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Ehsan Azmoodeh: Riemann-Stieltjes integrals with respect to fractional Brown-
ian motion and applications; Helsinki University of Technology Institute of Math-
ematics Research Reports A590 (2010).

Abstract: In this dissertation we study Riemann-Stieltjes integrals with
respect to (geometric) fractional Brownian motion, its financial counterpart
and its application in estimation of quadratic variation process. From the
point of view of financial mathematics, we study the fractional Black-Scholes
model in continuous time.

We show that the classical change of variable formula with convex functions
holds for the trajectories of fractional Brownian motion. Putting it simply,
all European options with convex payoff can be hedged perfectly in such
pricing model. This allows us to give new arbitrage examples in the geomet-
ric fractional Brownian motion case. Adding proportional transaction costs
to the discretized version of the hedging strategy, we study an approximate
hedging problem analogous to the corresponding discrete hedging problem
in the classical Black-Scholes model. Using the change of variables formula
result, one can see that fractional Brownian motion model shares some com-
mon properties with continuous functions of bounded variation. we also show
a representation for running maximum of continuous functions of bounded
variations such that fractional Brownian motion does not enjoy this prop-
erty.

AMS subject classifications: 60G15, 60H05, 62M15, 91B28, 91B70

Keywords: fractional Brownian motion, pathwise stochastic integral, quadratic
variation, functions of bounded variation, arbitrage, pricing by hedging, approxi-
mative hedging, proportional transaction costs
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III Azmoodeh, E., Tikanmäki, H., Valkeila, E. (2010). When does frac-
tional Brownian motion not behave as a continuous function with bounded
variation? Statistics & Probability Letters, 80, Issues 19-20, 1543-
1550.

IV Azmoodeh, E., Valkeila, E. (2010). Spectral characterization of the
quadratic variation of mixed Brownian fractional Brownian motion.
http://arxiv.org/pdf/1005.4349v1.

Author’s contribution

I The work is a joint discussion with Yuliya Mishura from Kyiv univer-
sity and Esko Valkeila from TKK. All main results of the article are
formulated by the author and for the detail proofs too. The surprising
result which is presented in section 4 is my independent study.

II This work completely represents my independent research studies.

III The theorem 3.1 in the main result section is a joint work with Heikki
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1 Introduction

The fractional Brownian motion (fBm) is a generalization of the more simple
and more studied stochastic process of standard Brownian motion. More
precisely, the fractional Brownian motion is a centered continuous Gaussian
process with stationary increments and H-self similar properties. The Hurst
parameter H, due to the British hydrologist H. E. Hurst, is between 0 and
1. The case H = 1

2
corresponds to standard Brownian motion.

On the other hand, the increments of the fractional Brownian motion are
not independent, except the in case of standard Brownian motion. The Hurst
parameter H can be used to characterize the dependence of the increments
and indicates the memory of the process. The increments over two disjoint
time intervals are positively correlated when H > 1

2
and are negatively cor-

related for H < 1
2
. In the first case, the dependence between two increments

decay slowly so that it does sum to infinity as the time intervals grow apart,
and exhibits long range dependence or the long memory property. For the
latter case, the dependence is fast and is refered to as short rage dependence
or short memory. Obviously, for H = 1

2
, the increments are independent.

The self-similarity and long range dependence properties allow us to use
fractional Brownian motion as a model in different areas of applications e.g.
hydrology, climatology, signal processing, network traffic analysis and mathe-
matical finance. Besides such applications, it turns out that fractional Brow-
nian motion is not a semimartingale nor a Markov process, except in the
case when H = 1

2
. Hence, the classical stochastic integration theory for

semimartingales is not at hand and so makes fractional Brownian motion
more interesting from a purely mathematical point of view.

The financial pricing models with continuous trading, based on geometric
fractional Brownian motion sometimes allow for existence of arbitrage. The
existence of arbitrage essentially depends to the kind of stochastic integral
in the definition of the wealth process. It can be shown that with Skoro-
hod integration theory arbitrages disappear, but difficult to give economic
interpretation, see Björk and Hult [17] and Sottinen and Valkeila [62]. On
the other hand, Riemann - Stieltjes integrals seem more natural and sound
better for economical interpretations. Using the Riemann - Stieltjes integra-
tion theory with adding proportional transaction costs lets us to construct a
framework which acknowledges the pricing models with geometric fractional
Brownian motion. First, Guasoni [29] showed that we have the absence of
arbitrage in pricing model with proportional transaction costs based on ge-
ometric fractional Brownian motion with continuous trading. Moreover, in
this setup, Guasoni, Rásonyi and Schachermayer [31] proved a fundamental
theorem of asset pricing type result. The results by Guasoni, Rásonyi and
Schachermayer open a new window to the pricing models based on fractional
type processes such geometric fractional Brownian motion.

11



2 Fractional Brownian motion (fBm)

Definition 2.1. The fractional Brownian motion BH with Hurst parameter
H ∈ (0, 1), is a centered Gaussian process with covariance function

RH(s, t) :=
1

2

(
s2H + t2H − |t− s|2H), for s, t ∈ R+. (1)

Remark 2.0.1. Clearly R 1
2
(s, t) = s ∧ t, and so B

1
2

d
= W , where W is a

standard Brownian motion, and
d
= stands for equality in finite dimensional

distributions.

Remark 2.0.2. A general existence result for zero mean Gaussian processes
with a given covariance function (see proposition 3.7 of [54]) implies that
fractional Brownian motion exists. For a different construction of fractional
Brownian motion using white noise theory, see [7].

2.1 Primary properties of fBm

Here we list some properties of fBm that can be obtained directly from the
covariance function RH .
Stationary increments: For any s ∈ R+, we have that

{BH
t+s −BH

s }t∈R+

d
= {BH

t }t∈R+ .

This follows from the fact that E|BH
t −BH

s |2 = f(t− s), where f(t) = |t|2H ,
and from proposition 3 of section 4 of [41].
Hölder continuity: Let 0 < α < 1. For a function f : R+ → R+, set

‖f‖Cα(R+) := sup
0≤s<t

|f(t)− f(s)|
|t− s|α .

