
by defining a conformal metric on non-trivial subdomains of a given
Banach space. An example of such metric is the quasihyperbolic metric
on a domain of a Banach space. It is obtained from the norm-induced
metric by adding a weight, which depends only on distance to the
boundary of the domain. The quasihyperbolic metric of domains in Rn

was first studied by F.W. Gehring and his students B. Palka [4] and
B. Osgood [3] in 1970’s. It has turned out to be a useful tool in, e.g.,
the theory of quasiconformal mappings. In particular, quasihyperbolic
metric plays a crucial role in the theory of quasiconformal mappings
in Banach spaces, developed by J. Väisälä in the series of articles [10,
11, 12, 13, 14]. This is due to the fact that many of the tools used in
the Euclidean space are not available in the infinite-dimensional setting
(see [14]).

We mainly study the question of how the geometry of the Banach
space norm translates into the properties of the quasihyperbolic metric.
In particular, we consider convexity and starlikeness of quasihyperbolic
balls in the punctured Banach space Ω = X \ {0}. This problem was
posed in Rn by M. Vuorinen [19], and studied by R. Klén in [5, 6] and
J. Väisälä in [16]. Many of the techniques used there are specific to
Rn. In the general Banach space setting a very different approach is
required.

Our main results are the following. In Theorem 3.1 we show that
each ball in the distance ratio metric (the j-metric) defined on a proper
subdomain of a Banach space is starlike for radii r ≤ log 2, partly gen-
eralizing a result of Klén [6, Theorem 3.1]. In Theorem 4.1, which
is an improvement of a result of O. Martio and J. Väisälä [9, 2.13],
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we show that the j-balls and the quasihyperbolic balls defined on a
convex domain of a Banach space are convex. Then, in Theorem 5.2,
we show that there exists a constant R > 0 such that all j-balls with
radius r ≤ R are convex in the punctured Banach spaces, under cer-
tain usual assumptions related to the local geometry. We also give
a counterexample, which settles a question posed by O. Martio and
J. Väisälä [9, 2.14] concerning quasihyperbolic geodesics on uniformly
convex Banach spaces. Related problems involving quasihyperbolic
geodesics have been studied in Rn by G.J. Martin [7] in the 1980’s,
and several authors thereafter. Finally, in Theorem 5.7, we consider
convexity of quasihyperbolic balls on punctured Banach spaces.

2. Preliminaries

First we recall a few basic results and definitions. Unless otherwise
stated, we will assume that X is a Banach space with dim X ≥ 2, and
that Ω ( X is a domain. Open and closed balls in X are

U(x, r) := U‖·‖(x, r) := {y ∈ X : ‖x− y‖ < r}
B(x, r) := B‖·‖(x, r) := {y ∈ X : ‖x−y‖ ≤ r}, and S(x, r) := ∂B(x, r).

A set Ω ⊂ X is called convex if the line segment

[x, y] := {tx+ (1− t)y : t ∈ [0, 1]} ⊂ Ω for all x, y ∈ Ω,

and starlike with respect to x0 ∈ Ω if

[x0, y] := {tx0 + (1− t)y : t ∈ [0, 1]} ⊂ Ω for all y ∈ Ω.

Observe that the use of notation [x, y] here is different from some texts
in Banach spaces. Obviously a set Ω is convex if and only if it is starlike
with respect to every point x0 ∈ Ω.

2.1. Paths and line integrals. In what follows a path in a metric
space (X, d) is a continuous mapping γ of the unit interval I = [0, 1]
into X. If J = [a, b] ⊂ I is a closed subinterval, then the length of a
path γ : I → X restricted to J is

(2.1) `d(γ, a, b) = sup
n∑
i=1

d
(
γ(ti), γ(ti+1)

)
,

where the supremum is taken over all sequences a = t1 ≤ t2 ≤ . . . ≤
tn ≤ tn+1 = b. The (total) length of γ is `d(γ) = `d(γ, 0, 1). A path γ
is rectifiable if its length is finite.

Given a rectifiable path γ : I → X such that `d(γ, 0, s) is absolutely
continuous with respect to s, we denote the length element of γ by

(2.2) ‖Dγ‖ = ‖Dγ(s)‖ =
d

ds
`(γ, 0, s) for a.e. s ∈ I.
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Recall that an increasing absolutely continuous function is a.e. differ-
entiable and can be recovered by integrating its derivative. Thus

`(γ, 0, t) =

∫ t

0

‖Dγ‖ ds =

∫ t

0

‖dγ‖,
where the last integral can be interpreted as the Stieltjes integral with
respect to integrator `d(γ, 0, t), or equivalently, the Lebesgue integral,
under the formal convention that

‖dγ‖ = ‖Dγ‖ ds.
In this paper both interpretations for the integrals are useful. Note
that for instance the parameterization with respect to the arc length
is absolutely continuous. Obviously, any rectifiable path can be ap-
proximated uniformly by an absolutely continuous path, e.g., a broken
line. If γ is a path in a Banach space X, we will denote its Gâteaux
derivative by

Dγ(t) := lim
h→0

γ(t+ h)− γ(t)

h
,

provided that it exists. Observe that if γ is Gâteaux differentiable at
t, then ‖Dγ(t)‖ = ‖(Dγ(t))‖. We note that differentiation of Banach
space valued functions can also be studied by means of the Bochner
integral. This approach is effective especially in Banach spaces with
the so-called Radon-Nikodým property (RNP), which means that any
absolutely continuous path starting from the origin can be recovered
by Bochner integrating its Gâteaux derivative. For basic information
about these concepts we refer to [1], see also [2].

