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Juhana Siljander: Regularity for degenerate nonlinear parabolic partial differ-
ential equations; Helsinki University of Technology Institute of Mathematics Re-
search Reports A591 (2010).

Abstract: This dissertation studies regularity and existence questions rela-
ted to nonlinear parabolic partial differential equations. The thesis consists
of an overview and four research papers. The emphasis is on certain doubly
nonlinear equations that are important in several applications. We study
the Hölder continuity of weak solutions and the local boundedness of their
gradients by modifying and extending known arguments for other similar
equations.

We also consider an existence question for a parabolic obstacle problem.
In particular, we show that the obstacle problem with a continuous obstacle
admits a unique continuous solution up to the boundary, provided the domain
is smooth enough.

AMS subject classifications: 35K65, 35K10, 35B65, 35D30

Keywords: Regularity, existence, higher regularity, Moser’s iteration, reverse
Hölder inequality, Caccioppoli inequality, Schwarz alternating method, obstacle
problem

Juhana Siljander: Säännollisyyskysymyksiä epälineaarisille parabolisille osittais-
differentiaaliyhtälöille

Tiivistelmä: Tässä väitöskirjassa tutkitaan säännöllisyys- ja olemassaolo-
kysymyksiä epälineaarisille parabolisille osittaisdifferentiaaliyhtälöille. Työ
koostuu yhteenvedosta ja neljästä tutkimusartikkelista. Työn pääpaino on so-
vellusten kannalta tärkeiden epälineaaristen yhtälöiden tutkimisessa. Artik-
keleissa käsitellään ratkaisujen Hölder jatkuvuutta sekä korkeampaa säännöl-
lisyyttä modifioimalla ja yleistämällä muille vastaaville yhtälöille tunnettuja
argumentteja.

Tutkimme myös olemassaolokysymystä paraboliselle esteongelmalle. Es-
teen oletetaan olevan jatkuva funktio ja todistamme, että kyseisellä esteon-
gelmalla on yksikäsitteinen jatkuva ratkaisu.

Avainsanat: Säännollisyys, olemassaolo, korkeampi säännöllisyys, Moserin iteraa-
tio, käänteinen Hölderin epäyhtälö, Caccioppoli-epäyhtälö, Schwarzin alternoiva
metodi, esteongelma
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1 History and motivation

Regularity and existence questions for nonlinear partial differential equations
have been under active research during the last decades. The questions date
back to David Hilbert’s famous list of 23 mathematical problems that turned
out to shape the mathematics of the 20th century. In 19th of his questions,
he asked whether minimizers to functionals of type

I(u) =

∫
F(x, u,∇u) dx (1.1)

are necessarily analytic if the function F : Rd × R × Rd → R is assumed to
satisfy certain regularity conditions.

Naturally, the problem was directly associated with the corresponding
Euler-Lagrange equation. This resulted in the study of regularity for the
solutions of the partial differential equation

− divA(x, u,∇u) = 0. (1.2)

Related to the assumptions on the kernel F in (1.1), the operator A was
assumed to satisfy certain structure conditions.

It was soon found out that if a solution to this problem is at least twice
continuously differentiable it is, indeed, analytic as well. However, for proving
existence for nonlinear equations assuming this kind of a priori regularity is
too restrictive. Moreover, the statement of the minimization problem (1.1)
does not require such a regularity assumption. This lead to the study of so
called weak solutions which were defined in Sobolev spaces. Then the aim was
to prove that the solutions would still have nice behavior, a posteriori. The
key point turned out to be proving the local Hölder continuity of the weak
solutions which would then yield the higher regularity through a bootstrap
argument.

The problem was finally settled in 1950’s when Ennio De Giorgi [7] and
John Nash [42] proved the continuity of weak solutions independently. Their
work then inspired a lot of other research in the field. In 1960’s Jürgen Moser
used an iteration method for showing that subsolutions are locally bounded
and, moreover, he proved the Harnack inequality for the weak solutions [38].
This in turn, provided a new way to obtain the continuity result of De Giorgi
and Nash.

Nash proved his results also for parabolic equations and further general-
izations in this direction were also on the way. As the elliptic question was
solved, the natural direction was to proceed to parabolic equations of type

∂u

∂t
− divA(x, t, u,∇u) = 0. (1.3)

We call this equation the A-parabolic equation.
Moser’s and De Giorgi’s methods, were both based on a successive use

of Sobolev’s inequality and Caccioppoli estimates. De Giorgi established a
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measure estimate for certain distribution sets and by combining this estimate
with another measure theoretical result, which nowadays is often called the
”De Giorgi lemma”, the proof was almost complete.

Moser in turn used similar ideas than De Giorgi to prove a reverse Hölder
inequality. This inequality could then be iterated to obtain an upper bound
for the supremum of the solution. This was used to conclude Harnack’s
inequality which implies the Hölder regularity in a straightforward manner.