If ‖f‖Cα(R+) < ∞, we say that f is an α-Hölder continuous function. The
class of all α-Hölder continuous functions on the real line (or interval [0, T ]) is
denoted by Cα(R+)( or Cα[0, T ]). According to the Kolmogorov continuity
criterion (see [54]), a stochastic process X = {Xt}t∈R+ has a continuous

modification X̃, if there exist constants α, β, c > 0 such that

E|Xt −Xs|α ≤ c|t− s|1+β, for s, t ∈ R+.

Moreover, the modification X̃ has locally Hölder continuous trajectories of
any order λ ∈ [0, β

α
) almost surely, i.e. for any given compact set K ⊂ R+,

there exists an almost surely finite and positive random variable C = C(λ,K)
such that

|X̃t(ω)− X̃s(ω)| ≤ C(ω)|t− s|λ, for s, t ∈ K,
almost surely.

12



Theorem 2.1. The fractional Brownian motion BH has a continuous mod-
ification whose trajectories are locally λ-Hölder continuous for any λ < H.
Moreover for any λ > H, the fractional Brownian motion trajectories are
nowhere λ-Hölder continuous on any interval almost surely.

Proof. For any α > 0, we have

E|BH
t −BH

s |α = E|BH
1 |α|t− s|αH .

So the claim follows by the Kolmogorov continuity criterion. Moreover by
the law of iterated logarithm for fractional Brownian motion (see [1]): for all
t > 0, almost surely

lim sup
ε→0+

Bt+ε −Bt√
2ε2H log log(1

ε
)

= 1.

Hence, the trajectories of fractional Brownian motion BH cannot be Hölder
continuous of any order greater than H on any interval with probability one.

Markov property: According to lemma 5.1.9 of [45], a centered Gaus-
sian process X with continuous covariance function R is a Gaussian Markov
process iff R can be expressed in the form

R(s, t) =

{
p(s)q(t) if s ≤ t,

p(t)q(s) if t < s,

for some positive functions p and q. Hence,

Proposition 2.1. The fractional Brownian motion BH is a Gaussian Markov
process iff H = 1

2
.

2.2 Self-similarity and long-range dependence

Definition 2.2. We say that a stochastic process X = {Xt}t∈R+ is self-
similar with index H > 0 or H - self-similar, if for any a > 0,

{Xat}t∈R+

d
= {aHXt}t∈R+ .

Since the covariance function RH is homogeneous of order 2H, we have
the following:

Proposition 2.2. The fractional Brownian motion BH is a H - self-similar
process.

Definition 2.3. The stationary and H - self-similar sequence

Zn := BH
n+1 −BH

n , n ∈ N0 (2)

is called fractional Gaussian noise.

13



Proposition 2.3. For fractional Gaussian noise Z defined in (2), let

rH(n) := E(Zn+kZk) =
1

2

(
(n+ 1)2H − 2n2H + (n− 1)2H

)
, n ∈ N.

Then, we have that
(i) For n 6= 0,

rH(n)


< 0 if H ∈ (0, 1

2
), (negatively correlated increments)

= 0 if H = 1
2
, (independent increments)

> 0 if H ∈ (1
2
, 1), (positively correlated increments).

(3)

(ii) For H 6= 1
2
, as n→∞

rH(n) ∼ H(2H − 1)n2H−2, i.e. lim
n→∞

rH(n)

H(2H − 1)n2H−2
= 1. (4)

Proposition 2.4. Let Z be fractional Gaussian noise defined in (2) with
covariance function rH(n). Then we have that∑

n∈N0

rH(n) =∞, if H >
1

2
,

∑
n∈N0

|rH(n)| <∞, if H <
1

2
.

(5)

Definition 2.4. A stationary sequence X = {Xn}n∈N0 with covariance func-
tion r(n) := Cov (Xn+k, Xk) exhibits long-range dependence (or long memory),
if

lim
n→∞

r(n)

cn−α
= 1, or

∑
n∈N0

r(n) =∞, (6)

for some constants c and α ∈ (0, 1).

Proposition 2.5. The fractional Gaussian noise Z defined in (2) exhibits
long-range dependence property iff H > 1

2
.

The definition of long-range dependence can be given using the spectral
density function, see [63] for equivalent definitions. For a survey on the theory
of long-range dependence and its applications, consult [23] and [57].

2.3 p - variation

In this section we recall the concept of p - variation which gives information
about the regularity of trajectories of stochastic processes. Young [68] noticed
that p - variation can be useful in integration theory when one has integrators
of unbounded variation (see section 4). For more details on p - variation, see
Dudley and Norvaĭsa [24], [25] and Mikosch and Norvaĭsa [46].

Let Φ : [0,∞) → [0,∞) be a strictly increasing, continuous, unbounded,
convex function and Φ(0) = 0. For each partition π := {0 = t1 < t2 < · · · <

14



tn = T} of the interval [0, T ], the mesh of π, denoted by |π|, is defined by
|π| := max1≤k≤n(tk − tk−1). For a function f : [0, T ]→ R, set

vΦ(f ; π) :=
n∑
k=1

Φ|f(tk)− f(tk−1)|.

Definition 2.5. We define Φ-variation of the function f over the interval
[0, T ] by

vΦ(f) := sup
π
vΦ(f ; π), (7)

where the supremum is taken over all partitions π of the interval [0, T ]. If
vΦ(f) < ∞, we say that f has the bounded Φ-variation property and we
denote by WΦ the class of all functions f with bounded Φ-variation.

The function Φ(x) = xp where x ≥ 0 and 1 ≤ p < ∞, serves as a
special example. The case p = 1 corresponds to the classical case of bounded
variation. For the function Φ(x) = xp, we denote vΦ(f) = vp(f) and WΦ =
Wp. Moreover, we define the index of the function f by

v(f) := inf{p ≥ 1; vp(f) <∞}.
Let

‖f‖(p) := (vp(f))
1
p and ‖f‖[p] := ‖f‖(p) + ‖f‖∞,

where ‖f‖∞ := supt∈[0,T ] |f(t)|. Then we have that

Proposition 2.6. The function ‖ · ‖[p] is a norm on the class Wp and the
pair (Wp, ‖ · ‖[p]) is a Banach space.