2.2. Quasihyperbolic metric. Let X be a Banach space with dim X ≥
2, and suppose that Ω ( X is a domain. For x ∈ Ω, let d(x) denote
the distance d(x, ∂Ω). We define the quasihyperbolic length of γ by

`k(γ) :=

∫
γ

‖dx‖
d(x)

then the quasihyperbolic distance of points x, y ∈ Ω is the number

kΩ(x, y) := inf
γ
`k(γ)

where the infimum is taken over all rectifiable arcs γ joining x and y
in Ω. Quasihyperbolic balls are

Uk(x, r) := {y ∈ Ω : kΩ(x, y) < r},
Bk(x, r) := {y ∈ Ω : kΩ(x, y) ≤ r}.

It is well known [3, Lemma 1] that in the finite-dimensional case there
is a quasihyperbolic geodesic between any two points. By [15, Theorem
2.5], for a reflexive Banach space X and a convex subdomain Ω ( X
there always exists a quasihyperbolic geodesic connecting x, y ∈ Ω.
One of the peculiarities of this topic is that it is not known whether
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this holds for general Banach spaces (see also [15, Section 6]). It is easy
to check that multiplication by a constant C 6= 0 is a quasihyperbolic
isometry on Ω = X \ {0}.

2.3. Distance-ratio metric. The quasihyperbolic distance is often
difficult to compute in practice. For this reason, we consider another
related quantity, the distance-ratio metric. This metric was originally
introduced by Gehring and Palka in [4]. We use a version that is due to
Vuorinen [17]. Let X be a Banach space with dim X ≥ 2, and suppose
that Ω ( X is a domain. Write

a ∨ b := max{a, b}, a ∧ b := min{a, b}.
The distance-ratio metric, or j-metric, on Ω is defined by

(2.3) jΩ(x, y) := log

(
1 +

‖x− y‖
d(x) ∧ d(y)

)
, x, y ∈ Ω.

Again, the balls with respect to the j-metric are

Uj(x, r) := {y ∈ Ω : jΩ(x, y) < r},
Bj(x, r) := {y ∈ Ω : jΩ(x, y) ≤ r}.

It is well known that the norm metric, the quasihyperbolic metric and
the distance-ratio metric define the same topology on Ω. It is well
known that the topologies on Ω induced by the norm, the j-metric and
the k-metric coincide. In fact, the j-metric is an inner metric of the
quasihyperbolic metric.

2.4. Geometric control of Banach spaces. Next we will recall for
convenience two essential moduli related to the geometry of Banach
spaces. The modulus of convexity δX(ε), 0 < ε ≤ 2, is defined by

δX(ε) := inf{1− ‖x+ y‖/2 : x, y ∈ X, ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε},
and the modulus of smoothness ρX(τ), t > 0 is defined by

ρX(τ) := sup{(‖x+ y‖+ ‖x− y‖)/2− 1, x, y ∈ X, ‖x‖ = 1, ‖y‖ = τ}.
The Banach space X is called uniformly convex if δX(ε) > 0 for all
ε > 0, and uniformly smooth if

lim
τ→0+

ρX(τ)

τ
= 0.

Moreover, a space X is uniformly convex (resp. uniformly smooth) of
power type p ∈ [1,∞) if δX(ε) ≥ Kεp (resp. Kτ p ≤ ρX(τ)) for some
K > 0.
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2.5. Some auxiliary results. If X is a topological vector space, then
we say that a subset C ⊂ X is locally convex if each point x ∈ C has
an open neighborhood U such that U ∩ C is convex.

Lemma 2.1. Let C be a closed set of a Hausdorff topological vector
space X. Then the following conditions are equivalent:

(i) C is a convex subset of X.
(ii) C is locally convex and connected.

Before giving the proof we will briefly comment on the statement. We
actually require a weaker form of the above lemma but this formulation
appears to be the natural one. The local convexity of a subset must
not be confused with the local convexity of a topological vector space,
which is a completely different matter. It is easy to check that if A and
B are mutually disjoint, closed, locally convex subsets of a normed (or
locally convex) space X, then A ∪ B is locally convex subset. Clearly
A ∪ B is not convex. Recall that the convexity of a subset can be
characterized so that the subset is starlike with respect to each point
of the subset. Therefore it is tempting to ask whether local convexity
could be replaced by ’local starlikeness’ in the above result. This is not
the case as the following example shows: the ’bow tie’ subspace

{(x, y) ∈ R2 : |y| ≤ |x| ≤ 1} ⊂ R2

is compact, connected, locally convex away from the origin, starlike
with respect to the the origin, but not convex.

