
Helsinki University of Technology Institute of Mathematics Research Reports

Espoo 2011 A597

PRECONDITIONING FOR STANDARD AND TWO-SIDED

KRYLOV SUBSPACE METHODS

Mikko Byckling





Helsinki University of Technology Institute of Mathematics Research Reports

Espoo 2011 A597

PRECONDITIONING FOR STANDARD AND TWO-SIDED

KRYLOV SUBSPACE METHODS

Mikko Byckling

Doctoral dissertation for the degree of Doctor of Science in Technology to be presented with due
permission of the Faculty of Information and Natural Sciences for public examination and debate in
Auditorium K at the Aalto University School of Science and Technology (Espoo, Finland) on the 21st
of January 2011 at 12 noon.

Aalto University

School of Science and Technology

Department of Mathematics and Systems Analysis



MIKKO BYCKLING
Department of Mathematics and Systems Analysis
Aalto University
P.O. Box 11100, FI-00076 Aalto, Finland
E-mail: mikko.byckling@tkk.fi

ISBN 978-952-60-3532-1 (print)
ISBN 978-952-60-3533-8 (PDF)
ISSN 1797-5867
Aalto University, Mathematics, 2011

Aalto University
School of Science and Technology
Department of Mathematics and Systems Analysis
P.O. Box 11100, FI-00076 Aalto, Finland
email: math@tkk.fi http://math.tkk.fi/



Mikko Byckling: Preconditioning for standard and two-sided Krylov sub-
space methods; Helsinki University of Technology Institute of Mathematics
Research Reports A597 (2011).

Abstract: This thesis is concerned with the solution of large nonsym-
metric sparse linear systems. The main focus is on iterative solution
methods and preconditioning. Assuming the linear system has a spe-
cial structure, a minimal residual method called TSMRES, based on a
generalization of a Krylov subspace, is presented and its convergence
properties studied. In numerical experiments it is shown that there
are cases where the convergence speed of TSMRES is faster than that
of GMRES and vice versa. The numerical implementation of TSMRES
is studied and a new numerically stable formulation is presented. In
addition it is shown that preconditioning general linear systems for
TSMRES by splittings is feasible in some cases. The direct solution of
sparse linear systems of the Hessenberg type is also studied. Finally, a
new approach to compute a factorized approximate inverse of a matrix
suitable for preconditioning is presented.

AMS subject classifications: 65F10,65F05,65F08

Keywords: minimal residual methods, Krylov subspaces, nonsymmetric sys-
tems, preconditioning, approximate inverses

Mikko Byckling: Standardien ja kaksisuuntaisten Krylov-aliavaruusmene-
telmien pohjustaminen

Tiivistelmä: Tässä väitöskirjassa käsitellään suurten epäsymmetris-
ten harvojen lineaaristen yhtälöryhmien ratkaisua. Työ käsittelee pää-
sääntöisesti iteratiivisiä menetelmiä ja pohjustusta. Olettaen että line-
aarisella yhtälöryhmällä on erityinen rakenne, esitellään uusi minimi
residuaali -menetelmä TSMRES ja tutkitaan sen konvergenssiominai-
suuksia. Numeerisilla kokeilla osoitetaan, että on olemassa tapauk-
sia joissa TSMRES konvergoi nopeammin kuin GMRES ja toisinpäin.
Työssä tutkitaan myös TSMRES-menetelmän numeerista implemen-
taatiota ja esitellään menetelmälle uusi numeerisesti stabiili muoto.
Lisäksi osoitetaan, että yleinen lineaarinen yhtälöryhmä voidaan poh-
justaa TSMRES-menetelmälle sopivaan muotoon jakamalla matriisi
osiin. Tarkastellaan myös harvojen Hessenberg-tyyppisten lineaaris-
ten yhtälöryhmien ratkaisua. Lopuksi esitetään lisäksi uusi pohjus-
tukseen soveltuva menetelmä matriisin inverssin approksimatiivisen
hajotelman laskentaan.

Avainsanat: minimi residuaali -menetelmät, Krylov-aliavaruudet, epäsym-
metriset yhtälöryhmät, pohjustaminen, approksimatiiviset inverssit



Preface
This thesis has been written at the Department of Mathematics and
Systems Analysis of the Aalto University School of Science and Tech-
nology during the years 2005-2010. Financial support has been re-
ceived from the Academy of Finland and the Research Foundation of
Helsinki University of Technology.

I am most grateful to my instructor Dr. Marko Huhtanen for his
continuous support, guidance and seemingly abundant wealth of new
ideas. I would like to thank Dr. Harri Hakula for convincing me that
the field of numerical mathematics is an extremely interesting one and
providing motivational discussions about mathematics and life in ge-
neral. I would also like to thank Prof. Timo Eirola for supervising
my thesis and for organizing very interesting study groups in numeri-
cal analysis. I am indebted to Prof. Olavi Nevanlinna, director of the
institute, and all my colleagues for creating a pleasant working atmo-
sphere. Especially I would like to thank Matti, Toni and Igor for friend-
ship and interesting conversations about mathematics, programming,
gaming and cooking.

It has been an honour to have Prof. Daniel Kressner from the ETH
Zürich and Dr. Xavier Vasseur from CERFACS, two experts in the field,
as preliminary examiners of the thesis. Their in depth comments about
the manuscript very highly appreciated.

Finally, I would like to thank my parents and relatives for all their
support during my studies. Last, but by no means least, I am greatly
indebted to Mari and Neea for their love, support and understanding.