The next proposition (see Dudley and Norvaĭsa [24] for a proof) shows
the link between Hölder continuous and bounded p-variation functions.

Proposition 2.7. Let 1 ≤ p <∞. Then the function f : [0, T ]→ R belongs
to Wp if and only if f = g ◦ h, where h is a bounded, non-negative and
increasing function on [0, T ] and g is a Hölder continuous function of order
1
p

on [h(0), h(T )].

Let X = {Xt}t∈[0,T ] be a separable centered Gaussian process with incre-
mental variance σ2

X(s, t) = E(Xt −Xs)
2. Then a result by Jain and Monrad

[32] gives a sufficient condition for X belonging to Wp with probability one
for p ≥ 1 by using the function σX . See also Kawada and Kono [38] for a
related study of p - variation for a general class of Gaussian processes.

Theorem 2.2. Let X be as above. Set

κ(p, σ) := sup
π

∑
tk∈π

[
σX(tk, tk−1)

(
log∗(log∗ σX(tk, tk−1))

) 1
2
]p
,

where the supremum is taken over all partitions π of the interval [0, T ] and
log∗(x) = max{1, | log(x)|}. Now condition κ(p, σ) <∞ implies that X ∈ Wp

with probability one.
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Applying the result of Kawada and Kono to fractional Brownian motion,
we have (see Mishura [47], page 93 for a proof):

Proposition 2.8. Almost surely, BH ∈ Wp for any p > 1
H

and vp(B
H) =∞

for p < 1
H

. Moreover v(BH) = 1
H

with probability one.

Remark 2.2.1. Let us emphasize that there is a difference between bounded
2-variation and the concept of finite quadratic variation. Let {πn} be a se-
quence of partitions of [0, T ] such that |πn| → 0. For a stochastic process X,
the quadratic variation [X,X]T along the sequence {πn} is defined by

[X,X]T := P− lim
|πn|→0

∑
tnk∈πn

(
Xtnk
−Xtnk−1

)2
, (8)

if the limit exists. For example, for standard Brownian motion W , we have
[W,W ]t = t; t ∈ [0, T ] along any refining sequence of partitions of [0, T ] with
mesh goes to 0, but v2(W ) =∞ with probability one.

Further, we have the following result for the quadratic variation of frac-
tional Brownian motion.

Theorem 2.3. For the fractional Brownian motion BH = {BH
t }t∈[0,T ], we

have that [BH , BH ]T = 0 if H > 1
2

and that [BH , BH ]T does not exists if
H < 1

2
, where [BH , BH ]T is defined by (8). Moreover, BH is of unbounded

variation almost surely.

Proof. Consider the equidistant partitions π̂n := {tnk = kT
n

; 0 ≤ k ≤ n},
n ∈ N. Then by the self-similarity of BH , we have

vp(B
H , π̂n) =

n∑
k=1

|BH
tnk
−BH

tnk−1
|p d

= T pHn1−pH 1

n

n∑
k=1

|BH
k −BH

k−1|p

→


∞ if p < 1

H
,

TE|BH
1 |

1
H if p = 1

H
,

0 if p > 1
H
,

as n tends to infinity. The convergence can be shown to take place in L2(Ω,P)
by a result from ergodic theory. Also, when H > 1

2
, take α ∈ (1

2
, H). Then

using the Hölder continuity of trajectories of BH , for any sequence πn of
partitions of the interval [0, T ] such that |πn| → 0, we can write

[BH , BH ]T = P− lim
|πn|→0

∑
tk∈πn

(
BH
tk
−BH

tk−1

)2

≤ C2(ω) lim
|πn|→0

∑
tk∈πn

(tk − tk−1)2α

≤ C2(ω) lim
|πn|→0

|πn|2α−1
∑
tk∈πn

(tk − tk−1)

= 0

almost surely as n tends to infinity.
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2.4 Non semimartingale property

Let (Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability space, satisfying the usual
conditions. We denote by L0(Ω,F ,P), the class of all almost surely finite
random variables on the probability space (Ω,F ,P).

Definition 2.6. A simple integrand is a stochastic process H = {Ht}t∈[0,T ]

with the representation

Ht =
n∑
k=1

Hk1(τk−1,τk](t), t ∈ [0, T ],

where n ∈ N is a finite number, Hk ∈ L∞(Ω,Fτk−1
,P) and the τk’s are an

increasing sequence of stopping times such that 0 = τ0 ≤ τ1 ≤ · · · ≤ τn = T .

We denote by Su, the class of all simple integrands on filtered probability
space (Ω,F ,P, (Ft)t∈[0,T ]) and endow it with a uniform norm on (t, ω), i.e.

‖H‖∞ = sup
t∈[0,T ]

‖Ht‖L∞(Ω,P).

Let X = {Xt}t∈[0,T ] be a càdlàg and adapted stochastic process. We
define the integration operator IX : Su → L0(Ω,F ,P) by

IX
( n∑
k=1

Hk1(τk−1,τk]

)
=

n∑
k=1

Hk(Xτk −Xτk−1
). (9)

Following Protter [53], we define a good integrator as follows:

Definition 2.7. Assume L0(Ω,F ,P) is equipped with the topology of con-
vergence in probability. We call a real-valued, càdlàg and adapted stochastic
process X = {Xt}t∈[0,T ] a “ good integrator ” if the integration operator

IX : Su → L0(Ω,F ,P)

is continuous.

The next theorem gives a complete characterization of the structure of
stochastic processes X for which the integration operator IX given by (9) is
continuous.

Theorem 2.4. (Bichteler - Dellacherie Theorem) [14], [15], [21] Let X =
{Xt}t∈[0,T ] be a real-valued, càdlàg and adapted stochastic process. Then we
have the equivalent statements:
(i) X is a good integrator. (see definition 2.7.)
(ii) X is a semimartingale, i.e. X can be decomposed as X = M + A, for
some local martingale M and an adapted and finite variation process A.

Applying this to fractional Brownian motion, it turns out that the frac-
tional Brownian motion BH is not a good integrator in the sense of definition
2.7.
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Theorem 2.5. The fractional Brownian motion BH is a semimartingale iff
H = 1

2
.