Proof of Lemma 2.1. The direction (i) =⇒ (ii) is clear, because X is
an open set in itself, and as a convex set of a topological vector space,
it is path-connected. In order to obtain the other direction, by using
the Hausdorff maximal principle, we may construct, starting from any
convex subset A ⊂ C, a maximal convex subset K of C containing A.
Let K be the set of all such maximal convex sets. Observe that the
continuity of the vector operations on X yields that the closure of a
convex set is again convex and thus the elements of K are necessarily
closed sets. Our strategy is to prove that in fact K = {C}.

First we check that K0∩K1 = ∅ for K0, K1 ∈ K, K0 6= K1. Suppose
that K0, K1 ∈ K and x0 ∈ K0 ∩ K1. We show that then K0 = K1.
Indeed, since K0 and K1 are convex sets by definitions, we need to
verify that {tx+ (1− t)y : t ∈ [0, 1]} ⊂ C for any x ∈ K0 and y ∈ K1.
Now, let

Cone = {(1− t)x0 + t(sx+ (1− s)y) : s, t ∈ [0, 1]},
see Figure 1.

Then there are two possibilities. The first one is that

Cone ∩ C = Cone,



6 ANTTI RASILA AND JARNO TALPONEN
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x
ys

t

0

Figure 1. The set Cone = {(1− t)x0 + t(sx+(1−s)y) :
s, t ∈ [0, 1]}.
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Figure 2. The point z0 (left), and the set ∆ (right).

in which case we have the claim. The other alternative is, by compact-
ness, that

t0 = max{t ∈ [0, 1] : {(1−t)x0+t(sx+(1−s)y) : s ∈ [0, 1]} ⊂ C} < 1.

Without loss of generality x0 = 0 and x, y are linearly independent,
and our considerations are restricted to the 2-dimensional subspace
span(x, y).

Observe that {tx+ (1− t)x0 : 0 ≤ t ≤ 1} ⊂ Cone ∩ C by convexity
of K0. Let

s0 = sup{r ∈ [0, 1] : (1−t0)x0+t0(sx+(1−s)y) /∈ Cone \ C for 0 ≤ s ≤ r},
see Figure 2. Next we apply local convexity of C at z0 = (1− t0)x0 +
t0(s0x+ (1− s0)y) to find an open neighborhood W of the point such
that W ∩ C is convex. Pick s1 ≤ s0 and t1 > t0 such that z1 =
(1 − t1)x0 + t1(s1x + (1 − s1)y) ∈ W ∩ C. Then W ∩ C contains the
convex hull ∆ of

{z1} ∪ {(1− t0)x0 + t0(sx+ (1− s)y) ∈ W ∩ C : 0 ≤ s ≤ 1},
see Figure 2.

It follows that dist(z0,W ∩ C) > 0. This contradicts the choice of
s0. Thus K0 ∩K1 = ∅ for K0, K1 ∈ K, K0 6= K1.

To verify that K = {C} we proceed as follows. Fix K0 ∈ K. Because

C is connected it follows that C ∩ K0 ∩
⋃{K ∈ K : K 6= K0} 6= ∅,
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provided that K is not a singleton. In such a case let

x0 ∈ C ∩K0 ∩
⋃
{K ∈ K : K 6= K0}.

By using the selection of x0 and the fact that C is locally convex, we
obtain a set K1 ∈ K, K1 6= K0 and an open neighborhood V of x0 such
that C ∩ ({x0} ∪ (V ∩K0)∪ (V ∩K1)) is contained in a convex subset
of C. This means, for instance, that K0 and K1 are connected by two
line segments in C via x0.

We claim that in fact conv(K0∪ (V ∩K1)) ⊂ C. This will contradict
the maximality of K0. Because K0 and V ∩K1 are convex subsets of
C, we only need to show that {tx + (1 − t)y : t ∈ [0, 1]} ⊂ C for any
x ∈ K0 and y ∈ V ∩ K1. This is seen similarly as above by studying
the set Cone. Hence we obtain that K = {C}, and we conclude that C
is convex. �

3. Starlikeness of j-balls

Next we show that j-metric balls are starlike for radii r ≤ log 2.

Theorem 3.1. Let X be a Banach space, Ω ( X a domain, and let j
be as in (2.3). Then each j-ball Bj(x0, r), x0 ∈ Ω, is starlike for radii
r ≤ log 2.

Proof. Let x0, y ∈ Ω such that j(x0, y) ≤ log 2. This is to say that

‖x0 − y‖
d(x0) ∧ d(x)

≤ 1.

By using simple calculations and the triangle inequality we get

j(x0, ty + (1− t)x0) = log

(
1 +

‖x0 − (ty + (1− t)x0)‖
d(x0) ∧ d(ty + (1− t)x0)

)
≤ log

(
1 +

(1− t)‖x0 − y‖
d(x0) ∧ (d(y)− t‖x0 − y‖)

)
≤ log 2,

where we applied the fact d(x0), d(y) ≥ ‖x0− y‖ in the last inequality.
�

Proposition 3.2. Let X be a Banach space and Ω ⊂ X a domain with
∂Ω 6= ∅. Then BjΩ(x, r) =

⋂
z∈X\Ω BjX\{z}(x, r). Moreover, if X is

reflexive and Ω is weakly open, then

UjΩ(x, r) =
⋂

z∈X\Ω
UjX\{z}(x, r).