Toulouse, December 2010 Mikko Byckling

iv



Author’s contribution
Chapter 2 The two-sided minimum residual method (TSMRES) was
originally introduced by Huhtanen and Nevanlinna in the article A
minimum residual algorithm for solving linear systems, BIT, 46 (2006),
pp. 533–548. All the numerical experiments comparing the standard
and the two-sided Krylov subspaces and some of the theoretical results
concerning TSMRES are independent research by the author.
Chapter 3 This chapter is independent research by the author. It is
shown that the two-sided Krylov subspaces can be considered a special
case of more general subspaces.
Chapter 4 This chapter is independent research by the author. A
numerically stable version of TSMRES is introduced and the practi-
cal numerical implementation and computational complexity is consid-
ered. Theoretical considerations on the numerical stability of TSMRES
are given.
Chapter 5 This chapter is independent research by the author. The
convergence of the restarted TSMRES method and preconditioning ge-
neral linear systems for TSMRES by splittings is considered. It is
shown that there are cases where for similarly sized subspaces the
restarted GMRES method stagnates whereas the restarted TSMRES
converges.
Chapter 6 This chapter is independent research by the author. A
new method based on the Gaussian elimination is introduced for the
direct solution of sparse Hessenberg linear systems. Computational
complexity and numerical stability of the new method is considered. A
decomposition of a matrix into a product of a lower triangular matrix
and Hessenberg matrix is introduced and its use as a preconditioner
considered.
Chapter 7 This chapter is based on the article [20], i.e., M. Byckling
and M. Huhtanen Approximate factoring of the inverse, To appear in
Numerische Mathematik (2010). The original idea of Algorithms 7.1
and 7.2 to compute a factorized approximate inverse of a matrix is by
Huhtanen. The author of the thesis is responsible for the practical ver-
sion of the method (Algorithm 7.3), computational complexity analysis,
the numerical implementation of Algorithms 7.1, 7.2 and 7.3 and all of
the numerical results.

v



Rainerille



Contents

1 Introduction 1
1.1 Direct methods . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Iterative methods . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Krylov subspaces . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 GMRES - Generalized Minimal Residual Method . . . 8
1.2.3 Other iterative methods . . . . . . . . . . . . . . . . . 11
1.2.4 Preconditioning iterative methods . . . . . . . . . . . . 13

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 TSMRES 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Two-sided Krylov subspaces . . . . . . . . . . . . . . . . . . . 19
2.3 Derivation of TSMRES . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Algebraic properties of TSMRES . . . . . . . . . . . . . . . . 28
2.5 Theoretical convergence . . . . . . . . . . . . . . . . . . . . . 33
2.6 Numerical illustrations of convergence . . . . . . . . . . . . . . 36
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Generalized Krylov subspaces 53
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Generalized Krylov subspaces . . . . . . . . . . . . . . . . . . 55
3.3 Properties of generalized Krylov subspaces . . . . . . . . . . . 61
3.4 Applications for generalized Krylov subspaces . . . . . . . . . 64
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Implementation of TSMRES 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Givens rotations . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Practical implementation considerations . . . . . . . . . . . . 71
4.4 Numerically stabilized TSMRES . . . . . . . . . . . . . . . . . 76
4.5 Aspects of the numerical stability of TSMRES . . . . . . . . . 84

vii



viii CONTENTS

4.6 Computational cost . . . . . . . . . . . . . . . . . . . . . . . . 89
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Restarted TSMRES 95
5.1 Restarted TSMRES . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Convergence of restarted TSMRES . . . . . . . . . . . . . . . 98
5.3 Preconditioning for TSMRES . . . . . . . . . . . . . . . . . . 100

5.3.1 Gauss-Seidel –type splittings . . . . . . . . . . . . . . . 104
5.3.2 k-Hessenberg splittings . . . . . . . . . . . . . . . . . . 107
5.3.3 ADI –type splittings . . . . . . . . . . . . . . . . . . . 110

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Splittings and k-Hessenberg systems 117
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2 Solving sparse k-Hessenberg linear systems . . . . . . . . . . . 118

6.2.1 A generalized back substitution scheme . . . . . . . . . 120
6.2.2 Interpretation by using row and column operations . . 123

6.3 Computational complexity . . . . . . . . . . . . . . . . . . . . 125
6.4 Numerical stability and threshold pivoting . . . . . . . . . . . 128
6.5 Triangular-Hessenberg decompositions . . . . . . . . . . . . . 132
6.6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . 135
6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7 Approximate factoring of the inverse 141
7.1 Computing approximate factors . . . . . . . . . . . . . . . . . 143
7.2 Choice of subspaces W and V1 . . . . . . . . . . . . . . . . . . 146

7.2.1 Standard subspaces . . . . . . . . . . . . . . . . . . . . 146
7.2.2 Standard subspaces from matrix Krylov subspaces . . . 149
7.2.3 Standard subspaces via numerical dropping . . . . . . . 149

7.3 Implementation and complexity . . . . . . . . . . . . . . . . . 151
7.3.1 Improving a preconditioner . . . . . . . . . . . . . . . . 153

7.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . 154
7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Bibliography 165



Chapter 1

Introduction

Many engineering and physical applications, such as structural analysis or the
study of fluid flow, heat conduction or properties of materials are based on
building an ideal mathematical model of the phenomenon. Due to structure
of the problem itself or physical properties, the model may contain several
interdependent unknown quantities. Then, based on the ideal model, using
given initial or boundary conditions, for instance, the goal is to determine
the unknowns under study.

To solve an approximation of the ideal model, discretization is often used,
i.e., the problem is turned into a finite dimensional discretized model. De-
pending on the quantities being modelled, when solving the unknowns from
the discretized model, we may finally end up solving a linear system or an
eigenvalue problem.

In many applications, the final solution phase involves solving a large and
sparse linear system, possibly consisting of hundreds of millions of unknowns.
Let A ∈ Cn×n be a large, sparse and nonsingular matrix. We consider solving
the linear system

Ax = b, (1.1)

with the right-hand side b ∈ Cn and a nonzero x ∈ Cn the unknown solution.
Since A is nonsingular, the solution vector x is unique.

Another class of problems frequently appearing in applications are eigen-
value problems, defined as

Ax = λx, (1.2)

where λ ∈ C is defined as an eigenvalue and a nonzero x ∈ Cn the correspond-
ing eigenvector of A. The eigenvalues λ are the n roots of the characteristic
polynomial �p�(λ) = det(λI − A). The set of eigenvalues of A is called the

spectrum and is denoted by σ(A).

1



2 CHAPTER 1. INTRODUCTION

We define an n-by-n matrix to be full when it contains approximately
O(n2) nonzero entries. Similarly, we define a n-by-n matrix to be sparse
when it only contains approximately O(τn) nonzero entries with τ ≪ n, i.e.,
most of the entries in the matrix are in fact zeroes. To take advantage of
the sparsity, special care must be taken when linear systems involving sparse
matrices are being solved.

Solvers for linear systems can be roughly divided into two categories:
direct and iterative. Between the two approaches, there are major differences.

Direct solvers require storing all the entries in the matrix A. To solve
a general linear system, direct solvers typically require from O(n2) to even
O(n3) floating point operations. In addition, direct solvers require a great
deal of additional storage the amount of which depends on the structure of
the matrix A.

