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1. Introduction

The resolvent
λ 7→ (λI −A)−1

of a d×d complex matrix A is a matrix valued function with rational elements.
Thus, in particular, all singularities are poles of at most order d, and the
following lower and upper bound hold

1
dist(λ, σ(A))

≤ ‖(λI −A)−1‖ ≤ ‖λI −A‖
d−1

dist(λ, σ(A))d
, (1.1)

where σ(A) denotes the set of eigenvalues of A.
In order to represent conveniently R-linear operators in Cd let us denote

by τ the complex conjugation. Given two d × d complex matrices A, B we
put

A = A+Bτ (1.2)
so that A maps a vector x ∈ Cd as

x 7→ Ax = Ax+Bx. (1.3)

We define the spectrum σ(A) of A by

σ(A) = {λ ∈ C | Ax = λx for some x 6= 0}. (1.4)

The spectrum consists of at most d curves on C, it is compact but it can be
empty [1], [5]. In what follows the norm is the induced operator norm

‖A‖ = sup
‖x‖=1

‖Ax‖.

The resolvent of A is the real analytic function

λ 7→ R(λ,A) = (λ−A)−1 (1.5)
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defined outside the spectrum. For |λ| > ‖A‖ we have

R(λ,A) =
∞∑
j=0

(
1
λ
A)j

1
λ

(1.6)

and thus in particular

‖R(λ,A)‖ ≤ 1
|λ| − ‖A‖ . (1.7)

From this one gets easily the analogue of the leftmost inequality in (1.1).
However, unlike in the C-linear case, the spectrum of an R-linear operator
can be empty. If we set the distance to an empty set to be infinite, then the
lower bound trivially holds but simultaneously, it is clear that the analogue
of the upper bound cannot hold. In [4] a lower bound was presented, based
on a set δ(A) which is always nonempty, contains the spectrum and equals
it in the C-linear case. In this note we consider upper bounds.

It is in order to point out that while the real analytic resolvent satisfies

λR(λ,A)−AR(λ,A) = I (1.8)

one can associate with A a complex analytic function, the cosolvent C(λ,A)
as a solution of the Sylvester equation

λC(λ,A)− C(λ,A)A = I (1.9)

[4]. For |λ| > ‖A‖ we have

C(λ,A) =
∞∑
j=0

λ−j−1Aj

and all singularities are poles. It is possible to give an analogue of the Cauchy
integral in which the kernel is the cosolvent and not the resolvent.

Solution methods for R-linear problems were discussed in [1] and eigen-
value problems in [5]. Additional material on real linear operators can be
found e.g. in [5], [6], [7] and the references given there.

2. Additional preliminaries

Let A = A+Bτ be given. If
Ax = b, (2.1)

that is,
Ax+Bx = b,

then also
Bx+Ax = b

so that (
A B
B A

)(
x
x

)
=
(
b

b

)
. (2.2)

The matrix

ψ(A) =
(
A B
B A

)
∈ C2d×2d (2.3)



Upper bounds for R-linear resolvents 3

is said to give the C-linear representation of A, see [4]. There holds ‖A‖ =
‖ψ(A)‖.
Lemma 2.1. The equation (2.1) has a unique solution x ∈ Cd for every b ∈ Cd
if and only if the matrix ψ(A) is nonsingular.

Proof. If ψ(A) is nonsingular, then for every b there exists a unique

y =
(
y1
y2

)
such that

ψ(A)y =
(
b

b

)
.

But then also

ψ(A)
(
y1 − y2
y1 − y2

)
= 0

and so y2 = y1.
Reversely, if ψ(A) is singular, there exists a nontrivial

y =
(
y1
y2

)
such that

Ay1 +By2 = 0
and

Ay2 +By1 = 0
so that

A(y1 + y2) +B(y1 + y2) = 0,
or A((y1 + y2) = 0. Thus A has a nontrivial kernel, except if y1 + y2 = 0.
However, in that case we can set x = iy1 to obtain Ax = 0. �

Definition 2.2. We set for given real linear operator A in Cd

p(z, w) = det

(
zI −A −B
−B wI −A

)
(2.4)

and denote
Σ(A) = {(z, w) ∈ C2 | p(z, w) = 0}.

Thus p is a polynomial of two complex variables of degree 2d of the form

p(z, w) = zdwd + r(z, w) (2.5)

where r is a polynomial of degree at most 2d− 1. Unless otherwise explicitly
mentioned, we measure the distances in C2 using the max-norm.