Proof. Denote by C the norm closed set X\Ω. First note that X\C ⊂
X \ {z} and that jX\{z} ≤ jΩ holds on Ω for each z ∈ C. Thus
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BjΩ(x, r) ⊂ ⋂z∈C BjX\{z}(x, r) and UjΩ(x, r) ⊂ ⋂z∈C UjX\{z}(x, r). Pick
y ∈ Ω such that

j(x, y) = log

(
1 +

‖x− y‖
d(x) ∧ d(y)

)
> r.

Then there is z ∈ C such that

log

(
1 +

‖x− y‖
‖x− z‖ ∧ ‖y − z‖

)
> r.

This means that y /∈ ⋂z∈C BjX\{z}(x, r) and so we have the first part of
the statement.

Now, assume that X is reflexive and Ω is weakly open. Pick y ∈ Ω
with j(x, y) = r0 ≥ r. Let v ∈ {x, y} and s0 ∈ R be such that

r0 = log

(
1 +
‖x− y‖
d(v)

)
= log

(
1 +
‖x− y‖
s0

)
.

Note that C is weakly closed and thus by James’ well-known char-
acterization of reflexivity of Banach spaces (see e.g. [2]) we get that
B‖·‖(v, s0 +1)∩C is weakly compact. Thus

⋂
ε>0 B‖·‖(v, s0 +ε)∩C 6= ∅,

so let us select a point z from this set. Note that ‖v − z‖ = s0, since
d(v) = s0. This means that

jX\{z}(x, y) ≥ log

(
1 +
‖x− y‖
‖v − z‖

)
= r0 ≥ r.

Consequently, UjΩ(x, r) ⊂ ⋂z∈C UjX\{z}(x, r). �

Remark 3.3. The quasihyperbolic metric on X\{0} is conformal in the
following sense: for each C > 1 there is r > 0 such that

C−1k(x, y) ≤ ‖x− y‖‖x‖ ≤ Ck(x, y)

for k(x, y) < r. The same is true for the distance ratio metric. Note
that we did not assume anything about the geometry of X. The proof
follows the arguments in [18, p. 35], and is left to the reader.

Remark 3.4. Klén’s main results in [5] and [6] involving Rn can be
adapted to general (finite-dimensional, separable, non-separable, real
or complex) Hilbert spaces H. This is due to the fact that the core of
the arguments is, roughly speaking, based on calculations in R2 and
then these observations extend to Rn by elegant reasoning. Essentially
the same extension carries further to Hilbert spaces.

4. Convexity of quasihyperbolic and j-balls on convex
domains

In this section, we study convexity of quasihyperbolic and j-metric
balls. We present a generalization of a result of Martio and Väisälä [9,
2.13].
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Figure 3. The average path γs.

Theorem 4.1. Let X be a Banach space and Ω ( X a convex domain.
Then all quasihyperbolic balls and j-balls on Ω are convex. Moreover,
if Ω is uniformly convex, or if X is strictly convex and has the RNP,
then these balls are strictly convex.

Fact 4.2. Let a, b, c, d > 0 be constants such that a/c = b/d. Then

ta+ (1− t)b
tc+ (1− t)d =

a

c
for t ∈ [0, 1].

Proof. This fact can be verified by differentiating with respect to t. �
Proof of Theorem 4.1. We will prove the case with the quasihyperbolic
metric, which is more complicated. Fix x ∈ Ω and r > 0. Let y, z ∈
D(x, r). Our aim is to verify that sy+ (1− s)z ∈ D(x, r) for s ∈ [0, 1].
Thus, we may assume that k(x, y) = k(x, z) = r in the first place.
By using suitable translations we may assume that x = 0 as well. It
suffices to show that

(4.1) k(x, sy + (1− s)z) ≤ r, for s ∈ [0, 1].

We use the following short-hand notation

`k(γ, t1, t2) =

∫ t2

t1

‖dγ(t)‖
d(γ(t))

,

where γ : [0, 1] → X is a rectifiable path and 0 ≤ t1 ≤ t2 ≤ 1. We will
also write `k(γ) instead of `k(γ, 0, 1).

Let ε > 0 and let γ0, γ1 : [0, 1] → X be rectifiable paths such that
γ0(0) = γ1(0) = 0, γ0(1) = z, γ1(1) = y, `k(γ0) ≤ r + ε and `k(γ1) ≤
r + ε. We may assume by symmetry that `k(γ0) ≤ `k(γ1). More-
over, modifying by re-parameterizing γ0 suitably, we may assume that
`k(γ0) = `k(γ1) and `k(γ0, 0, t) = `k(γ1, 0, t) = t`k(γ0) for t ∈ [0, 1].
Thus we have that

(4.2)
‖Dγ0(t)‖
d(γ0(t))

=
‖Dγ1(t)‖
d(γ1(t))

= `k(γ0) = `k(γ1) for a.e. t ∈ [0, 1].

Observe that the above numerators need not be continuous, so that
these terms do not coincide, at least a priori, for every t.
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v

Ω

u

Figure 4. The ball U‖·‖(sv + (1− s)u, sd(v) + (1− s)d(u)).