Iterative solvers only require the computation of matrix-vector products
Av (or A∗v) for vectors v. When successful, typically approximately only
O(n) operations are required by the solution process. The amount of ad-
ditional storage required by iterative solvers is usually very moderate and
typically does not depend on the structure of A.

In addition to requiring more storage and floating point operations than
iterative solvers, direct solvers are usually considerably more difficult to par-
allelize than iterative methods, which often have parallelism built in. How-
ever, unless the given problem is severely ill-conditioned, given enough time
and memory, direct solvers can be expected to produce a solution to the given
problem. Iterative solvers, on the other hand, do not necessarily converge to
a solution at all.

In this thesis, new methods for solving sparse linear systems, especially
ones with some predefined structure, are studied. The emphasis will be on
iterative methods, although some consideration will be given also for sparse
direct solvers. Most of the analysis will be given assuming exact arithmetic.
The effect of using finite precision arithmetic can not be completely avoided
in practice, however. Whenever needed, we will give alternative formula-
tions of the proposed algorithms for which properties of using finite precision
arithmetic have been taken into account.

In the following sections, we give a short introduction to solving general
linear systems with references to literature. We consider both direct and
iterative solvers for sparse linear systems. For iterative solvers, we present
some important results and concepts which will be referred to in the following
chapters. Since it is so extremely important in practice, we give a short
introduction to preconditioning linear systems for iterative solvers. Finally,
at the end of this chapter, we give a short outline of the contents of this
thesis.



1.1. DIRECT METHODS 3

1.1 Direct methods

Direct solution of general sparse linear systems (1.1) is based on the Gaussian
elimination. There exists numerous textbooks on the subject, see for instance
Duff, Erisman and Reid [36] or a recent implementation oriented approach
by Davis [29]. We begin by considering the case where the matrix A is full.

Consider a factorization of a nonsingular full n-by-n matrix A into two
n-by-n matrices,

A = LU, (1.3)

where L is a lower triangular and U is an upper triangular n-by-n matrix.
Factorization of the form (1.3) is called an LU-decomposition. On how L and
U are constructed by using the Gaussian elimination, see any textbook on
linear algebra, such as [55] or [117]. For a full matrix, the floating point cost
of computing (1.3) is approximately O(2

3
n3) operations.

The decomposition (1.3) does not always exist even though A is nonsin-
gular. The remedy is to apply partial pivoting

PA = LU, (1.4)

where L and U are as before and P denotes a permutation matrix. In exact
arithmetic, a decomposition of the form (1.4) always exists when A is non-
singular [132]. In finite precision arithmetic, P is usually chosen to minimize
numerical error, see for instance [55, 61]. In most practical cases, partial
pivoting yields a numerically stable decomposition of the form (1.4) [61].

For simplicity, in the following we consider only the case without partial
pivoting. With the decomposition (1.3), a linear system Ax = b is readily
solvable. The solution x = U−1L−1b is computed in two steps: first by solving
a lower triangular linear system and then an upper triangular one. We then
have

Ly = b, Ux = y. (1.5)

The formulation (1.5) is effective because the solution of upper triangu-
lar linear systems Ux = y (and similarly that of lower triangular systems
Ly = b) is inexpensive in terms of floating point operations. Denote the jth
component of vectors x and b by xj and bj , respectively. Also, let uj,k denote
the element at position (j, k) in the matrix U . Then, xn = bn/un,n and for
j = n− 1, . . . , 1,

xj = (bj −
n∑

k=j+1

uj,kxk)/uj,j, (1.6)

with a total floating point cost of approximately O(n2) operations.



4 CHAPTER 1. INTRODUCTION

One of the advantages of using an LU -decomposition is that the factors
L and U can be efficiently reused to solve the same linear system with a
different right-hand side. When an LU -decomposition has been computed
for a given matrix A, the solution of the linear system involving A requires
only O(2n2) floating point operations. Thus, if the same linear system needs
to be solved for multiple right-hand sides, the initial factorization cost O(2

3
n3)

can be partially amortized among the different solves.

Now consider the case where an LU -decomposition is used to solve the
sparse linear system (1.1). Then, even though the matrix A is sparse, the
computed factors are neccessarily not. A classical example is to consider
computing an LU -decomposition of a matrix having the sparsity pattern

A =


x x x x x
x x
x x
x x
x x

 , (1.7)

where x denotes a nonzero element. Then, after computing the LU -decom-
position, we have the factors as

L =


x
x x
x o x
x o o x
x o o o x

 , U =


x x x x x

x o o o
x o o

x o
x

 , (1.8)

where o denotes an extra nonzero element produced by the triangularization
process. The extra nonzero elements appearing in the factors L and U are
usually called fill-in.

To reduce the fill-in, a reordering of the unknowns is often performed.
For a matrix having the sparsity pattern (1.7), we have

PAQ =


x x

x x
x x

x x
x x x x x

 , (1.9)

where P and Q denote permutation matrices which reverse the order of rows
and columns. For the factors L and U of the permuted matrix PAQ we then



1.2. ITERATIVE METHODS 5

have

L =


x

x
x

x
x x x x x

 , U =


x x

x x
x x

x x
x

 , (1.10)

i.e., no fill-in occurs and the sparsity patterns of the matrices L and U equal
to those of the lower and upper triangular parts of the matrix PAQ.

To minimize the fill-in, different types of reorderings are commonly used
with sparse direct solvers. Types of fill-in minimizing reorderings include,
for instance, Reverse Cuthill-McKee [51] and Approximate Minimum Degree
[30]. The study of fill-in minimizing reorderings is tightly linked with the
graph theory of the underlying connectivity graph of the matrix, see for
example [32] and [130].

A catastrophic fill-in such as that described in (1.7) rarely happens in
practice. Thus, for sparse linear systems, complexity of the factorization
is rarely of the order O(n3). Similarly, in spite of the fill-in, solution of a
sparse lower and upper triangular systems related to the computed factors L
and U can be computationally considerably less expensive than that of the
full ones. However, for very large linear systems, especially for those arising
from discretizations of three-dimensional problems, time and memory con-
sumption remain an problem. Another problem with the LU -decomposition
is that its computation is inherently sequential and therefore very difficult to
parallelize.