Proposition 2.3. The polynomial p does not depend on the coordinate system
in Cd. Moreover,

σ(A) = {λ ∈ C | (λ, λ) ∈ Σ(A)}. (2.6)
For |λ| > ‖A‖ we have

dist( (λ, λ),Σ(A) ) ≥ |λ| − ‖A‖. (2.7)
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Proof. A coordinate change by a similarity matrix S leads to the −linear
representation (

S 0
0 S

)(
zI −A −B
−B wI −A

)(
S−1 0

0 S−1

)
and so its determinant is independent of S.

The second claim is obvious.
The third one follows from inverting(

I 0
0 I

)
−
(

1
z I 0
0 1

w I

)
ψ(A)

by the Neumann series which converges as ψ preserves the norm of A and the
norm of the diagonal matrix equals the largest absolute value of the elements.
It is clear that ψ preserves the norm if the operator is applied to vectors of the
form (x, x) ∈ C2d where x ∈ Cd. However, observe that the operator norm of
ψ(B) is obtained as square root of the largest eigenvalue of ψ(B)∗ψ(B) and
by Lemma 2.1 it suffices to work with vectors of the form (x, x). �

Example 2.4. If

A =
(

0 β
−β 0

)
τ (2.8)

then

(λ−A)−1 =
1

|λ|2 + |β|2
(

λ βτ

−βτ λ

)
while p(z, w) = (zw + |β|2)2. Thus σ(A) = ∅ whereas

Σ(A) = {(z, −|β|
2

z
) | z 6= 0}.

Finally, observe that the distance in the max-norm from the origin to Σ(A)
is |β|.

3. First upper bound

The idea of the upper bounds for the resolvent (λ−A)−1 starts as follows. We
consider (ψ(λ−A))−1 and apply the simple identity between the eigenvalues
and singular values of matrices. Denoting by sj ≥ sj+1 the singular values of
ψ(λ−A) we have

1
s2d

=

∏2d−1
j=1 sj

|detψ(λ−A)| . (3.1)

We arrive at the following bound.

Proposition 3.1. For λ /∈ σ(A)

‖(λ−A)−1‖ ≤ ‖λ−A‖
2d−1

|p(λ, λ)| . (3.2)
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Proof. We have for all j sj ≤ ‖ψ(λ−A)‖ = ‖λ−A‖ and likewise

1
s2d

= ‖(λ−A)−1‖. �

What remains is to bound |p(λ, λ)| from below.

Lemma 3.2. Let ‖ · ‖ be a norm in C2 and put γ = ‖(1, 1)‖. Then, in that
norm, for all (z, w) ∈ C2

|p(λ, λ)| ≥ (
1
γ

)2d (dist((z, w),Σ(A)))2d. (3.3)

Proof. Recall that p(z, w) = (zw)d + r(z, w) where r is at most of degree
2d−1. Following [2] we consider points along the complex line (z, w)+ζ(1, 1)
and put

q(ζ) = p((z, w) + ζ(1, 1))

so that q is a polynomial satisfying

q(ζ) = ζ2d + lower order terms.

Thus, denoting by ζj the zeros of q,

|p(z, w)| = |q(0)| =
2d∏
j=1

|ζj |.

Since (z, w) + ζj(1, 1) ∈ Σ(A) we have

|ζj |‖(1, 1)‖ ≥ dist((z, w),Σ(A))

and the claim follows. �

We formulate our bound using max-norm in C2 as then γ = 1.

Theorem 3.3. Let A be a real linear operator in Cd. Then for all λ /∈ σ(A)

‖(λ−A)−1‖ ≤ ‖(λ−A)‖2d−1

dist((λ, λ),Σ(A))2d
. (3.4)

Example 3.4. In Example 2.4 the distance from the origin to Σ(A) is |β|.
Thus we obtain

‖A−1‖ ≤ |β|3
(|β|)4 =

1
|β|

so the upper bound is at origin an equality.

4. Second upper bound

It is tempting to think that if σ(A) is not empty, one could control the
resolvent by the distance from λ to it in C, in place of distance from (λ, λ)
to Σ(A) in C2.
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Example 4.1. Let A be the direct sum of complex scalar α and the operator
in Example 2.4:

A =

α 0 0
0 0 βτ
0 −βτ 0

 .

If |α| > |β|, then the norm of the resolvent bears no relation to the distance
to σ(A) near the origin.