Define an average path γs (see Figure 3) for s ∈ [0, 1] by γs(·) =
sγ1(·) + (1 − s)γ0(·). Clearly γ(0)s = 0 and γs(1) = sy + (1 − s)z for
s ∈ [0, 1]. We claim that

(4.3) `k(γs(·)) ≤ s`k(γ1(·)) + (1− s)`k(γ0(·)) = `k(γ0) = `k(γ1).

Because ε was arbitrary this estimate yields (4.1), which provides the
required result.

To obtain the estimate (4.3), observe that

(4.4) ‖Dγs(·)‖ ≤ s‖Dγ1(·)‖+ (1− s)‖Dγ0(·)‖, 0 ≤ s ≤ 1

holds point-wise by the triangle inequality as we recall the definition
of the norm length `. Given v, u ∈ Ω it holds that

U‖·‖(v, d(v)) ∪U‖·‖(u, d(u)) ⊂ Ω

and by the convexity of Ω it holds that

{sa+ (1− s)b : a ∈ U‖·‖(v, d(v)), b ∈ U‖·‖(u, d(u)), s ∈ [0, 1]} ⊂ Ω.

Moreover, the above set contains U‖·‖(sv+(1−s)u, sd(v)+(1−s)d(u)),
see Figure 4. See also [15, Lemma 3.5].

This means that

(4.5) d(su+ (1− s)v) ≥ sd(u) + (1− s)d(v).

Now, by combining (4.4), (4.5), (4.2) and Fact 4.2 we obtain

`k(γs) =

∫ 1

0

‖dγs(t)‖
d(γs(t))

≤
∫ 1

0

s‖dγ1(t)‖+ (1− s)‖dγ0(t)‖
d(γs(t))

≤
∫ 1

0

s‖dγ1(t)‖+ (1− s)‖dγ0(t)‖
sd(γ1(t)) + (1− s)d(γ0(t))

=

∫ 1

0

`k(γ0) dt = `k(γ0).

This completes the proof for the first part of the statement.
In the latter part, suppose that γ0 6= γ1. Then γs(t), 0 < s < 1,

• Satisfies (4.5) strictly for a set of values of t having positive
measure if Ω is uniformly convex.
• Satisfies (4.4) strictly for a set of values of t having positive

measure if X is strictly convex and has the RNP.
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0

x

B (x,r)
j

Figure 5. There is no critical radius R > 0 such that
the ball Bj(x, r) is convex for all x ∈ Ω = `∞(2) \ {0}
and 0 < r < R.

The strict convexity of the QH-balls follows. �

5. Convexity of balls in a punctured Banach space

In this section we study convexity of the balls with respect to the
quasihyperbolic and the distance ratio metrics.

Fact 5.1. Let x, y > 0 and a, b, c, d ∈ R such that a + b ≥ c + d and
y + c, y + d > 0. Then

max

{
x+ a

y + c
,
x+ b

y + d

}
≥ x

y
.

Proof. This fact follows easily, as one may assume without loss of gen-
erality that

x+ a

y + c
≤ x+ b

y + d
.

�
Theorem 5.2. Let X be a Banach space, which is uniformly smooth
and uniformly convex, both of power type 2. Consider Ω = X \ {0}
endowed with the j-metric. Then there exists a constant R > 0 such
that all j-balls of radius r ≤ R are convex.

Proof. Without loss of generality it suffices to consider balls Bj(x0, r0)
with x0 ∈ X such that ‖x0‖ = 1 + r, where we use the shorthand
notation r = er0 − 1. Then

Bj(x0, r0) =

{
x ∈ X :

‖x− x0‖
‖x‖ ≤ r

}
∩{x ∈ X : (1+r)−1‖x−x0‖ ≤ r

}
,

where the right-most set of the intersection is clearly convex. It follows
that we need to verify that the sets
(5.1)

A =

{
x ∈ X :

‖x− x0‖
‖x‖ < r, 1 ≤ ‖x‖ ≤ (1 + r)2

}
, 0 < r < R,

are convex as well for a suitable choice of R > 0. The selection of R is
discussed at the end of the proof in more detail.
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Since X is uniformly convex and smooth of power type 2, it is easy
to check that there exists M > 1 such that
(5.2)

lim inf
h→0+

(th)−1 inf{‖p+ z‖+ ‖p− z‖ − 2 : ‖p‖ = 1, ‖z‖ = th}
h−1 sup{‖v + w‖+ ‖v − w‖ − 2 : ‖v‖ = 1, ‖w‖ = h} ≥ 1,

for t ≥M . Fix such M > 1.
Note that Bj(x0, r0), 0 < r0 < log 2, is starlike by Theorem 3.1 and

hence connected. According to Lemma 2.1 it is only required to verify
that A is locally convex in small neighborhoods at the boundary. By
using a compactness argument for 2-dimensional sections, similar as
employed in the proof of Lemma 2.1, it follows that if A is not locally
convex at the boundary, then the following holds: there exists x ∈ A
such that

‖x− x0‖
‖x‖ = r

we have for some y ∈ SX the inequality

(5.3) inf
0<h<H

max

{‖x+ hy − x0‖
‖x+ hy‖ ,

‖x− hy − x0‖
‖x− hy‖

}
− r < 0

for all H > 0. Next we aim to exclude this possibility.
Indeed, write t = ‖x− x0‖−1, s = ‖x‖−1 and use p = t(x− x0), z =

thy, v = sx, w = shy in (5.2) to obtain that

lim inf
h→0+

‖t(x− x0) + thy‖+ ‖t(x− x0)− thy‖ − 2

‖sx+ shy‖+ ‖sx− shy‖ − 2
≥ t

s

for t/s ≥M and hence

(5.4) lim inf
h→0+

‖(x− x0) + hy‖+ ‖(x− x0)− hy‖ − 2‖x− x0‖
‖x+ hy‖+ ‖x− hy‖ − 2‖x‖ ≥ 1.