There exists several software packages for sparse direct solvers. These
include, for instance, UMFPACK [28], SuperLU [31] and MUMPS [2]. Such
software is often highly complex, consisting of tens of thousands of lines of
code. To achieve maximum efficiency on a modern computer, sophisticated
implementation techniques such as blocking [31] and parallel graph parti-
tioning [22, 76] are used. Although efficient parallelization of direct solvers
is still problematic, it has gained advances in recent years, see for instance
[1, 57].

1.2 Iterative methods

Iterative methods based on Krylov subspaces are among the most important
techniques for solving large sparse linear systems. With the increased use
of three-dimensional models and massively parallel computing architectures
[115], the handicaps of direct solvers, i.e., increased factorization cost and in-
creased memory usage due to fill-in and difficulties in parallellization, become



6 CHAPTER 1. INTRODUCTION

more apparent. Due to such constraints, application of iterative methods in
large industrial problems is nearly standard.

Iterative methods have been studied actively since the 1950’s. The idea
of solving linear systems iteratively has been around much longer, and dates
back to Gauss in the 1820’s or even further [125]. The results of papers now
viewed as foundational such as those of Lanczos [80] as well as Hestenes and
Stiefel [60], were initially disappointing since the methods described were
considered as direct solution methods and thus did not compare favourably
with the existing solution techniques.

In the 1970’s it was realised that iterative solvers could be used to ap-
proximate the solution of a large and sparse linear system, see for instance
[97]. Ideas such as preconditioning were shown to be applicable to the solu-
tion of large linear systems. Even though the research into iterative methods
has been an active area ever since, many questions still remain unanswered
[54, 107, 110, 122].

Iterative methods are nowadays well covered in literature. Books of Saad
[105] and van der Vorst [121], for instance, provide complete overviews on
modern iterative solution techniques. Software implementations of iterative
methods are also widely available, see for instance [47, 104].

Mathematically most of the modern iterative methods are based on pro-
jection processes. Let xm be an approximate solution of (1.1) from a subspace
Km of dimension m. To select xm, we apply a Petrov-Galerkin condition to
the residual rm. We then have

rm = b− Axm ⊥ Lm, (1.11)

where Lm denotes another subspace of dimension m. Traditionally the sub-
spacesKm and Lm are selected as Krylov subspaces of the matrixA, described
in what follows.

1.2.1 Krylov subspaces

Denote by q1 ∈ Cn a vector with ||q1||2 = 1. Let Kj = Kj(A; q1) denote a
Krylov subspace, defined as

Kj(A; q1) = span�p�∈Pj−1

{�p�(A)q1} = span{q1, Aq1, . . . , Aj−1q1}, (1.12)

where Pj denotes a set of polynomials of degree j at most. As expected,
different choices of subspaces Km and Lm yield different Krylov subspace
methods.

Algorithm 1.1 describes a method for constructing an orthonormal basis
{q1, q2, . . . , qm} for the Krylov subspace Km(A; q1).



1.2. ITERATIVE METHODS 7

Algorithm 1.1 Arnoldi method

1: Choose a vector q1 with ||q1||2 = 1
2: for j = 1, 2, . . . , m do
3: hl,j = (Aqj, ql), l = 1, . . . , j
4: wj = Aqj −

∑j
l=1 hl,jql

5: hj+1,j = ||wj||2
6: if hj+1,j = 0 then
7: return
8: end if
9: qj+1 = wj/hj+1,j

10: end for

Algorithm 1.1, usually called the Arnoldi method, was originally intro-
duced by Arnoldi in [3]. It uses a standard Gram-Schmidt process for the
construction of an orthonormal set of basis vectors for the Krylov subspace
Km(A; q1). Another formulation of the Arnoldi method is given in Algorithm
1.2.

Algorithm 1.2 Arnoldi Modified Gram-Schmidt method

1: Choose a vector q1 with ||q1||2 = 1
2: for j = 1, 2, . . . , m do
3: wj = Aqj
4: for l = 1, . . . , j do
5: hl,j = (wj, ql), wj = wj − hl,jql
6: end for
7: hj+1,j = ||wj||2
8: if hj+1,j = 0 then
9: return

10: end if
11: qj+1 = wj/hj+1,j

12: end for

In Algorithm 1.2, the modified Gram-Schmidt process has been used to
construct an orthonormal set of basis vectors for Km(A; q1). Mathematically
Algorithms 1.1 and 1.2 are equivalent, but in finite precision arithmetic the
modified Gram-Schmidt implementation is numerically much more stable;
see Björck [14].

In a parallel computing environment the problem with Algorithm 1.2 is
its sequential nature. Algorithm 1.1, on the other hand, is very attractive
for parallel computations. It was shown by Giraud et al. in [53], that a



8 CHAPTER 1. INTRODUCTION

numerical stability may be regained for the standard Gram-Schmidt process
by performing a second orthogonalization step for the generated basis vec-
tors. Then, although the second orthogonalization step effectively doubles
the amount of computations required, the use of the standard Gram-Schmidt
process in a parallel environment is feasible.

Denote by Qm = [q1 q2 · · · qm] the matrix having the generated orthonor-
mal basis vectors qj as its columns. Also, denote by H̄m the (m + 1)-by-m
matrix with entries hi,j determined by Algorithm 1.1. Assuming that the Al-
gorithm 1.1 does not break down before the mth step, we have the relation

AQm = QmHm + wme
T
m = Qm+1H̄m, (1.13)

where em denotes the mth column of an m-by-m identity matrix and Hm

denotes the m-by-m matrix obtained after the last row of H̄m has been
removed.

The minimal polynomial of the matrix A at q1 is the monic polynomial �p�
of the least degree satisfying �p�(A)q1 = 0. If the Arnoldi process breaks down

at step j, we have generated the minimal polynomial of q1 and an invariant
subspace for A as stated by the following proposition [105, Proposition 6.6,
pp. 155].

Proposition 1.1. Arnoldi’s method, i.e., Algorithm 1.1 breaks down at step
j if and only if the minimal polynomial of q1 is of degree j. Moreover, in this
case the subspace Kj is invariant under A.

In addition to computing a Krylov subspace Km(A; q1), the Arnoldi met-
hod can be used to approximate the eigenvalues of a large and sparse matrix.
By the relation (1.13), we have a decomposition of the matrix A as Hm =
Q∗

mAQm. In view of the eigenvalue problem (1.2), consider

Hmg = θg, (1.14)

with θ ∈ C and a nonzero g ∈ Cm. Here the pair (θ,Qmg) is usually called a
Ritz pair. Once the eigenvalues θj and eigenvectors gj of the problem (1.14)
have been computed for j = 1, . . . , m, the pairs (θj , Qmgj) can be used to
approximate the eigenvalues and eigenvectors of the matrix A.