Proof. [5] Let H 6= 1
2

and tnk := Tk
n

. Define

Hn
t := n2H−1

n−1∑
k=1

(
BH
tnk
−BH

tnk−1

)
1(tnk ,t

n
k+1](t).

Then we have that ‖Hn‖∞ → 0 as n tends to infinity, but

P− lim
n→∞

IS(Hn) = P− lim
n→∞

n2H−1

n−1∑
k=1

(
BH
tnk
−BH

tnk−1

)(
BH
tnk+1
−BH

tnk

)
= T 2H(22H−1 − 1) 6= 0

by theorem 9.5.2 of [37]. Therefore, the fractional Brownian motion BH is
not a semimartingale if H 6= 1

2
.

3 Local time

In this section, we summarize some results on another characteristic which
deals with the regularity of trajectories. For a nice survey article on the
subject (non random and random functions), see Geman and Horowitz [43].
See also the book by Marcus and Rosen [45].

3.1 Local time of Gaussian processes

Let X = {Xt}t∈[0,T ] be a real-valued continuous Gaussian process. The oc-
cupation measure of X is

ΓX(A, I) := m(X−1(A) ∩ I) = m(t ∈ I; Xt ∈ A), (10)

where I ∈ B([0, T ]), A ∈ B(R) and m is Lebesgue measure on the real line.
Clearly, this is a random measure, depending on ω ∈ Ω. If the occupation
measure ΓX as a set function of A is absolutely continuous with respect to
Lebesgue measure, then its density, l(x, I), is called the local time of X with
respect to I. The local time l(x, I) can be interpreted as the amount of
time spent at x by the process X during the time period I. Hence, by the
definition, we have

ΓX(A, I) =

∫
A

l(x, I)dx, for all A and I. (11)

Moreover, we define the two parameter stochastic process l(x, t) of space
parameter x and time parameter t as

l(x, t) := l(x, [0, t]), t ∈ [0, T ], x ∈ R.

For the local time l(x, .) as a set function on the Borel sets B([0, T ]), we
have the following result.
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Proposition 3.1. For the local time l we have:
(i) Almost surely, l(x, .) is a finite measure on B([0, T ]) for every x.
(ii) Almost surely, the measure l(x, .) is carried by the level set at x, i.e.

Ix = {t ∈ [0, T ]; Xt = x}.
Now, we state a general result on the existence of local time for Gaussian

processes given by Berman.

Theorem 3.1. Let X = {Xt}t∈[0,T ] be a centered, continuous Gaussian pro-
cess with σ2

X(s, t) = E(Xt − Xs)
2. There exists a local time l ∈ L2(m × P)

for the process X, if and only if∫ T

0

∫ T

0

1√
σX(s, t)

dsdt <∞. (12)

It is clarified in a work by Berman [11], that the concept of local nondeter-
minism (LND), defined below, plays a central role in the study of local times
of Gaussian processes. See, for example, the works by Berman [12], [13], for
more information on local nondeterminism and the introduction of the work
by Xiao [67] for more references. Also Cuzick [20] gives a generalization to
local φ- nondeterminism. Now assume that X = {Xt}t∈[0,T ] is a centered
Gaussian process and there is a δ > 0 such that

E(Xt)
2 > 0, for t > 0 and E(Xt −Xs)

2 > 0

for all s, t ∈ [0, T ] and 0 < |t− s| < δ.

Definition 3.1. Let t1 < t2 < · · · < tm be chosen from the interval [0, T ]
and m ≥ 2. Set

Vm :=
Var
(
Xtm −Xtm−1|Xt1 , · · · , Xtm−1

)
Var(Xtm −Xtm−1)

.

We say that X is locally nondeterministic on the interval [0, T ], if for any
integer m ≥ 2

lim
ε→0

inf
tm−t1≤ε

Vm > 0.

Let X = {Xt}t∈[0,T ] be a centered, stationary increments Gaussian process
with σ2

X(t) = E(Xt+s −Xs)
2. Moreover, assume that |t|−βσX(t) → c > 0 as

t→ 0 for some index β ∈ (0, 1).

Theorem 3.2. Let X be as above and LND. Then X has a jointly continuous
local time l(x, t) such that for any compact set K ⊆ R,
(i) for any λ < min{1, 1−β

2β
}

sup
t∈[0,T ]

sup
x,y∈K

|l(x, t)− l(y, t)|
|x− y|λ <∞ a.s. and

(ii) for any θ < 1− β

sup
x∈K

sup
s,t∈[0,T ]

|l(x, t)− l(x, s)|
|t− s|θ <∞ a.s.
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In 1978, Loren D. Pitt proved that fractional Brownian motion is LND,
[52], lemma 7.1.

Proposition 3.2. The fractional Brownian motion BH = {BH
t }t∈[0,T ] has a

jointly continuous local time lH(x, t) which is Hölder continuous in the time
variable t of any order θ < 1 − H and in the space variable x of any order
λ < 1−H

2H
.

3.2 Approximation of local time

As proposition 3.1 suggests, one may approximate the local time l(x, t) of a
stochastic process X = {Xt}t∈[0,T ] with irregular trajectories by the number
of level x crossings, i.e.

Nx(X, [0, T ]) := #{t ∈ [0, T ]; Xt = x}, (13)

with a suitable normalization factor and an appropriate convergence. For
general processes, this can be done in two different ways, (i) and (ii) below.
Here we consider only Gaussian processes. For a more detailed account, see
for example the works by Azäıs and Wschebor [2], [3], [4], [65], [66] and a
survey article by Kratz [39] and the references therein.

(i) Regularized approximation: For a process X with irregular trajectories,
the regularization of X is defined by

Xε := X ∗ ψε, where ψε(t) =
1

ε
ψ(
t

ε
),

and ψ is a non-negative, C∞ function with compact support and ∗ means
the convolution of functions. Then Wschebor [65] showed that:

Theorem 3.3. Let W = {Wt}t∈[0,T ] be a Brownian motion. Then for any
x ∈ R, √

π

2

ε
1
2

‖ψ‖2

Nx(Wε, [0, T ])→ l(x, [0, T ]) as ε→ 0,

where convergence is in Lp(Ω,P) for any p ∈ N.