De Giorgi’s argument turned out to be problematic for parabolic general-
izations. But Moser’s method, on the other hand, seemed to be more flexible.
By introducing the parabolic BMO he was able to obtain the Harnack esti-
mate in the quadratic case for parabolic equations [39], [40], [41], [49]. See
also [30]. Nevertheless, the problem remained open for equations with more
general growth conditions.

2 Parabolic equations

2.1 Evolution p-Laplace equation

A standard example of an equation of type (1.3) is the evolution p-Laplace,
or p-parabolic, equation

∂u

∂t
− div(|∇u|p−2∇u) = 0, 1 < p <∞. (2.1)

When p = 2 this is just the usual heat equation, but for other values of p
it is highly nonlinear. In particular, it does not have quadratic growth with
respect to the gradient.

It is noteworthy that the equation behaves differently in the cases when
1 < p < 2 and p ≥ 2. In the first case the exponent p − 2 in the power of
|∇u| will be negative and thus the set where |∇u| = 0 might be problematic.
In this work we only consider the latter case when p ≥ 2. These two different
type of equations are referred to as singular and degenerate, respectively.

The kind of nonlinear equations we are studying can be tried to under-
stand through their Barenblatt solutions which play the role of the funda-
mental solutions [2]. For equation (2.1), the Barenblatt solution is

B2,p(x, t) = t−d/λ

(
p− 2

p
λ−1/(p−1)

(
C −

(
|x|
t1/λ

)p/(p−1)
))(p−1)/(p−2)

+

where C > 0 is a constant and λ = d(p− 2) + p with p > 2.
From this one can easily notice the important property of finite propaga-

tion speed of disturbancies, i.e. the set in which B2,p > 0 is bounded for every
time level. This differs from the heat equation which has infinite propagation
speed. Therefore the evolution p-Laplace equation provides in some sense a
more realistic way to model the heat propagation. This is one of the greatest
advantages, and challenges, of this equation. One can also observe that the
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function is spatially C1,α
loc , but not C2. The irregularity occurs at the moving

boundary, i.e. the boundary of the set {B2,p(·, t) > 0}.
The finite propagation speed property produces also some problems. It

corresponds to the fact that we cannot scale solutions like in the case of
the heat equation. This kind of homogenuity was a crucial requirement for
pushing through the original arguments of De Giorgi and Moser. The starting
point in their reasoning is the Caccioppoli inequality, but for nonnegative
solutions of equation (2.1) this energy estimate takes the form

ess sup
t

∫
u2ϕp dµ+

∫ ∫
|∇u|pϕp dµ dt

≤ C

∫ ∫
up|∇ϕ|p dµ dt+ C

∫ ∫
u2

∣∣∣∣∂ϕ∂t
∣∣∣∣ϕp−1 dµ dt

(2.2)

which is not homogeneous. Indeed, the exponents of u are not the same in
different terms and this produced difficulties with the known arguments.

2.2 Doubly nonlinear equation

As the parabolic theory encountered problems with these methods Trudinger
presented a nonlinear parabolic equation satisfying nonquadratic growth con-
ditions for which the Moser iteration scheme could be applied [49]. This
equation

∂(|u|p−2u)

∂t
− div(|∇u|p−2∇u) = 0 (2.3)

had the desirable property that solutions could be scaled by constants, i.e.
if u is a solution also λu is a solution where λ ∈ R. Also the Caccioppoli
inequality will take a homogeneous form for this equation. In the sequel, we
will call this equation ”the doubly nonlinear equation” since the term in the
time derivative is nonlinear as well.

We can again try to understand the behavior of this equation by consid-
ering its Barenblatt solution

Bp(x, t) = Ct−
d

p(p−1) exp

(
−p− 1

p

(
|x|p

pt

) 1
p−1

)
, 1 < p <∞.

Observe that this fundamental solution does not have a moving boundary.
The function is everywhere positive, which indicates infinite propagation
speed. The Barenblatt solution is even a smooth function, but this porperty
does not hold for general solutions as can be seen already by the stationary
theory for p-Laplace equation, see [32]. Nevertheless, it has been a common
belief that the solutions for this equation should be C1,α

loc , but still even con-
tinuity results for weak solutions of equation (2.3) have been difficult to find
in the litterature [51], [43], [23].

The problem with this equation is that we cannot add constants to solu-
tions like in the linear case. De Giorgi’s argument is based on estimating level
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sets by using energy estimates where instead of u we have (u − k)±. How-
ever, this kind of Caccioppoli estimates are not clear for the doubly nonlinear
equation. On the other hand, Moser’s ideas won’t work either, because even
though Harnack’s inequality can be proved by using Moser’s method, see [49]
and [26], it does not seem to directly imply the Hölder continuity. One of
the main objectives of this thesis has been to reconsider these problems. The
Hölder regularity and the spatial local Lipschitz continuity for the solutions
of this equation have been studied in papers (3) and (2), respectively. We
consider the weighted case where the Lebesgue measure is replaced by a more
general Borel measure.