In the general case it is still a tough question how the eigenvalue estimates
produced by the Arnoldi method relate to the true eigenvalues of A. For
interesting results see [6, 43, 101, 122] and references therein.

1.2.2 GMRES - Generalized Minimal Residual Method

The generalized minimal residual method (GMRES) was introduced by Saad
and Schultz in [106]. GMRES can be considered as a projection method



1.2. ITERATIVE METHODS 9

on a Krylov subspace. Denote by x0 an initial approximate solution. With
the equation (1.11) we then have the GMRES method by setting Km =
Km(A; q1), Lm = AKm and q1 = r0/||r0||2, where r0 = b − Ax0 denotes the
initial residual.

At the mth step of iteration, a correction zm for the iterate xm = x0 + zm

is determined in the Krylov subspace Km(A; q1) by solving the least-squares
problem

min
v∈Km(A;q1)

||b− A(x0 + v)||2. (1.15)

By using (1.13), we then have

min
v∈Km(A;q1)

||b−A(x0 + v)||2 = min
ym∈Cm

||βe1 − H̄mym||2, (1.16)

where H̄m as before, β = ||r0||2 and e1 denotes the first column of an (m+1)-
by-(m+ 1) identity matrix.

To find the minimizer ym, we need to solve a (m+ 1)-by-m least-squares
problem. Since m is typically small, finding ym is computationally inex-
pensive. Once the minimizer has been computed, we have the approximate
solution as xm = x0 + zm = x0 +Qmym.

With these, we have Algorithm 1.3, which uses a modified Gram-Schmidt
process to construct an orthonormal basis for Km(A; q1).

Algorithm 1.3 GMRES

1: r0 = b− Ax0, β = ||r0||2, q1 = r0/β
2: for j = 1, 2, . . . , m do
3: w = Aqj
4: for l = 1, . . . , j do
5: hl,j = (w, ql), w = w − hl,jql
6: end for
7: hj+1,j = ||w||2
8: if hj+1,j = 0 then
9: Set m = j and goto 12

10: end if
11: qj+1 = w/hj+1,j

12: Compute ym = Argminy||βe1 − H̄my||2
13: xm = x0 +Qmym

14: end for

We note that since the GMRES method minimizes the residual norm in
Km(A; q1), it is optimal, i.e., no other iterative method can produce a smaller



10 CHAPTER 1. INTRODUCTION

residual norm over the same subspace. Due to the minimization property,
for the residual norms of the GMRES method, it holds

||rm||2 ≤ ||rm−1||2 ≤ · · · ≤ ||r0||2,

i.e., the residual norm is always nonincreasing.
In exact arithmetic, GMRES produces an exact solution in at most n it-

erations. In finite precision arithmetic, GMRES based on a modified Gram-
Schmidt process is backward stable [94], that is, after n steps the approxima-
tion produced can be expected to be numerically accurate unless the problem
is severely ill-conditioned.

When the Arnoldi process used by GMRES breaks down, the solution
produced by GMRES is exact. The following theorem is from Saad [105,
Proposition 6.10, pp.171].

Theorem 1.2. Let A be a nonsingular matrix. Then the GMRES algorithm
breaks down at step j, i.e., hj+1,j = 0, if and only if the approximate solution
xj is exact.

An equivalent condition for the breakdown of GMRES is that the degree
of the minimal polynomial of A at the initial residual vector r0 is equal to j,
see [106].

In the general case, it is very difficult to say anything about the iterative
behaviour of the residual norm of GMRES. Unless the spectrum of A com-
pletely surrounds the origin, the polynomial approximation used by GMRES
can be expected to be successful [91], see also [33]. However, in the general
case it is possible that GMRES produces no reduction of the residual before
the nth step [56].

When A is diagonalizable as A = XDX−1, it readily follows that [105,
Proposition 6.32, pp. 206],

min
v∈Km(A;q1)

||b− Av||2 ≤ min�p�∈Pm

max
λ∈σ(A)

|�p�(λ)| κ(X)||r0||2, (1.17)

where Pj denotes the set of monic polynomials of degree j at most, κ(X) =
||X||2||X−1||2 the condition number of X and λ an eigenvalue of A. When
the matrix X is not too ill-conditioned, inequality (1.17) roughly states that
the convergence of GMRES is determined by a polynomial approximation
problem on the spectrum of A.

When the matrix A is not diagonalizable or the matrix X is very ill-
conditioned, bounds of the type (1.17) are of little value. In such cases, it
may be of use to link the convergence of GMRES to the ε-pseudospectra



1.2. ITERATIVE METHODS 11

of A, defined as σε = {z ∈ C‖ ||(zI − A)−1||2 ≥ ε−1}, with the convention
||(zI − A)−1||2 = ∞ when z ∈ σ(A) [116]. Then, it follows that

min
v∈Km(A;q1)

||b− Av||2 ≤ min�p�∈Pm

max
λ∈σε(A)

|�p�(λ)| L

2πε
||r0||2, (1.18)

where L denotes the arc length of the boundary ∂σε(A) [90]. By inequality
(1.18), we can again roughly state that the convergence of GMRES is de-
termined by a polynomial approximation problem on the pseudospectra of
A.

We now consider the computation complexity of GMRES. The Arnoldi
process used by GMRES requires approximately O(2m2n) operations for the
orthogonalizations plus m matrix vector products to construct a Krylov sub-
space Km(A; q1). For a subspace of size m+1, the amount of storage required
is O((m+ 1)n). Since generally m≪ n, the operation counts for computing
the minimizer ym and computing the approximate solution xm are negligible.
Due to the growth in both the number of operations required for orthogonal-
izations and in the amount of memory consumed, the full GMRES method
is not practical for large m.

The simplest remedy is to restart the method with x0 = xm once the size
of the subspace has reached some predefined value m. Then the excessive
growth in the number of operations required and the amount of memory
consumed is avoided, but the optimality of the algorithm is lost. When the
method is restarted, the reduction of the residual norm per iteration step is
usually reduced when compared to the unrestarted method. What is even
more severe is that the restarted GMRES method can stagnate when the
matrix A is not positive definite, i.e., no reduction of the residual norm is
achieved after a restart, see [42, 105].