Later, Azäıs [2] studied more general stochastic processes including Gaus-
sian processes. He provided the sufficient conditions for L2 convergence of
the number of level crossings of some regularized approximation process Xε

of X to the local time of X, using a suitable normalization factor.

(ii) Polygonal approximation: Following Azäıs, the polygonal approxima-
tion of size ∆ of stochastic process X, X∆, is the polygonal line connecting
the points {(k∆, X(k∆))}, i.e. for k∆ ≤ t ≤ (k + 1)∆,

X∆(t) :=
( t

∆
− k)X((k + 1)∆) +

(
1− t

∆
+ k
)
X(k∆).
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For any x ∈ R, put

Cx(X∆, [0, T ]) = {t ∈ [0, T ];X∆(t) = x and t 6= k∆ for each index k}

and

Nx(X∆, [0, T ]) = #Cx(X∆, [0, T ]),

i.e. the number of level x crossings of X∆ over the interval [0, T ]. Then,
Azäıs [2] proved that

Theorem 3.4. Let BH = {BH
t }t∈[0,T ] be a fractional Brownian motion with

Hurst parameter H ∈ (0, 1). Then for any x ∈ R,√
π

2
∆1−HNx(BH

∆ , [0, T ])→ lH(x, [0, T ]) as ∆→ 0,

where convergence is in L2(Ω,P).

Note that in [2], Azäıs showed convergence in L2 of normalized level cross-
ings of polygonal approximation to the local time for more general Gaussian
processes. He did so by putting some technical assumptions on the covari-
ance functions of the Gaussian process and its polygonal approximation. His
results include some stationary Gaussian processes and fractional Brownian
motion as examples.

4 Pathwise integration with respect to frac-

tional Brownian motion

Fractional Brownian motion is not a semimartingale, and hence the stochas-
tic integral with respect to fractional Brownian motion BH becomes more
challenging. It turns out that fractional calculus creates a path to defining
a kind of integral with respect to paths of fractional Brownian motion. For
a complete treatment of deterministic fractional calculus, see the book by
Samko. et. al. [56].

4.1 Fractional calculus on a finite interval

Let a < b be two real numbers and f : [a, b] → R be a function. Then by a
straightforward induction argument, a multiple integral of f can be expressed
as∫ tn

a

· · ·
∫ t2

a

∫ t1

a

f(u)dudt1 · · · dtn−1 =
1

(n− 1)!

∫ tn

a

f(u)(tn − u)n−1du, (14)

where tn ∈ [a, b] and n ≥ 1. (By convention, (0)! = 1 and a0 = 1.) We know
that (n− 1)! = Γ(n). So replacing n by a real number α > 0 in (14), we are
motivated to define the so-called fractional integrals as follows.
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Definition 4.1. Let f ∈ L1[a, b] and α > 0. The integrals

Iαa+f(t) =
1

Γ(α)

∫ t

a

f(s)(t− s)α−1ds =
1

Γ(α)

∫ b

a

f(s)(t− s)α−1
+ ds, (15)

for t ∈ (a, b), and

Iαb−f(t) =
1

Γ(α)

∫ b

t

f(s)(s− t)α−1ds =
1

Γ(α)

∫ b

a

f(s)(s− t)α−1
+ ds, (16)

where t ∈ (a, b), are called fractional integrals of order α.

The fractional integral Iαa+ is called left-sided since the integration in (15)
is over the left hand side of the interval [a, t] of the interval [a, b]. Similarly,
the fractional integral Iαb− is called right-sided. Both integral Iαa+ and Iαb− are
also called Riemann - Liouville fractional integrals.

Remark 4.0.1. The fractional integrals Iαa+ and Iαb− are well - defined for
functions f ∈ L1[a, b], and so also for functions f ∈ Lp[a, b], for p > 1 as
well, i.e. the integrals in (15) and (16) converge for almost all t ∈ (a, b) with
respect to Lebesgue measure.

Remark 4.0.2. The left (right) - sided fractional integrals can be defined on
the whole real line in a similar way.

Proposition 4.1. For α > 0, the fractional integrals Iαa+ and Iαb− have the
following properties:
(i) Semigroup property: for f ∈ L1[a, b] and α, β > 0,

Iαa+I
β
a+f = Iα+β

a+ f and Iαb−I
β
b−f = Iα+β

b− f. (17)

(ii) Fractional integration by parts formula: let f ∈ Lp[a, b] and g ∈ Lq[a, b]
either with p, q ≥ 1 and 1

p
+ 1

q
≤ 1 + α, or with p, q > 1 and 1

p
+ 1

q
= 1 + α.

Then we have ∫ b

a

f(t)(Iαa+g)(t)dt =

∫ b

a

g(t)(Iαb−f)(t)dt. (18)

(iii) If Iαa+f = 0 or Iαb−f = 0 then f(u) = 0 almost everywhere.

For 0 < α < 1, we define the operator I−αa+ (I−αb− ) as the inverse of the
fractional integral operator in the following way.

Definition 4.2. Let 0 < α < 1. The integrals

Dαa+f(t) = (I−αa+ f)(t) =
1

Γ(1− α)

d

dt

∫ t

a

f(s)(t− s)−αds and (19)

Dαb−f(t) = (I−αb− f)(t) = − 1

Γ(1− α)

d

dt

∫ b

t

f(s)(s− t)−αds, (20)

for t ∈ (a, b), are called fractional derivatives of order α. Both (19) and (20)
are also called the Riemann - Liouville fractional derivatives.
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Remark 4.0.3. The fractional derivatives Dαa+f and Dαb−f are well defined
if, for example, function f can be expressed as f = Iαa+φ or f = Iαb−φ, for
some φ ∈ Lp[a, b] and p ≥ 1.

The next property will become useful in the context of the generalized
Lebesgue - Stieltjes integration, as shown in proposition 4.3.

Remark 4.0.4. Let two functions f1 and f2 be such that f1 = f2 almost
everywhere. This implies that Dαa+(b−)f1 = Dαa+(b−)f2.

Proposition 4.2. For 0 < α < 1, the fractional derivatives Dαa+ and Dαb−
have the following properties:
(i) Semigroup property: let α, β ≥ 0 and f ∈ Iα+β

a+(b−)(L
1[a, b]). Then we have

Dαa+(b−)Dβa+(b−)f = Dα+β
a+(b−)f.