By Fact 5.1 and (5.4) we have

inf
0<h<H

max

{‖x− x0 + hy‖
‖x+ hy‖ ,

‖x− x0 − hy‖
‖x− hy‖

}
≥ ‖x− x0‖

‖x‖
for sufficiently small H > 0. This contradicts (5.3). The constant
R > 0 is obtained as follows. Because it was required that

t

s
=

‖x‖
‖x− x0‖ ≥M,

taking into account (5.1), it suffices to put R = M−1. �

Corollary 5.3. Let X be a Banach space, which is uniformly smooth
and uniformly convex, both of power type 2. Consider a domain Ω ( X
endowed with the j-metric. Then there exists a constant R > 0 such
that all j-balls of radius r ≤ R are convex.
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0

z

a b

0

B (z ,r)0k

c

Figure 6. The path γ0 consists of line segments [a, c]
and [c, b].

Proof. We apply the previous result together with Proposition 3.2 and
the standard method of [6] applied in passing from punctured spaces
to general domains. �

In [9, 2.14] Martio and Väisälä asked whether the quasihyperbolic
balls of convex domains of uniformly convex Banach spaces are quasi-
hyperbolically convex. More precisely, given two points a and b of the
quasihyperbolic ball B ⊂ Ω, does there exist a geodesic γ joining a and
b, which is contained in the ball B. Here the domain Ω was assumed
to be convex and the length of the geodesic is measured with respect
to the quasihyperbolic metric. It turns out the the answer is negative,
as the following counterexample shows.

Example 5.4. Let Ω = {(x, y) ∈ R2 : y < 0} and we will first consider
Ω as a subset of `∞(2) = (R2, ‖ · ‖∞). Let x = (0,−1),

r = ln(2) =

∫ 2

1

t−1 dt.

We will study the ball Bk(x, r). Put a = (−1,−2), b = (1,−2) and
observe that {ta+ (1− t)b : t ∈ [0, 1]} is included in ∂Bk(x, r). An in-
tuition, which helps in computing the quasihyperbolic lengths of paths,
is that one can move to the directions (−1,−1), (0,−1) and (1,−1) at
the same cost because of the choice of the norm. Note that z2 ≥ −2
for any (z1, z2) ∈ Bk(x, r).

Now, an easy computation shows that any path γ ⊂ Bk(x, r), which
joins a and b must have quasihyperbolic length at least∫ 1

−1

1

2
dt = 1.

However, the broken line γ0 connecting a, b through the point c =
(0,−3) has length

2

∫ 1

0

1

3− t dt = ln
(9

4

)
< 1,

see Figure 6. The existence of geodesics is clear in this choice of space.
Thus Bk(x, r) is not quasiconvex.
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This example does not change considerably if one considers the do-
main Ω = (−6, 6) × (0, 6) instead. Observe that the space `∞(2) is
certainly not uniformly convex, see Figure 5. However, because the
quasihyperbolic metric depends continuously on the selection of the
norm, we could apply the space `p(2) for large p < ∞ in place of
`∞(2) to produce similar examples, in which case we are dealing with
uniformly convex spaces.

5.1. Convexity of quasihyperbolic balls in a punctured Banach
space. Next we generalize the work of Klén [5], mutatis mutandis, to
the Banach space setting.

Lemma 5.5. Let f ∈ L2 such that f 6= 0 a.e. and let F (t) =∫ t
0
f(s) ds, 0 ≤ t ≤ 1. Then∫ t

0
F (s)2 ds∫ t

0
f(s)2 ds

≤ t2 for 0 ≤ t ≤ 1.

Proof. We will apply the well-known fact that the expectation operator
on L2([0, t]) is contractive, which is easiest to see by writing it like 1⊗1.
Then we have∫ t

0
F (s)2 ds∫ t

0
f(s)2 ds

≤ tF (t)2∫ t
0
(F (t)/t)2 ds

=
tF (t)2

F (t)2/t
= t2.

�

In the above lemma it is essential that the exponents appearing in
the numerator and the denominator are the same. This can be seen by
multiplying f with suitable positive constants, as F depends linearly
on f .

Lemma 5.6. Let X be a Banach space, which is uniformly convex and
uniformly smooth, both moduli being of power type 2. We consider the
quasihyperbolic metric k on X\{0}. Then there exists R > 0 as follows.
Assume that γ1, γ2 : [0, t2]→ X \ {0} are rectifiable paths satisfying the
following conditions:

(i) γ1, γ2 and γ1+γ2

2
are contained in B‖·‖(0, 2) \B‖·‖(0, 1),

(ii) γ1(0) = γ2(0),
(iii) `k(γ1) ∨ `k(γ2) ≤ R
(iv) `‖·‖(γ1) = t1 ≤ t2 = `‖·‖(γ2)
(v) The paths are parameterized with respect to `‖·‖, except that

γ1(t) = γ1(t1) for t ∈ [t1, t2].