The doubly nonlinear equation (2.3) has some intrinsic properties which
make it interesting. Namely, the solutions of the equation can be scaled and,
moreover, it admits a scale and location invariant Harnack’s inequality [26].
See also [14], [29], [4], [6], [5] and [19].

Grigor’yan and Saloff-Coste observed that the doubling condition and the
Poincaré inequality, see chapter 3, are not only sufficient but also necessary
conditions for a scale and location invariant parabolic Harnack principle for
the heat equation on Riemannian manifolds, see [18], [46] and [45]. It would
be interesting to know whether this result could be generalized for more gen-
eral nonlinear parabolic equations as well. Due to its nice scaling properties
the doubly nonlinear equation seems to be a good candidate for this purpose.

Moreover, recently Lewis and Nyström proved a boundary Harnack prin-
ciple for the time-independent p-Laplace equation, [33]. See also [34]. They
make heavy use of weighted regularity results in their argument. General-
izing this result for nonlinear parabolic equations would be an interesting
problem. The equation under study might be a good candidate for studying
this question, as well.

2.3 Intrinsic scaling

The breakthrough in the parabolic theory took place in 1980’s when Em-
manuele DiBenedetto represented the “intrinsic scaling” argument, [9], [10].
This method provided a way to handle the inhomogenuity in the evolution
p-Laplace equation (2.1) by modifying the geometry to make the equation
seem more like the doubly nonlinear equation (2.3).

The great insight of DiBenedetto was to use a scaling factor which de-
pends on the solution itself [9]. As parabolic equations, like the p-parabolic
equation, did not admit homogeneous energy estimates the aim was to mod-
ify the geometry so that the equations started to look homogeneous in this
sense. The idea was to use a scaling argument to make the equation look like

|u|p−2∂u

∂t
− div(|∇u|p−2∇u) = 0

which looks very similar to the doubly nonlinear equation.
In constructing the Hölder continuity argument the idea was to use a De

Giorgi type argument. De Giorgi’s method was based on energy estimates
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on differences (u− k)± where k is suitably chosen so that by estimating u by
its infimum or supremum we can bound the term by the oscillation of u in a
given space-time cylinder. So the natural scaling factor turns out to be ω2−p

where ω denotes the oscillation in the given cylinder. This factor balances
the powers of ω and the estimates become homogeneous.

In any case, the parabolic regularity problem was solved. Moreover,
the C1,α

loc -regularity for the p-parabolic equation was proved at the same to-
ken, [11], [12], [13]. Naturally, these issues were also studied for nonlinear
equations of more general type

∂u

∂t
− div(um−1|∇u|p−2∇u) = 0, m ∈ R, 1 < p <∞. (2.4)

Observe that for nonnegative solutions of the doubly nonlinear equation sub-
stitution v = up−1 in the equation (2.3) yields

∂v

∂t
− div(u2−p|∇u|p−2∇u) = 0.

So equation (2.4) formally includes both of the examples we have consid-
ered as well as the porous medium equation [50]. For further aspects in the
parabolic theory, see also [35] and [52].

3 Doubling measures and Poincaré inequality

Traditionally partial differential equations have been studied in subdomains
of Rd. However, this is not the whole story. The Euclidean space Rd can
be replaced, for instance, by a Riemannian manifold [45]. Also the standard
Lebesgue measure can be replaced by a more general Borel measure. Studying
this generalization in the parabolic setting has been one of the main themes
in our work. All of the arguments in (2), (3) and (4) are build in this kind of
more general context. However, we still cannot take just any measure, but
we need to assume some additional properties.

Now it turns out that a so called doubling condition and a weak Poincaré
inequality are sufficient assumptions in our arguments. These together imply
a Sobolev embedding which is an important tool for us.

Many of the arguments can, in fact, be done even in a general metric
space. In a metric space it is not clear how to define directions and, conse-
quently, a gradient. However, this problem can be overcome by introducing
so called upper gradients, see [21], [3]. Nevertheless, we will not take this
route and we only consider Rd in this work.

3.1 Doubling condition

Let us denote the standard open ball in Rd by

B(x, r) := {y ∈ Rd : d(x, y) < r}.
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A measure µ is said to be doubling if there is a constant D0 > 0 such that
for every point x ∈ Rd and for every r > 0 it is true that

µ(B(x, 2r)) ≤ D0µ(B(x, r)).

Let 0 < r < R <∞. A simple iteration of this doubling condition implies

µ(B(x,R))

µ(B(x, r))
≤ C

(
R

r

)dµ
,

where dµ = log2D0 is the dimension related to the measure. For the Lebesgue
measure dL = d.