(ii) For any f such that f = Iαa+(b−)φ, we have that Iαa+(b−)Dαa+(b−)f = f .

(iii) Integration by parts formula: for 0 < α < 1, f ∈ Iαa+(Lp[a, b]) and
g ∈ Iαb−(Lq[a, b]), where 1

p
+ 1

q
≤ 1 + α, we have that∫ b

a

(Dαa+f)(t)g(t)dt =

∫ b

a

f(t)(Dαb−g)(t)dt. (21)

Now, we are ready to briefly mention an approach that extends Young
integration theory for the Lebesgue - Stieltjes integral, (LS) − ∫ b

a
fdg, to a

larger class of integrands f and allows for integrators g to be of unbounded
variation. For more details, see Zähle [69] and Mishura [47].

Consider two deterministic functions f, g : [a, b]→ R such that the right
limit f(t+) = limδ→0 f(t + δ) and left limit g(t−) = limδ→0 g(t − δ) exist for
any t ∈ [a, b) and t ∈ (a, b] respectively. Put

fa+(t) := (f(t)− f(a+))1(a,b)(t) and gb−(t) := (g(b−)− g(t))1(a,b)(t).

Suppose that fa+ ∈ Iαa+(Lp[a, b]) and gb− ∈ I1−α
b− (Lq[a, b]), for some p, q ≥

1, 1
p

+ 1
q
≤ 1 and 0 < α < 1.

Definition 4.3. The generalized Lebesgue - Stieltjes integral
∫ b
a
fdg is defined

as ∫ b

a

fdg :=

∫ b

a

(Dαa+fa+)(t)(D1−α
b− gb−)(t)dt+ f(a+)

(
g(b−)− g(a+)

)
. (22)

Remark 4.0.5. The definition of the generalized Lebesgue - Stieltjes integral
in (22) does not depend on the choice of α.

Proposition 4.3. Some elementary properties of generalized Lebesgue - Stielt-
jes integrals are:
(i)
∫ b
a
1(c,d)fdg =

∫ d
c
fdg, if both integrals exist in the sense of the definition
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(22).

(ii)
∫ c
a
fdg +

∫ b
c
fdg =

∫ b
a
fdg, if each of integrals exist in the sense of the

definition (22) and g is continuous.

(iii)
∫ b
a
1(c,d]dg = g(d)− g(c), if g is Hölder continuous on [a, b].

(iv)
∫ b
a
f1dg =

∫ b
a
f2dg, if f1 = f2 almost everywhere and both integrals exist

in the sense of the definition (22)

We denote the class of bounded variation functions on the interval [a, b]
by BV [a, b].

Theorem 4.1. Let fa+ ∈ Iαa+(Lp[a, b]) and g ∈ I1−α
b− (Lq[a, b]) ∩ BV [a, b], for

some p, q ≥ 1, 1
p

+ 1
q
≤ 1, 0 < α < 1 and∫ b

a

Iαa+(|Dαa+f |)(t)d|g|(t) <∞,

then

∫ b

a

fdg = (LS)−
∫ b

a

fdg.

In 1936, Young [68] extended the Riemann - Stieltjes integrals to in-
tegrators of unbounded variation. More precisely, he proved the following
theorem:

Theorem 4.2. Let f ∈ Wp and g ∈ Wq for some 1 ≤ p, q < ∞ such that
1
p

+ 1
q
> 1. Moreover assume that f and g do not have any common point of

discontinuity. Then the Riemann - Stieltjes integral

(RS)−
∫ b

a

fdg

exists.

Corollary 4.1. Let f ∈ Cλ[a, b] and g ∈ Cµ[a, b] with λ + µ > 1. Then the
Riemann - Stieltjes integral

(RS)−
∫ b

a

fdg

exists.

Zähle showed that, as one would expect, the following result holds.

Theorem 4.3. Let f ∈ Cλ[a, b] and g ∈ Cµ[a, b] with λ + µ > 1. Then the

generalized Lebesgue - Stieltjes integral
∫ b
a
fdg exists and∫ b

a

fdg = (RS)−
∫ b

a

fdg.
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4.2 Pathwise stochastic integration in fractional Besov
spaces

This subsection is devoted to an approach to pathwise stochastic integra-
tion in fractional Besov-type spaces, which was introduced by Nualart and
Ră	scanu [51]. We start with the following definition.

Definition 4.4. Let 0 < α < 1.
(i) Denote by Wα,∞

0 [0, T ], the space of functions f : [0, T ]→ R such that

‖f‖α,∞ := sup
t∈[0,T ]

(
|f(t)|+

∫ T

0

|f(t)− f(s)|
(t− s)α+1

ds
)
<∞.

(ii) Denote by Wα,1
0 [0, T ], the space of functions f : [0, T ]→ R such that

‖f‖α,1 :=

∫ T

0

|f(t)|
tα

dt+

∫ T

0

∫ t

0

|f(t)− f(s)|
(t− s)α+1

dsdt <∞,

(iii) Denote by W 1−α,∞
T [0, T ], the space of functions f : [0, T ]→ R such that

‖f‖1−α,∞,T := sup
0<s<t<T

( |f(t)− f(s)|
(t− s)1−α +

∫ t

s

|f(y)− f(s)|
(y − s)2−α dy

)
<∞.

Remark 4.3.1. For any 0 < ε < α ∧ (1− α),

Cα+ε[0, T ] ⊆ Wα,∞
0 (T )[0, T ] ⊆ Cα−ε[0, T ] and

Cα+ε[0, T ] ⊆ Wα,1
0 [0, T ].

(23)

Remark 4.3.2. We remark that the trajectories of fractional Brownian mo-
tion BH , for any 0 < α < H, belong to Cα[0, T ] almost surely. Therefore,
by (23), we obtain that the trajectories of BH for any 0 < α < H belong to
Wα,∞
T [0, T ] almost surely.