Then the following estimate holds:

`k(γ1) + `k(γ2)

2
≥ `k

(
γ1 + γ2

2

)
+

∫ t1

0

δX(‖D(γ1 − γ2)‖)
‖γ1‖+ ‖γ2‖ ds.
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Proof. We note that the assumption about the parameterization yields
that

‖Dγ1(t)‖ = ‖Dγ2(t)‖ = 1 for t ∈ [0, t1].

Recall that we denote the Gâteaux derivative of a path γ by Dγ. Since
X has the RNP, being a reflexive space, it follows that each reasonably
parameterized path of finite QH-length is differentiable almost every-
where and can be recovered from its derivative by Bochner integration.

By using assumption (i) we observe that

`k

(
γ1 + γ2

2
, t1, t2

)
=

∫ t2

t1

‖D(γ1+γ2

2
)‖

‖γ1+γ2

2
‖ ds =

∫ t2

t1

‖Dγ2‖
2‖γ1(t1)+γ2

2
‖ ds

≤
∫ t2

t1

‖Dγ2‖
2

ds ≤
∫ t2

t1

‖Dγ2‖
‖γ2‖ ds = `k(γ2, t1, t2).

Thus our task reduces to verifying that

`k(γ1, 0, t1) + `k(γ2, 0, t1)

2
≥ `k

(
γ1 + γ2

2
, 0, t1

)
+

∫ t1

0

δX(‖D(γ1 − γ2)‖)
‖γ1‖+ ‖γ2‖ ds.

Without loss of generality we may assume, possibly by re-defining
the paths, that ‖D(γ1 − γ2)(t)‖ is not zero in any open neighborhood
of 0.

Let us evaluate by using the convexity of the mapping t 7→ t−1 and
the moduli of smoothness and convexity in the following manner:

1

2

(‖Dγ1‖
‖γ1‖ +

‖Dγ2‖
‖γ2‖

)
=

1

2

(
1

‖γ1‖ +
1

‖γ2‖
)

≥ 2

‖γ1‖+ ‖γ2‖
≥ ‖D(γ1 + γ2)‖

‖γ1‖+ ‖γ2‖ +
2δX(‖D(γ1 − γ2)‖)
‖γ1‖+ ‖γ2‖

≥ ‖D(γ1 + γ2)‖
‖γ1 + γ2‖(1 + 2ρX(‖γ1 − γ2‖/2‖γ1 + γ2‖)) +

2δX(‖D(γ1 − γ2)‖)
‖γ1‖+ ‖γ2‖ .

We aim to verify that there exists R > 0 such that∫ t

0

‖D(γ1 + γ2)‖
‖γ1 + γ2‖

(
1 + 2ρX

(‖γ1 − γ2‖/2‖γ1 + γ2‖
)) +

2δX(‖D(γ1 − γ2)‖)
‖γ1‖+ ‖γ2‖ ds

≥
∫ t

0

‖D(γ1 + γ2)‖
‖γ1 + γ2‖ +

δX(‖D(γ1 − γ2)‖)
‖γ1‖+ ‖γ2‖ ds



16 ANTTI RASILA AND JARNO TALPONEN

for all 0 ≤ t ≤ R. Recall that 1 ≤ ‖γ1 + γ2‖ ≤ 4 by the assumptions.
Let us analyze the terms of the above inequality:∫ t

0

‖D(γ1 + γ2)‖
‖γ1 + γ2‖ ds−

∫ t

0

‖D(γ1 + γ2)‖
‖γ1 + γ2‖

(
1 + 2ρX

(‖γ1 − γ2‖/2‖γ1 + γ2‖
))ds

=

∫ t

0

‖D(γ1 + γ2)‖
‖γ1 + γ2‖

(
1− 1

(1 + 2ρX(‖γ1 − γ2‖/2‖γ1 + γ2‖))
)
ds

≤
∫ t

0

(
1− 1

(1 + 2ρX(‖γ1 − γ2‖/8))

)
ds ≤

∫ t

0

2ρX(‖γ1 − γ2‖/8) ds

and ∫ t

0

δX(‖D(γ1 − γ2)‖)/8 ds ≤
∫ t

0

δX(‖D(γ1 − γ2)‖)
‖γ1‖+ ‖γ2‖ ds.

To justify the existence of the claimed constant R > 0 it suffices to
check that

(5.5)

∫ t
0

2ρX(‖γ1 − γ2‖/8) ds∫ t
0
δX(‖D(γ1 − γ2)‖)/8 ds −→ 0

uniformly, regardless of the selection of paths, as t→ 0.
Define f(s) = ‖D(γ1 − γ2)(s)‖ for a.e. s ∈ [0, r] and put

F (t) =

∫ t

0

f(s) ds ≥ ‖γ1(t)− γ2(t)‖.