This tells us that the measure of balls with the same center scale somehow
boundedly when the radius is increased. Moreover, the scaling exponent is
uniform in the whole space.

3.2 Poincaré inequality

Another rather standard assumption, in addition to the doubling condition,
is that the measure µ supports a weak Poincaré inequality.

We say that a measure µ supports a weak (1, p)-Poincaré inequality if
there are constants P0 > 0 and τ ≥ 1 such that for every x ∈ Rd and every
r > 0 the Poincaré inequality

−
∫
B(x,r)

|u− uB(x,r)| dµ ≤ P0r

(
−
∫
B(x,τr)

|∇u|p dµ
)1/p

(3.1)

holds for all Sobolev functions. Here we denoted

uB(x,r) := −
∫
B(x,r)

u dµ :=
1

µ(B(x, r))

∫
B(x,r)

u dµ.

The word “weak” is related to the factor τ ≥ 1. If the inequality holds when
τ = 1 we say the measure supports a (1, p)-Poincaré inequality. In Rd with
a doubling measure, the weak (1, p)-Poincaré inequality with some τ ≥ 1
implies the (1, p)-Poincaré inequality with τ = 1, see Theorem 3.4 in [20].

In standard real analysis we have the fundamental theorem of calculus
which relates the oscillation of the function to its derivative. Poincaré in-
equality is a similar tool. From (3.1) it is easy to see that if the measure of
the set where the gradient is large, i.e. the set where the function’s values
change a lot, is small then also the set where the function’s values differ a
lot from its average has to be small in measure.

3.3 Sobolev embeddings

The key idea behind the two main assumptions is the fact that they imply
a Sobolev embedding [20]. Indeed, the Sobolev inequality is one of the most
important tools in the theory of partial differential equations.
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It says that for every x ∈ Rd and r > 0 there is a constant C > 0 such
that (

−
∫
B(x,r)

|u− uB(x,r)|κ dµ
)1/κ

≤ Cr

(
−
∫
B(x,r)

|∇u|p dµ
)1/p

(3.2)

where

κ =


dµp

dµ − p
, 1 < p < dµ,

2p, p ≥ dµ.

The crucial fact here is that κ > p. This gives extra room to be used in the
regularity arguments of (2), (3) and (4). Naturally, by Hölder’s inequality, κ
can be replaced by any smaller positive number, as well.

If u has zero boundary values in the Sobolev sense in B(x, r), the above
inequality can be written without the mean values as(

−
∫
B(x,r)

|u|κ dµ
)1/κ

≤ Cr

(
−
∫
B(x,r)

|∇u|p dµ
)1/p

.

This is the form that is most often used in our arguments. In general,
we do not assume that the functions we consider have zero boundary values,
but we introduce a cut-off function for enabling the use of this inequality.

In the next two chapters we will present some key ideas from the pa-
pers (1), (2), (3) and (4).

4 Regularity for parabolic equations

4.1 Local Hölder continuity for doubly nonlinear equa-
tions

In paper (3) we extend DiBenedetto’s Hölder continuity proof to cover non-
negative solutions of the doubly nonlinear equation. However, we face sev-
eral difficulties not present in the case of evolution p-Laplace equation with
Lebesgue measure.

The original proof, see [10], studies the continuity in a neighborhood of
a given point (x0, t0) by considering a space time cylinder B(x0, r) × (t0 −
ηrp, t0). Naturally, the intrinsic geometry plays an important role here. In-
deed, the scaling factor η > 0 depends intrinsically on the solution itself.

The idea in the proof is to show that the oscillation in this intrinsic
cylinder is reduced by a controlled factor when the cylinder is shrinked by
another factor. The proof starts by taking any suitable subcylinder inside the
initial cylinder with the same spatial center point and with the same spatial
radius. In this setting, one gets a measure estimate, for different level sets,
which after a suitable iteration implies that if the set where the solution u is
small (large), is small enough portion of the subcylinder, then u is actually
big (small) almost everywhere in a smaller cylinder. Now it only remains to
show that this information can be forwarded in time. This is necessary since
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the subcylinder under study does not necessarily contain the point (x0, t0),
but it can be positioned at an earlier time.

The proof is divided in two alternatives. In the first one it is assumed
that the set where the solution is small is small and it only remains to show
the forwarding argument.

In the second alternative, the set where u is small is assumed to be big.
This is then used to show that also at later times the set where the solution
is above some threshold level is not too big. Then by using a De Giorgi type
lemma it can be shown that by increasing the threshold level the measure of
the set where u is above that threshold can be chosen arbitrarily small. Fi-
nally, an iteration of the measure estimate proved in the beginning concludes
the argument by deducing that, in fact, in a smaller cylinder the supremum
of the solution has, indeed, strictly decreased.