Let f ∈ Wα,1
0 [0, T ]. Then the restriction of f to any interval [0, t] ⊂ [0, T ]

belongs to Iα0+(L1[0, t]). Similarly, if g ∈ W 1−α,∞
T [0, T ], then its restriction to

the interval [0, t] belongs to I1−α
t− (L∞[0, t]), for all t ∈ (0, T ] and

Λ1−α(g) :=
1

Γ(1− α)
sup

0<s<t<T
|(D1−α

t− gt−)(s)| ≤ 1

Γ(1− α)Γ(α)
‖g‖1−α,∞,T .

Hence, if f ∈ Wα,1
0 [0, T ] and g ∈ W 1−α,∞

T [0, T ], then for any t ∈ (0, T ] the
Lebesgue integral ∫ t

0

(Dα0+f0+)(s)(D1−α
t− gt−)(s)ds

exists and we can define the generalized Lebesgue - Stieltjes integral
∫ t

0
fdg

which is equal to
∫ T

0
f1(0,t)dg, according to proposition 4.3. Moreover, we

have the estimate∣∣ ∫ t

0

fdg
∣∣ ≤ Λ1−α(g)‖f‖α,1 for t ∈ [0, T ]. (24)

Fix 0 < α < 1
2
. We have the following result on the regularity of the

integral function from [51].
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Proposition 4.4. Let f ∈ Wα,1
0 [0, T ] and g ∈ W 1−α,∞

T [0, T ]. Let us to define
the function

Gt(f) :=

∫ t

0

fdg t ∈ [0, T ].

(i) Then, for all s < t, we have

∣∣Gt(f)−Gs(f)
∣∣ ≤ Λ1−α(g)

∫ t

s

( |f(u)|
(u− s)α + α

∫ u

s

|f(u)− f(v)|
(u− v)1+α

dv
)
du.

(ii) Let f ∈ Wα,∞
0 [0, T ] and g ∈ W 1−α,∞

T [0, T ]. Then G.(f) ∈ C1−α[0, T ].
Moreover

‖G.(f)‖C1−α[0,T ] ≤ C(α, T )Λ1−α(g)‖f‖α,∞,
for some constant C = C(α, T ) depending only on α and T .

Definition 4.5. Let 0 < α < 1. We say that the stochastic process f =
{ft}t∈[0,T ] belongs to the space Wα,1

0 [0, T ], if its trajectories belong to the space

Wα,1
0 [0, T ] almost surely.

We note that in the remark 4.3.2, the trajectories of fractional Brownian
motion BH , for any 0 < α < H belong to Wα,∞

T [0, T ] almost surely. By
Applying these results to fractional Brownian motion, we obtain the following
proposition.

Proposition 4.5. Assume BH = {BH
t }t∈[0,T ] to be a fractional Brownian

motion with Hurst parameter H ∈ (1
2
, 1) and α ∈ (1−H, 1

2
).

(i) Assume that stochastic process f = {ft}t∈[0,T ] belongs to the space Wα,1
0 [0, T ].

Then the generalized Lebesgue - Stieltjes integral∫ T

0

ftdB
H
t

exists almost surely.
(ii) Let f and {fn} belong to the space Wα,1

0 [0, T ]. If ‖fn − f‖α,1 → 0 as n
tends to infinity, then∫ T

0

fnt dB
H
t →

∫ T

0

ftdB
H
t as n→∞,

almost surely.
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5 Summaries of the articles

I. On hedging European options in geometric fractional Brownian
motion market model. In this article, we study a two-asset bond - stock
frictionless market

Bt = 1 and St = S0e
BHt t ∈ [0, T ], (25)

where the stock price S is a geometric fractional Brownian motion with Hurst
parameter H > 1

2
. Let f : R → R be a convex function. Then we pose two

questions:

(i) Does the stochastic integral ∫ T

0

f
′
−(St)dSt (26)

exist? More precisely, in which sense does the integral exist?

(ii) Is it true that for a convex function f we have the following Itô formula:

f(ST ) = f(S0) +

∫ T

0

f
′
−(St)dSt? (27)

We answer these questions using the machinery described in subsection 4.2.
We prove that the pathwise stochastic integral in (26) can be understood in
the sense of the generalized Lebesgue - Stieltjes integral. We use the smooth-
ness techniques with the help of convolution to show the Ito formula (27)
and pass to the limit using proposition 4.5. It turns out that the pathwise
stochastic integral in (26) is a Riemann - Stieltjes integral, i.e. for any se-
quence {πn} of the partitions of the interval [0, T ] such that |πn| → 0 as n
tends to infinity, we have

∑
tnk∈πn

f
′
−(Stnk−1

)(Stnk − Stnk−1
)

a.s−→
∫ T

0

f
′
−(St)dSt. (28)

The financial interpretation of these observations is that our frictionless
and continuous trading pricing model based on geometric fractional Brownian
motion behaves similarly to when the stock price is modeled by a continuous
process of bounded variation. Although, in our pricing model one can hedge
perfectly European options with convex payoff, but it allows to construct
new arbitrage possibilities.

II. On the fractional Black-Scholes market with transaction costs.
This article is a continuation of the previous one. A result of Guasoni [29]
motivated us to add proportional transaction costs to our pricing model (25)
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which was based on geometric fractional Brownian motion with Hurst pa-
rameter H > 1

2
. Let T = 1. For each n we divide the trading interval [0, 1]

into n subintervals [tnk−1, t
n
k ] where

tnk =
k

n
= k∆n, k = 0, 1, · · · , n.

We consider the discretized version of the hedging strategy, i.e.

θnt =
n∑
k=1

f
′
−(Stnk−1

)1(tnk−1,t
n
k ](t), for t ∈ (0, 1].