To have a method which behaves more like the full GMRES, several reme-
dies have been suggested. These include using a truncated version of the re-
currence (DQGMRES) [108], augmenting the Krylov subspace with spectral
information obtained before the restart (GMRES-DR, GMRES-IR) [87, 88,
89] or using a nested Krylov subspace method (GMRESR [123],FGMRES
[102]), see also [40].

1.2.3 Other iterative methods

Another large class of Krylov subspace methods is obtained with the choice
Km = Km(A; r0) and Lm = Km(AT ; r0) in the equation (1.11). Most of
the methods in this class are based on the biorthogonalization algorithm of
Lanczos [80].



12 CHAPTER 1. INTRODUCTION

Let the matrices Vm = [v1 · · · vm] and Wm = [w1 · · · wm] contain the
basic vectors spanning Km(A; v1) and Km(AT ;w1) as their columns, respec-
tively. In addition, we assume the vectors vj and wj are biorthogonal such
that

W T
mVm = Dm, (1.19)

where Dm denotes an m-by-m diagonal matrix, holds. The Lanczos biortho-
gonalization process constructs a relation

W T
mAVm = Tm, (1.20)

where Tm denotes a tridiagonal matrix. For the details on how the relation
is (1.20) is constructed, see for example [105, Chapter 7.1, pp. 217].

The difficulty in achieving the relation (1.20) is that the construction
can suffer a breakdown if either one of the vectors vj or wj cannot be con-
structed or if their inner product becomes zero even though both vj and wj

are nonzero. In the first case, with vj = 0, the subspace Kj−1(A; v1) is in-
variant and the solution is exact, similarly to Theorem 1.2. The other two
cases are more serious and require techniques such as look-ahead in order for
the construction to continue, see [95].

Based on the Lanczos biorthogonalization process, several algorithms
have been proposed for the solution of linear systems. The most well-known
of these are BiCG [46] and QMR [49].

In some applications operations with the matrix AT can be difficult to
implement. The operations on AT also do not directly contribute to the
solution of the linear system (1.1), hence making the solution process inef-
ficient. To avoid the computations with AT , several transpose-free methods
such as BiCGStab [120] and TFQMR [48] have been proposed. In practice
such methods can be very efficient, although there are few theoretical results
concerning their convergence.

There exists also modern iterative methods for solving linear systems not
based on Krylov subspaces. An important class of such methods are multi-
grid (MG) methods. The MG methods are used mainly for linear systems
arising from partial differential equations and are largely problem specific,
i.e., they exploit the knowledge of the underlying equations in the solution
process. The MG methods can be very efficient. In the case of elliptic partial
differential equations, for instance, the computational complexity scales lin-
early related to the problem size. Also, in most cases the MG methods can
be efficiently parallelized. For an introduction to the subject see Multigrid
tutorial [18] and references therein.



1.2. ITERATIVE METHODS 13

1.2.4 Preconditioning iterative methods

Finding a good preconditioner to solve a given sparse linear sys-
tem is often viewed as a combination of art and science.

–Yousef Saad, Iterative Methods for Sparse Linear Systems (2003)

In large-scale computations, if an iterative method is applied directly to
the linear system (1.1), the convergence speed attained is often too slow to be
of any practical value. By the convergence analysis of the GMRES method,
this may happen, for instance, when the spectrum of A nearly encloses the
origin.

Efficiency of the iterative methods based on Krylov subspaces can be
improved by transforming the original linear system to a one that has the
same solution, but is easier to solve with an iterative method. This kind of a
transformation, called preconditioning, is extremely important when iterative
methods are used for solving industrial-scale problems. In fact, when a good
preconditioner is used, the performance of many commonly used iterative
solvers becomes nearly equivalent [7].

In the following, we denote a preconditioner operator by P . As with the
matrix A, with the operator P we only need to be able to compute matrix-
vector products of the form Pv. With the linear system (1.1), we can apply
the preconditioner P from the left or from the right. A formal multiplication
from the left with P yields a left preconditioned linear system

PAx = Pb. (1.21)

Similarly, after a change of variables we have a right preconditioned linear
system as

APy = b, x = Py. (1.22)

With GMRES, the left and right preconditioned versions may seem similar,
but different residual norms are actually minimized. GMRES applied to the
linear system (1.21) minimizes ||P (b − Axm)||2, whereas GMRES applied
to the linear system (1.22) minimizes ||b − Axm||2 [105]. With the right
preconditioning, flexible variants of the GMRES method, i.e., methods which
allow the preconditioner to change each step, may be developed [40, 102, 123].

In a rough sense, the preconditioner operator Pv needs to approximate
the product A−1v to be effective. On the other hand, the operations on P
must be inexpensive to compute. The two requirements are often in conflict,
and therefore finding a good preconditioner may be challenging.

In the following, we consider preconditioning by incomplete factorizations
and approximate inverses in more detail. Another commonly used technique



14 CHAPTER 1. INTRODUCTION

is to use a basic iterative method, such as SOR, SSOR [135] or ADI [125], as
a preconditioner. When a flexible Krylov subspace method such as FGMRES
or GMRESR is used, another Krylov subspace method such as the restarted
GMRES can be used as a preconditioner. Also MG methods can be used as
preconditioners [7]. For other types of preconditioners and a more complete
list of references, see [7] and references therein.

An incomplete LU -decomposition (ILU) is one of the most commonly
used and effective preconditioning techniques. By computing the LU -decom-
position approximately, the factorization and memory costs can be reduced.
We then have

A ≈ L̄Ū , (1.23)

where the ILU -factors L̄ and Ū denote sparse approximations of the actual
LU -factors L and U of the matrix A. With the ILU -decomposition (1.23),
we have the preconditioner as A−1 ≈ P = Ū−1L̄−1. As with the standard
LU -decomposition, an efficient parallelization of the ILU -decomposition may
be difficult due to the serial nature of the factorization process.

The sparsity of the ILU -factors is usually ensured by either selecting the
sparsity structures for L̄ and Ū beforehand or by constructing the factors
by using numerical dropping, i.e., discarding the small entries as the LU -
decomposition is being computed. Compared to the standard LU -decompo-
sition, not even pivoting ensures the nonsingularity of the computed ILU -
factors L̄ and Ū in the general case. Also, the location and magnitude of the
nonzero entries of the factors tends to have an effect on the quality of the
computed preconditioner.