4.1.1 Two cases

The doubly nonlinear equation behaves somewhat differently than the evo-
lution p-Laplace equation and hence it requires a slightly different kind of
consideration that is needed in the p-parabolic setting. This leads us to study
two different cases which correspond to two different kinds of behavior.

In large scales, when the oscillation of the solution is big, the solution
behaves like the solutions of the heat equation do. In this case, the scaling
property and the consequent Harnack’s inequality dominate and the reduc-
tion of oscillation follows easily, even in a non-intrinsic geometry, for all
1 < p <∞.

On the other hand, in small scales the oscillation is small and the supre-
mum and infimum are close to each other. Correspondingly, in the time
derivative term of (2.3), which formally looks like up−2ut, the factor up−2 be-
haves like a constant coefficient. Indeed, if the oscillation is very small, this
factor is between two constants whose difference is negligible. This implies
a p-parabolic type behavior and hence this case demands an argument of
its own which respects this nature. Basically one needs to go through the
DiBenedetto scheme.

So both of the cases require a full treatment, although the first one is
significantly simpler. Neither of the arguments is, however, completely re-
dundant to the known theory, but in any case we need to modify some key
parts of DiBenedetto’s proof.

4.1.2 Modified Caccioppoli inequality

The first problem in applying the DiBenedetto argument for the doubly non-
linear equation comes with the energy estimates which are used in proving a
measure estimate for distribution sets. The argument is based on a successive
use of Hölder’s inequality, Sobolev embedding and an energy estimate, but
now, as we cannot add constants to solutions, we do not have Caccioppoli
inequalities for (u − k)± which are needed in DiBenedetto’s proof. Usually,
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proving these energy estimates is done by substituting a suitable test func-
tion in the definition of the weak solution. For nonnegative solutions of the
doubly nonlinear equation this weak formulation is∫ ∫ (

A(x, t, u,∇u) · ∇φ− up−1∂φ

∂t

)
dµ dt = 0 (4.1)

which has to hold true for every test function. Naturally, the solution is
assumed to belong to a parabolic Sobolev space to guarantee the summability
of this integral.

In the case of the evolution p-Laplace equation the exponent p − 1 of u
in the second term in this definition is replaced by the exponent one. In
our case, the nonlinearity in this term causes problems in proving energy
estimates.

We overcome this setback by modifying the Caccioppoli inequality simi-
larly as done with the porous medium equation, see [12], [13], [8], [50]. More
precisely, we introduce an integral term which absorbs the nonlinearity and
for which we have suitable estimates. See also [23], [53], [51], [43].

The estimates we acquire are slightly different than in the original argu-
ment of DiBenedetto. Namely, the parabolic terms will have extra weights
related to the homogenous nature of the equation. However, this does not
cause any problems since in the first case of the argument we do not really
need the full DiBenedetto theory, and in the second case these weights can
be trivially estimated by infimum and supremum.

4.1.3 Measure estimate

DiBenedetto’s proof for the measure estimate is based on De Giorgi type
ideas with the intrinsic scaling argument included. The intrinsic scaling he
uses is realized by a change of variable in the energy estimate. He also has
to carefully study the measures which occur after the trivial estimates of u
by its supremum which are done for constructing the oscillation terms. In
particular, the knowledge, that Lebesgue measure of the ball is comparable
to the radius in power of the dimension, is used. We are able to work with
a more general measure satisfying the doubling condition and supporting a
weak Poincaré inequality.

Our argument combines the De Giorgi type ideas used by DiBenedetto
with Moser’s iteration. We plug (u−k)± in the Moser iteration scheme and by
doing so we deduce the same estimate as DiBenedetto concluded by a change
of variable argument. Using Moser’s method enables us to construct the
whole argument on integral averages. The advantage is that we only need
to use the doubling property of the measure, instead of the exact scaling
behavior.

4.1.4 Forwarding in time

The forwarding in time argument has traditionally been done by logarithmic
estimates and in the second case we use this method as well. Note, however,
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that the logarithmic estimates for this kind of doubly nonlinear equations
have often been proved by a substitution of type v = up−1 which changes the
form of the equation. It is not clear for us whether the definitions of weak
solutions to these different equations are equivalent and hence we wanted to
avoid this passage. Instead, our proof of the estimates is based on a similar
type of integral term as we used to prove the energy estimate. This enables
us to bypass the substitution still taking care of the nonlinearity in the time
derivative term.

In the first case, when the infimum is small, we on the other hand use
a completely different kind of idea which trivializes the whole question.
Namely, we use the Harnack inequality

ess sup
U−

u ≤ H0 ess inf
U+

u.

Observe the “time lag”, i.e. the sets U− and U+ are disjoint cylinders with
the same spatial center and radius such that U− lies below, or before, U+.
This is familiar already from the standard theory of the heat equation and
it holds for the doubly nonlinear equation, [26], [4], [6], [5] and [19].