Recall that ρX(τ) ≤ Kτ 2 and δX(ε) ≥ Mε2. Then the above ratio in
(5.5) can be evaluated from above by

(5.6)

∫ t
0

2ρ(F (s)/8) ds∫ t
0
δX(f(s))/8 ds

≤ (2)−2M−1K

∫ t
0
F (s)2 ds∫ t

0
f(s)2 ds

≤ (2)−2M−1Kt2.

Above we applied Lemma 5.5 and we note that the right-hand side
tends to 0 as t → 0, independently of the choice of f . Thus we have
the claim. �

Theorem 5.7. Let X be a Banach space, which is uniformly convex
and uniformly smooth, both moduli being of power type 2. We consider
the quasihyperbolic metric k on X \ {0}. Then there exists R > 0 as
follows:

(i) Each quasihyperbolic ball Bk(x, r), r ≤ R, is strictly convex.
(ii) For each y ∈ Bk(x, r), r ≤ R, there exists a unique geodesic in

Bk(x, r) joining x to y.
(iii) Suppose that vn, wn, yn, zn ∈ Bk(x, r), r ≤ R, n ∈ N, and

λn, γn ⊂ Bk(x, r) are paths of finite quasihyperbolic length and
parameterized so that they have a constant norm length growth.
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Assume further that γn(0) = vn, λn(0) = wn, γn(1) = yn,
λn(1) = zn and

lim
n→∞

k(vn, wn) = lim
n→∞

k(yn, zn) = 0,

and

lim
n→∞

`k(γn)− k(vn, yn) = lim
n→∞

`k(λn)− k(wn, zn) = 0.

Then

lim
n→∞

`k(γn − λn) = 0.

Proof. After normalizing with suitable quasihyperbolic isometries, bear-
ing Remark 3.3 in mind, the constant R is obtained from Lemma 5.6.
We will begin by proving claim (iii). Without loss of generality we
may assume, by extending and re-parameterizing the paths γn, that
γn(0) = λn(0), γn(1) = λn(1) and `k(γn) = `k(λn) for each n. It is easy
to see that the difference between the original and modified version of
γn tend to 0 in terms of the quasihyperbolic length as n→∞.

Since limn→∞ `k(γn)− `k(λn) = 0, we obtain by Lemma 5.6 applied
to (γn + λn)/2 that∫ tn

0

δX(‖D(γn − λn)‖)
‖γn‖+ ‖λn‖ ds→ 0 as n→∞,

where tn = `‖·‖(γn) ∧ `‖·‖(λn). By using the fact that the norm of
the elements of Bk(x, r) is bounded from above and the modulus of
convexity is of power type 2, we get that∫ tn

0

‖D(γn − λn)‖ ds→ 0 as n→∞.

On the other hand, since the norm of the elements of Bk(x, r) is
bounded from below by a strictly positive constant, we obtain that
`k(γn − λn) tends to 0 as n→∞.

To verify claim (ii), fix y ∈ Bk(x, r). Let γn be a sequence of recti-
fiable paths I → X \ {0} parametrized with respect to `‖·‖ such that
γn(0) = x, γn(t) = y for t ∈ [`‖·‖(γn), 1] and `k(γn) → k(x, y) as
n→∞. A similar reasoning as above yields that

sup
k

∫ tn,k

0

‖D(γn − γn+k)‖ ds→ 0 as n→∞.

According to the RNP we may consider the weak derivative Dγ of a
path γ as an element of the Bochner space L1([0, 1],X), where the `‖·‖
norm of γ(·)−x coincides with the Bochner norm of Dγ ∈ L1([0, 1],X).
Thus (Dγn) ⊂ L1([0, 1],X) is a Cauchy sequence, and since the Bochner
space is complete, we may let Dγ ∈ L1([0, 1],X) be the (unique) point
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of convergence. Then we obtain the required geodesic γ by defining it
as a Bochner integral as follows:

γ(t) = x+

∫ t

0

Dγ ds.

It is straight-forward to check that γ is a geodesic. Moreover, since the
Bochner space element Dγ is unique, in the sense that it is independent
of the selection of the sequence Dγn (as long as `k(γn) → k(x, y) as
n→∞), we conclude that γ is unique as well.

Let us verify claim (i) that Bk(x, r) is strictly convex. Fix two points
y, z ∈ X, y 6= z, such that k(x, y) = k(x, z) = r. There exist quasihy-
perbolic geodesics γ and λ, joining x, y and x, z, respectively. By using
Lemma 5.6 we obtain that

`k

(
γ + λ

2

)
< r,

and clearly the average path (γ + λ)/2 joins x with (y + z)/2. This
completes the proof. �

Any Hilbert space has the best possible power types of uniform con-
vexity and uniform smoothness, namely p = 2, and in fact the optimal
modulus functions. It is known that any Banach space has the uniform
convexity power type at least 2 and the uniform smoothness power type
at most 2. Our method in the proof of Lemma 5.6 requires comparing
the power types and this is why we assumed that the power types of
the moduli should coincide, i.e. p = 2 for both accounts. It is perhaps
worthwhile to pay close attention to how Lemma 5.5 is applied at the
end of the proof. We note that any Banach space with the coinciding
power types of the moduli must be linearly homeomorphic to a Hilbert
space.
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