The sparsity structures of the factors L̄ and Ū can be chosen to match
those of the lower -and upper triangular parts of A. Since no fill-in occurs,
this technique is called ILU(0) [85]. A straightforward extension of ILU(0)
is ILU(k), where k levels of fill-in are allowed to occur in the factorization
process [105].

A more sophisticated ILU -decomposition is acquired by constructing the
sparsity patterns dynamically by using numerical dropping when the ILU -
factors are computed. In ILUT [103], the entries are discarded during the
factorization process if they are deemed numerically small compared to the
other entries of the computed factorization. The memory consumption is
controlled by allowing only a certain number of entries in each column of the
computed factors.

Both ILU(k) and ILUT can produce factors which are either singular or
too ill-conditioned to be of any practical use. It has been shown in [16] and
[82], that the robustness of the ILU -decomposition is increased when the
numerical dropping is performed by estimating the norms of the inverses of



1.2. ITERATIVE METHODS 15

the factors L̄ and Ū .
With the ILU -decomposition, the preconditioner used to approximate

A−1 is constructed from a factorization which approximates the matrix A.
Another approach is to construct a preconditioner by approximating the ma-
trix A−1 directly. The approximate inverse minimization problem is defined
as

min
P∈W

||I − AP ||F (1.24)

where W denotes some sparsity structure. The minimization problem (1.24)
readily decouples into a set of columnwise minimization problems

n∑
j=1

min
pj∈Wj

||ej − Apj||22, (1.25)

where Wj denotes the sparsity structure of the jth column and ej and pj

denote the jth columns of n-by-n identity matrix and the preconditioner P ,
respectively. Applying the computed approximate inverse preconditioner P
requires only a computation of a matrix-vector product and is thus readily
parallelizable.

As with the ILU -decomposition, the sparsity structure W can be deter-
mined adaptively by using numerical dropping. Such an approach has been
proposed, for instance, when the minimization problems (1.24) and (1.25)
are solved with the minimum residual iteration [25]. In the SPAI method,
proposed by Grote and Huckle in [58], the sparsity structure W is selected
optimally. This can be computationally expensive even in a parallel envi-
ronment [9]. Another way to select sparsity patterns of good quality is to
compute them a-priori by using the powers of A and numerical dropping [24].

Also factorized approaches to computing approximate inverses of gen-
eral matrices have been suggested. In [10], Benzi and Tůma proposed a
method based on the biconjugation process for the construction of a facto-
rized approximate inverse. Assume that the matrix A has a decomposition
A = LDU , where L and U denote the unit lower -and upper triangular
matrices, respectively. Then the inverse of A can be approximated as

A−1 ≈ P = Z̄D−1W̄ , (1.26)

with Z̄ ≈ U−1 and W̄ ≈ L−1. Even though the process for computing
the decomposition (1.26) is partially sequential, the computation may be
parallelized with graph partitioning techniques [11]. For another recent ap-
proximate factored inverse approach, see [19].

A preconditioner based on either the ILU -decomposition or the approxi-
mate inverse can benefit from the scaling and reordering of the matrix. Tra-
ditionally symmetric reorderings such as Reverse Cuthill-McKee [51] have



16 CHAPTER 1. INTRODUCTION

been known to be efficient in the context of the ILU -decompositions [105].
For nonsymmetric and highly nonnormal problems, the use of nonsymmetric
reorderings, such as those presented in [37], can lead to noticeable improve-
ments in the robustness and the quality of the acquired preconditioners [8].
For an overview on the reordering techniques and their uses in precondition-
ing, see [7] and references therein.

As with iterative methods, these exists several software libraries for the
computation of preconditioners. These include, for instance ILUPACK for
ILU -decompositions [17] and ParaSails for approximate inverses [23].

1.3 Thesis outline

The rest of the thesis is organized as follows. In Chapter 2 we consider
extending the notion of a Krylov subspace assuming the linear system has
a special structure. Based on the extended subspaces, we introduce a new
iterative method, called the two-sided minimum residual method or TSM-
RES, for solving linear systems with the assumed special structure. With
numerical experiments, we then analyse the TSMRES method and relate its
convergence to that of GMRES.

In Chapter 3, we theoretically consider further generalizations of Krylov
subspaces and their uses. Chapter 4 is mostly concerned with the practical
aspects such as the implementation, complexity and numerical stability of
TSMRES. In Chapter 4, we also present a numerically stabilized implemen-
tation of TSMRES.

Restarting and preconditioning of the TSMRES method is considered
in Chapter 5. It is shown that compared to the restarted GMRES, the
restarted TSMRES is somewhat more robust, especially when the size of the
subspace is small. We also present several ways to transform a general linear
system to the form required by TSMRES and make numerical comparisons
of convergence with GMRES on the transformed systems. Related to the
preconditioning linear systems for TSMRES, in Chapter 6 we consider a
sparse direct solver for sparse linear systems of the Hessenberg form.

Finally, in Chapter 7, we consider the preconditioning of a general sparse
linear system (1.1) by a factored approximate inverse. To this end, we convert
the approximate inverse factorization problem to a nullspace approximation
problem and present an algorithm based on the power method for computing
the factors. To conclude, we present numerical experiments displaying the
effectiveness of our factorized approximate inverse approach.



Chapter 2

TSMRES - Two-Sided Minimal
Residual Method

2.1 Introduction

In this chapter, we consider solving a linear system

(I + S)x = b, (2.1)

with b ∈ Cn and S ∈ Cn×n a matrix that is readily invertible, i.e., solving
linear systems with the matrix S is inexpensive in terms of floating point
operations. Linear systems of this form appear often in practice, typically
through splitting the original matrix. For more examples of linear systems
having the form (2.1), see Section 2.4. When solving (2.1) with traditional
Krylov methods, such as GMRES, we generate a subspace containing poly-
nomials in S (or respectively S−1) applied to b. In that case, however, we do
not fully benefit from the structure of (2.1).