The fact that the infimum is taken at a later time than the supremum
provides us a natural way to forward information in time. If we know that
the solution is positive in a set of positive measure at an earlier time, then
by this estimate we also have a lower bound for the solution at a later time
level. This is all we need in the first case. We just need to consider two
alternatives. In the first one, we assume that the measure of the set

{(x, t) ∈ B(x0, r)× (t0 − rp, t0 −
rp

λ2

) : u(x, t) > ess supu− ess oscu

2
}

is not zero for a suitable λ2 > 1. Then by the Harnack inequality we deduce
that the infimum of u near (x0, t0) is rather big as well. To conclude the
argument we just need to guarantee that the lower bound we get is not
trivial in the sense that the infimum will, indeed, be increased also near the
reference point (x0, t0). This can be done by demanding that the infimum
in the original set is small enough. This requirement contributes to the
assumption of the first case.

The second alternative consists of the case in which the measure of the
above set is zero. But then we can choose the scaling factor η large enough to
force the portion of the original set where u is big arbitrarily small. Indeed,
this portion is at most 1/η. The alternative, and the first case, is concluded
by an iteration of the measure estimate which finally concludes the reduction
of the oscillation.

After the energy estimate and the logarithmic lemmata have been proved
the second case follows DiBenedetto’s reasoning. There remains some details
which have to be carefully analyzed, but morally the rest of the argument is
identical to the case of the evolution p-Laplace equation. The key observation
is to use an intrinsic geometry where the intrinsic scaling factor also includes
the infimum of u in such a way that the weights appearing from the integral
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terms of the energy estimate and of the logarithmic lemmata will be handled
by the geometrical context.

The final Hölder estimate follows from an iteration of the reduction of
oscillation process. Consequently, we might end up jumping between the
first and second cases in the interation. A priori, this might cause a problem
since the cases are build on different kind of time geometries. However, quite
remarkably the assumptions of the cases guarantee that everything works
fine. Indeed, we only need to shrink the cylinders by a controllable amount
also when we move from the first case to the second one. Observe that we
can construct the argument so that this happens only once and we can also
always start from the case one.

The DiBenedetto scheme was introduced in [9]. Recently, there have also
been found other approaches for the regularity argument [15], [17]. These new
ideas are based on the methods which were developed for Harnack estimates.
In particular, the expansion of positivity type of ideas are used. It would
be interesting to know whether these new ideas would provide less involved
ways to prove these continuity results also for this kind of doubly nonlinear
equations where the nonlinearity lies in the time derivative term.

4.2 DiBenedetto regularity argument and elliptic equa-
tions

In order to show the Hölder regularity for the doubly nonlinear equation,
especially in the weighted case, we needed to modify DiBenedetto’s original
argument. His proof is based on the measure estimate which tells that if the
set where u is, say, near the supremum is small enough then the oscillation
can, in fact, be reduced by going to a smaller cylinder. Now by an easy
application of Chebyshev’s inequality we can get the upper bound

µ({u > ess supu− ess oscu

2λ
})

= µ({ess oscu

2λ
> ess supu− u})

≤
(ess oscu

2λ

)δ ∫ ( 1

ess supu− u

)δ
dµ

(4.2)

for this set. Here δ > 0 can be chosen as we please.
So basically, if we can show that the integral on the right hand side of

the above inequality is bounded, choosing λ large enough gives the result
directly. Of course, one should assume that the solution is not constant.

In paper (4) we use this kind of ideas to give some remarks on the Hölder
continuity proof of elliptic equations. Indeed, DiBenedetto’s continuity argu-
ment applies also in the elliptic setting. Consequently, it is enough to study
the above integral which can be shown to be bounded for solutions of certain
elliptic equations.

The modifications of DiBenedetto’s argument we did for the proof for the
doubly nonlinear equation turn out to be quite useful also in this case. Plug-
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ing (u − k)+ in the Moser iteration scheme works also for elliptic equations
and, consequently, we get a simple proof for the measure estimate. We also
make the argument, as before, for general measures. See also [16].

Originally, Moser used the iteration scheme to prove the supremum es-
timate. Instead of that we get the measure estimate of DiBenedetto. Now
Moser continued to prove weak Harnack’s inequality to conclude the conti-
nuity from Harnack’s principle. Our approach, however does not require the
full Harnack theory. By using the above Chebyshev argument we are able to
simplify this method and, consequently, we only need to prove the integra-
bility of a solution to some negative power. This can be done by a cross-over
lemma which is proved by BMO techniques. More precisely, one uses loga-
rithmic Caccioppoli estimates together with the John-Nirenberg lemma. It
is noteworthy that Moser’s proof for the weak Harnack inequality follows
the same outline, however, we are able to get the regularity result directly
from the cross-over lemma, instead of using Harnack’s inequality for the final
conclusion.