Thus we may hope for a bound which holds near σ(A).

Theorem 4.2. For every real linear operator A in Cd there exists an open
U ⊂ C such that

σ(A) ⊂ U
and for every λ ∈ U \ σ(A) we have

‖(λ−A)−1‖ ≤ ‖λ−A‖2d−1

dist(λ, σ(A))2d
. (4.1)

Proof. If the spectrum is empty U can be taken to be the empty set.
Otherwise, for each λ /∈ σ(A) there exists a closest λ0 ∈ σ(A). Likewise,

λ0 is then a closest point to λ in the conjugate of the spectrum. Put E =
{(z, z) | z ∈ C} and denote

Γ = Σ(A) ∩ E.
Then the line

(λ0, λ0) + ζ(λ− λ0, λ− λ0)

is orthogonal to the tangent of the curve Γ at (λ0, λ0), or the point (λ0, λ0)
is isolated, in which case there is nothing to be shown.

The technical part of the proof consists of showing that the line is normal
not only to the curve Γ but to the whole tangent plane of Σ(A). Assume this
has been done. Since Γ = Σ(A)∩E is compact there exists a δ > 0 such that
along each such line the point (λ0, λ0) ∈ Γ is a closest point to every point
for |ζ| < δ. Thus, the claim follows from the previous theorem.

Let us prove the technical part. It follows from the definition of p that
interchanging the roles of z and w causes its coefficients to be conjugated.
Thus

p(z, w) = (zw)d + lower order terms =
d∑

j,k=0

(αjkzjwk + αjkz
kwj). (4.2)

Let w(z) denote one of the d roots such that p(z, w(z)) = 0. Denoting by ∂j
the partial derivative with respect to the j’th variable we have

∂1p+ ∂2p w
′ = 0.

If ∂2p 6= 0 we have at (λ0, λ0) ∈ Γ

w′(λ0) = −∂1p

∂2p
.
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However, for E we have from (4.2) that

∂2p = ∂1p. (4.3)

Thus w′(λ0) is of modulus 1 and all we need its argument. If λ − λ0 =
|λ− λ0|eiθ and ∂1p(λ0, λ0) = ρeiϕ then the orthogonality implies that either
ϕ = −θ or ϕ = π − θ. In either case

w′(λ0) = −e2iθ.
The calculation above assumed that the partial derivatives do not van-

ish. This however can happen. But w′ is even then regular and of modulus
1. In fact, let z(w) be such that

p(z(w), w) = 0

and thus
z(w(z)) = z

which implies at (z, w) = (λ0, λ0)

z′(λ0)w′(λ0) = 1.

But interchanging their roles we have using (4.2)

z′(λ0) = w′(λ0)

and thus |w′(λ0)| = 1.
Suppose we make a small perturbation ∆z to λ0 and denote λ1 = λ0 +

∆z. Then the first component satisfies

|λ− λ1| = | |λ− λ0| − e−iθ∆z|
while the second component satisfies

|λ− w(λ1)| = | |λ− λ0|+ e−iθ∆z +O((∆z)2)|.
Thus the maximum increases if ∆z 6= 0. �

Remark 4.3. For normal operators A we have

‖(λ−A)−1‖ =
1

dist(λ, σ(A))
, (4.4)

[4]. Here A is normal if there is a unitary matrix U such that UAU∗ is a
diagonal real linear operator. By Theorem 2.3 in [4] A = A + Bτ is normal
if and only if A is normal and B, HB, KB are symmetric, where H and K
denote the Hermitian and skew-Hermitian parts of A.

The equality (4.4) follows immediately by inverting the diagonal ele-
ments. In particular, if α, β ∈ C, then

‖(λ− α− βτ)−1‖ = | 1
|λ− α| − |β| |.

Observe however, that our method of proof in the bounds above give for
circlets

‖(λ− α− βτ)−1‖ ≤ ‖λ− α− βτ)‖
dist(λ, σ(α+ βτ))2

=
|λ− α|+ |β|

(|λ− α| − |β|)2 .
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Here the second power in the nominator appears inevitably due to the tech-
nique of the proof. Since p(λ, λ) = |λ−α|2− |β|2 there actually is a common
factor ‖λ− α− βτ‖

|p(λ, λ)| = | |λ− α|+ |β||λ− α|2 − |β|2 | = |
1

|λ− α| − |β| |
but we do not know how this effect could be utilized in the general case.
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