In the presence of proportional transaction costs, the value of this port-
folio at the terminal date is

V1(θn) = f(S0) +

∫ 1

0

θnt dSt − k
n∑
k=1

Stnk−1
|f ′−(Stnk )− f ′−(Stnk−1

)|

where we assume that the transaction costs coefficient k to be kn = k0n
−(1−H)

for some k0 > 0. Let µ be the positive Radon measure corresponding to the
second derivative of the convex function f . Then the main result of the
article states that

P- lim
n→∞

V1(θn) = f(S1)− J, (29)

where

J = J(k0) :=

√
2

π
k0

∫
R

∫ 1

0

Stl
H(ln a, dt)µ(da), (30)

where lH stands for the local time of fractional Brownian motion and the inner
integral on the right hand side is understood as limit of Riemann-Stieltjes
sums almost surely. The proof is rather technical. Put simply, first we prove
(29) for the special case of the European call function f(x) = (x −K)+ by
approximating the local time of fractional Brownian motion by the number
of level crossings, a result by Azäıs [2]. Then we pass to the general convex
functions by the convex linear approximation technique for convex functions.
The asymptotic hedging error

J = J(k0) :=

√
2

π
k0

∫
R
alH(ln a, [0, 1])µ(da)

is strictly positive with positive probability. Therefore, with proportional
transaction costs, the discretized replication strategy asymptotically subor-
dinates rather than replicating the value of the convex European option f(S1)
and the option is always subhedged in the limit. Another observation of our
result is that there is a connection between transaction costs and quadratic
variation.
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III. When does fractional Brownian motion not behave as a
continuous function with bounded variation? This work was motivated
by the first article in which we showed that for fractional Brownian motion
BH with Hurst parameter H > 1

2
, the following statement (ii) holds. The

statement (i) below is a classical result:

(i) For any function f ∈ C1(R), using the fact that [BH , BH ]T = 0, we
have

f(BH
T ) = f(0) +

∫ T

0

f
′
(BH

t )dBH
t ,

where the stochastic integral on the right hand side is understood in
Riemann - Stieltjes sense.

(ii) For any convex function f : R→ R,

f(BH
T ) = f(0) +

∫ T

0

f
′
−(BH

t )dBH
t ,

where the stochastic integral on the right hand side is understood in
the Riemann - Stieltjes sense.

Put simply, the change of variable formula holds for fractional Brownian mo-
tion trajectories. Hence, the above two cases suggest that fractional Brownian
motion sometimes behaves as a continuous function with bounded variation.
Therefore it is natural to ask how far this similarity goes?

Let f : [0, T ] → R be a continuous function with bounded variation.
Assume that

f ∗(t) := max
0≤s≤t

f(s), for t ∈ [0, T ],

is its running maximum. Then we show the following representation for the
running maximum:

f ∗(T ) = f(0) +

∫ T

0

1{f∗(t)=f(t)}df(t). (31)

Let E = {t ∈ [0, T ] : f ∗(t) = f(t)} be the record set and µf and µf∗ stand for
the signed measures induced by the bounded variation functions f and f ∗.
Obviously, the measure µf∗ is supported on the record set E. Then the idea
of the proof is to show that the measures µf and µf∗ assign the same mass
to the record set E, i.e. µf (E) = µf∗(E). Then we proved that the same
representation for the running maximum of fractional Brownian motion does
not hold. More precisely, let

Mt := max
0≤s≤t

BH
s for t ∈ [0, T ].
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Then the following representation cannot hold:

MT = B0 +

∫ T

0

1{Bt=Mt}dBt,

neither in the case when the stochastic integral on the right hand side is a
Riemann - Stieltjes integral nor when it is a generalized Lebesgue - Stieltjes
integral. This was proved by the fact that

P{Et} = 0 ∀t ∈ (0, T ] and m(Eω) = 0 almost surely,

where m is Lebesgue measure and Et and Eω are the sections of the set

E = {(t, ω) ∈ [0, T ]× Ω : Mt(ω) = Bt(ω)}.

IV. Spectral characterization of the quadratic variation of mixed
Brownian fractional Brownian motion. It is a classical result in stochas-
tic processes theory that the quadratic variation of a semimartingale can be
approximated by the limit in probability of the sums of the squared incre-
ments (realized quadratic variation process in econometrics terminology). In
[26], Dzhaparidze and Spreij showed that one can approximate the bracket
of semimartingales using randomized periodogram. We extend their result
to the class of mixed Brownian fractional Brownian motions which contains
both semimartingales and non semimartingales. The mixed Brownian frac-
tional Brownian motion X = {Xt}t∈[0,T ] is introduced by Cheridito in [18],
and defined as

Xt = Wt +BH
t for t ∈ [0, T ]

where W and BH are independent Brownian motion and fractional Brownian
motion with Hurst parameter H > 1

2
, respectively. For any λ ∈ R, the

periodogram of X evaluated at T is defined by

IT (X;λ) =
∣∣ ∫ T

0

eiλtdXt

∣∣2 =
∣∣eiλTXT − iλ

∫ T

0

Xte
iλtdt

∣∣2
= 2Re

∫ T

0

∫ t

0

eiλ(t−s)dXsdXt + [X,X]T (by the Ito - Föllmer formula).

Take L > 0 and let ξ be a symmetric random variable independent of the
filtration FX with a density gξ and hence real characteristic function ϕξ. We
define the randomized periodogram of X evaluated at T by

EξIT (X;Lξ) =

∫
R
IT (X;Lx) gξ(x)dx. (32)

First, under the assumption Eξ2 < ∞, we prove a parametrized stochastic
Fubini type result in order to be able to change the place of the integrals in
(32). Then the randomized periodogram takes the form

EξIT (X;Lξ) = [X,X]T + 2

∫ T

0

∫ t

0

ϕξ(L(t− s))dXsdXt.
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Then we show that, the randomized periodogram converges to the quadratic
variation of mixed Brownian fractional Brownian motion as L tends to infin-
ity. Our proof involves breaking down the error term

2

∫ T

0

∫ t

0

ϕξ(L(t− s))dXsdXt

into four iterated integrals and showing that the second moment of these
four integrals converges to 0 as L tends to infinity by using the independence
between Brownian motion and fractional Brownian motion and the fact that

ϕξ(L(t− s))→ 0 as L→∞ for s < t.
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[51] Nualart, D., Ră	scanu, A. (2002). Differential equations driven by frac-
tional Brownian motion. Collect. Math. 53,55-81.

[52] Pitt, L. D., (1978). Local times for Gaussian vector fields. Indiana
Univ. Math. J. 27, no. 2, 309-330.

[53] Protter, P. (2004). Stochastic integration and differential equations.
2nd edition, Springer.

[54] Revuz, D., Yor. M. (1999). Continuous martingales and Brownian
motion. Springer.
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