Another way to conclude the Hölder regularity is De Giorgi’s lemma which
De Giorgi used in his regularity argument. Our approach of using the Cheby-
shev inequality seems to provide an alternative approach to these methods
for deducing the result. Whether this kind of ideas could be used for proving
the regularity result for parabolic equations, would be an interesting question
for further study. For further aspects of the elliptic theory, see e.g. [31], [22]
and [37].

4.3 Higher reqularity for doubly nonlinear equations

As the Barenblatt solution for the doubly nonlinear equation is smooth this
raises the expectation that such regularity is true also for general solutions
of the equation. However, as we already noted in the beginning already
the standard stationary theory shows that C∞-smoothness is too much to
ask, [32]. Nevertheless, one would like to prove the C1,α

loc -regularity for the
solutions of the equation. In paper (2) we give a first step towards this goal.
More precisely, we prove that the gradient of a positive solution is locally
bounded and thus the solution itself is spatially locally Lipschitz continuous.
Once again we construct the proof in the weighted case where the Lebesgue
measure is replaced by a more general Borel measure.

Our proof is based on the argument by DiBenedetto and Friedman [11]
which handles the evolution p-Laplace equation. See also [12], [13]. Their
result was stated directly to systems of partial differential equations, but we
only consider one equation.

DiBenedetto and Friedman start by differentiating the equation and then
use standard techniques to prove Caccioppoli inequalities for this differenti-
ated equation. Next they employ Moser’s iteration to show that the gradient
of the solution is locally integrable to any power. Finally, they conclude the
boundedness of the gradient by a De Giorgi type argument.

The first difficulty with the doubly nonlinear equation comes again from
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the nonlinearity in the time derivative term. After differentiating the equa-
tion, we will have an extra factor of up−2 in front of the time derivative.
Recall that we only study positive solutions so that this factor makes sense
even without absolute values. This assumption also allows us to freeze this
nonlinear factor. Suppose we study the regularity in a neighborhood of
(x0, t0) ∈ ΩT ⊂ Rd+1

+ and assume further that our solution u is positive
at this point. By continuity, as studied in the previous section, there is an
open neighborhood of this point such that the solution is bounded away from
zero in this set as well. Now we restrict our study to this set. By a standard
covering argument any compact set can be handled this way.

For getting rid of the nonlinearity we use a freezing argument. We treat
the nonlinear factor as a constant coefficient by freezing it at the point (x0, t0).
Next we scale it to the time geometry and continue to prove the Caccioppoli
inequalities as in [11]. Here we need to use an intrinsic scaling argument.
After this trick proving the energy estimates turns out to be quite straight-
forward and we just need to follow DiBenedetto and Friedman.

Next DiBenedetto and Friedman proceed to prove that the gradient is
locally integrable to any positive power. They use this result in their final
De Giorgi argument which gives the theorem. We simplify this method by
dropping off the De Giorgi argument. It was long thought that Moser’s
iteration cannot be used for non-homogeneous equations, like the equation
for the gradient, to yield the local boundedness. This is, however, not the
case. By a delicate analysis of Moser’s method it can be pushed through to
non-homogeneous equations, too. The reverse Hölder inequality which the
Moser argument gives will not be homogeneous, but it still can be iterated.
The common belief used to be that iterating this estimate would lead to
the blow-up of the constants and other methods, like the De Giorgi type
argument used in [11], were developed. However, this is not necessary as
shown in (2).

The drawback in the theory is that, even though the argument can be
generalized to equations like the doubly nonlinear example we are studying,
it is rather intrinsic to the original p-parabolic equation. As a consequence,
the final estimate we get is non-homogeneous although our original equation
is homogeneous with respect to scaling. More precisely, we are only able to
prove

ess sup |∇u|2 ≤ C

(
−
∫
|∇u|p dν + 1

)
.

We would like this estimate to resemble the homogenuity so that the expo-
nents in both sides would be the same. Instead, we get the estimate related
to the geometry of the evolution p-Laplace equation.

On the other hand, we do not use the scaling property at all. Conse-
quently, our reasoning works also for other more general doubly nonlinear
equations of type

∂(um)

∂t
− div(|∇u|p−2∇u) = 0, m ≥ 1, 2 ≤ p <∞.
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However, for these equations the assumption that solutions are positive
is not as natural as in the case of the doubly nonlinear equation. This is due
to the fact that this kind of general doubly nonlinear equations do have the
moving boundary outside of which the solution is not positive but merely
nonnegative.

The crucial part where we need the positiveness assumption is the freezing
argument. Observe that if we choose m = 1 in the above doubly nonlinear
equation we get the evolution p-Laplace equation. In that case we do not need
the freezing argument since we do not have the difficult nonlinearity anymore.
Indeed, our proof also gives a simplified argument for the boundedness of the
gradient of solutions to p-parabolic equation. We also study the weighted case
where the Lebesgue measure is replaced by a more general Borel measure.

5 Questions on existence

5.1 Obstacle problem

In paper (1) we study the existence of solutions to an obstacle problem.
Suppose we are given a continuous function ψ called the obstacle and we
want to find a continuous function which in some sense solves a differential
equation with the restriction that the solution has to lie above the obstacle
ψ. In our paper the equation under study is the A-parabolic equation

∂u

∂t
− divA(x, t, u,∇u) = 0.

introduced in the first chapter.
We define the solution to the obstacle problem as the smallest weak su-

persolution of the equation which lies above the obstacle and which is A-
parabolic, i.e. solves the equation, in the set {u > ψ}. We prove that
there is a unique continuous solution to this problem. We also show that if
the boundary satisfies certain thickness condition, the solution attains the
boundary values continuously. Furthermore, we prove that if the obstacle is
Hölder continuous also the solution will have Hölder regularity.

The existence questions for parabolic obstacle problems has been studied
via variational methods by Lions [36] and [25]. See also [1], [44], [47] and [48].

5.2 Schwarz method

Our argument is based on a modification of the Schwarz alternating method.
See e.g. [24]. It starts with two overlapping domains in both of which one has
a solution for a Dirichlet problem. In the overlapping domain one takes the
boundary values from one of the solutions and solves the Dirichlet problem
in the other domain with these boundary values. Consequently, one gets
a new solution for the Dirichlet problem. Next this new solution is used
to give boundary values for the other domain. By continuing this kind of
iterative process one ends up with a bounded decreasing sequence of solutions.
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Harnack’s convergence theorem implies that this sequence converges to a
solution in the union of the domains.

In our problem, just like in the Schwarz alternating method, we start from
the obstacle and construct a sequence of functions using the previous func-
tion as boundary data. However, we do not consider union of two domains
but instead we take all the cylinders with rational endpoints in the domain.
Naturally, these cylinders can be enumerated as Q0, Q1, . . . . We start the
construction by defining ϕ0 = ψ, i.e. the first function in the sequence is just
the obstacle. Next we solve the boundary problem with boundary values ϕ0

in Q0 and thus we get a solution in Q0 which we further extend as ϕ0 to the
whole domain. Now the next member ϕ1 in the sequence is defined as the
maximum of the function achieved by extending the solution and ϕ0. We
continue inductively through all the cylinders.

5.3 Limit function

By the construction the sequence will be increasing and bounded. All the
functions in the sequence will also be continuous and the limit function will
thus be lower semicontinuous. Moreover, in the set {ϕk > ψ} the function
ϕk is achieved as a maximum of subsolutions and thus in this set it will be
a subsolution to the equation. So many of the desired properties we require
from a solution of the obstacle problem are immediate consequences of our
construction.

One of the key ideas in this method is that the limit function will, in fact,
turn out to be A-superparabolic, i.e. it will be finite in a dense subset of the
original domain, lower semicontinuous and most importantly it will satisfy a
comparison principle in any subset of the domain [27]. We are left to show
that this function will be continuous and that continuous A-superparabolic
functions are weak supersolutions.

Clearly, by the continuity of the obstacle the limit function u will be
continuous in the contact set {u = ψ}. On the other hand, in the set {u > ψ}
the function u turns out to be a solution to the equation and hence it is
continuous there as well. So the problem is the boundary of the set {u > ψ}.
This we handle by a modification of the obstacle function.

By the maximum principle we deduce that varying the obstacle by a
small amount cannot change the solution too much. Next we dig a hole
in the obstacle, i.e. we slightly lower it in a small neighborhood of the
reference point we are studying. Now we are able to show that a small hole
in the obstacle changes the solution by a small amount. The solution for the
modified obstacle will also be continuous. Consequenty, the original function
will be continuous at the point, too. We can apply the same argument
for boundary points of the original domain, as well, provided solutions to
the equation admit boundary values continuously. This is guaranteed by a
thickness condition to the domain.

For proving that A-superparabolic functions are weak supersolution we
construct an increasing sequence of weak supersolutions which converges to
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the A-superparabolic function u. The aim is to use a compactness result
which tells us that the limit of increasing sequence of weak supersolutions is
a weak supersolution, too [28].

The construction is again generated by the original A-superparabolic
function. We take a dyadic decomposition of the domain and solve the equa-
tion with the boundary values u in each cube of level k. Next we use a pasting
lemma to conclude that the function uk achieved by gluing these solutions of
different cubes of the dyadic decomposition will, in fact, be a supersolution.
Finally, we show that this sequence will be increasing and converges to u
which proves the claim.
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