In [71] Huhtanen and Nevanlinna described an iterative method for solv-
ing (2.1), which takes into account that the matrix S is readily invertible.
Let x0 denote the initial approximate solution and r0 = b − (I + S)x0 the
initial residual. Then, to solve (2.1), we set q1 = r0/||r0||2 and construct
two-sided Krylov subspaces of the form

K±
j (S; q1) = span�p�,��∈Pj

{�p�(S)q1, ��(S−1)q1}, (2.2)

where Pj denotes the set of polynomials of degree j at most. By using a
Gram-Schmidt–type process, we describe how to construct an orthonormal
basis for the two-sided Krylov subspace K±

j (S; q1). We then have

SQ2j+1 = Q2j+2H̄2j+1,

17



18 CHAPTER 2. TSMRES

where Q2j+1 ∈ Cn×(2j+1) has orthonormal columns spanning (2.2) and H̄j ∈
C(2j+2)×(2j+1) has a Hessenberg-like structure.

With the two-sided Krylov subspaces K±
j (S; q1), we describe a minimum

residual approach for approximately solving (2.1). Denote by ⌈·⌉ ceiling to an
integer. At the mth step of iteration, m odd, a correction zm for the iterate
xm = x0 + zm is determined in the two-sided Krylov subspace K±

⌈m
2
⌉(S; q1) by

solving the least-squares problem

min
v∈K±⌈m

2 ⌉
(S;q1)

||b− (I + S)(x0 + v)||2. (2.3)

In this sense, the resulting iteration, called the two-sided minimal residual
(TSMRES) method, is optimal in K±

⌈m
2
⌉(S; q1). The proposed minimum resid-

ual approach is similar to the one used in the generalized minimal residual
(GMRES) method of Saad and Schultz [106], except that the standard Krylov
subspace Km+2(S; q1), based on polynomials in S (or S−1), is replaced with
the two-sided Krylov subspace K±

⌈m
2
⌉(S; q1), based on polynomials in both S

and S−1.
In our approach, the polynomials �p� and �� in S and S−1 in the two-sided

Krylov subspace K±
⌈m

2
⌉(S; q1) are always chosen to be of equal degree. We note

that there are no theoretical obstructions to choose �p� and �� to be of different

degree. Such an approach could be applied in the cases where, for instance,
operations with S−1 are computationally significantly more demanding than
operations with S.

Due to rounding errors, numerical computation of the two-sided Krylov
subspaces is a delicate matter. We demonstrate that without modifications,
the implementation for the construction given in [71] is not numerically stable
in certain cases. For clarity, we postpone the presentation of the numerically
stable implementation of TSMRES to Chapter 4. In particular, all the nu-
merical examples presented in this chapter have been computed with the
numerically stabilized version of TSMRES.

After the derivation, we analyze the properties of the TSMRES method
and the constructed two-sided Krylov subspace K±

⌈m
2
⌉(S; q1). Assuming exact

arithmetic, we show that analogously to GMRES, a breakdown in the con-
struction of the two-sided subspace K±

⌈m
2
⌉(S; q1) implies that the generated

solution xm is exact. Thus, the exact solution xn is reached in ⌈n
2
⌉ iterations

for a subspace of size n at most.
Finally, at the end of this chapter, we numerically analyze the convergence

properties of TSMRES. It is shown that there are cases where convergence
of the TSMRES method is faster than that of the standard GMRES method
and vice versa.



2.2. TWO-SIDED KRYLOV SUBSPACES 19

In the context of solving large-scale Lyapunov matrix equations and com-
puting values of matrix functions, the two-sided Krylov subspaces have been
an active area of research recently, see for instance [5, 73, 74, 77, 79, 109].
In this context, the two-sided Krylov subspaces are usually called extended
Krylov subspaces.

In [109], Simoncini presents a method for the construction of extended
Krylov subspaces which differs from the construction presented in this chap-
ter. In [5] and [77], error estimates for extended Krylov subspaces are given
for a wide range of matrix functions. However, in the context of extended
Krylov subspaces, the solution of the linear system (2.1), error analysis of
the function f(x) = (1 + x)−1 or the numerical properties of the generated
subspaces in finite precision arithmetic have not been previously considered.

2.2 Orthonormal bases for two-sided Krylov

subspaces

In what follows, we describe the construction of an orthonormal basis
{q1, . . . , qm+2} for the two-sided Krylov subspace K±

⌈m
2
⌉(S; q1) by using a mod-

ified Gram-Schmidt-type process. Originally the construction was presented
in [71]. At each step of the resulting two-sided Arnoldi process, we apply
both S and S−1 once to construct a new pair of basis vectors. It follows that
the number of orthonormal basis vectors for the two-sided Krylov subspace
increases by two at each step.

We begin by choosing a vector q1 with ||q1||2 = 1. After this, we compute

q̂2 = Sq1 − (Sq1, q1)q1, q2 = q̂2/||q̂2||2. (2.4)

By rearranging the relation (2.4), we then have

Sq1 =

2∑
l=1

hl,1ql, (2.5)

with h1,1 = (Sq1, q1) and h2,1 = ||q̂2||2.
Proceeding cyclically we compute, for k odd,{
q̂k+2 = S−1qk −

∑k+1
l=1 (S−1qk, ql)ql, qk+2 = q̂k+2/||q̂k+2||2

q̂k+3 = Sqk+1 −
∑k+2

l=1 (Sqk+1, ql)ql, qk+3 = q̂k+3/||q̂k+3||2 , (2.6)

to have a new pair of basis vectors qk+2 and qk+3. With these, we now have
the orthonormal basis for the two-sided Krylov subspace as {q1, q2, . . . , qk+2}.



20 CHAPTER 2. TSMRES

Denote by tl,k and hl,k+1 the lth component of the vectors tk and hk+1,
respectively. By rearranging (2.6), we have, for k = 1, 3, . . . , m odd,

S−1qk =
k+2∑
l=1

tl,kql

Sqk+1 =

k+3∑
l=1

hl,k+1ql,

(2.7)

where tk and hk+1 are both in Ck+3 with the entries

tl,k =

{
(S−1qk, ql) , l ≤ k + 1,
||q̂k+2||2 , l = k + 2,

, (2.8)

hl,k+1 =

{
(Sqk+1, ql) , l ≤ k + 2,
||q̂k+3||2 , l = k + 3

, (2.9)

and zero otherwise. We note as the iteration proceeds, by the relations (2.8)
and (2.9), the length of the previously computed vectors tl and hl+1 with
l < k is implicitly increased as new zero elements are added to their end.

Similarly to the standard Arnoldi process, we have a matrix relation in
the generated subspace as

[Sq1 S
−1q1 Sq2 S

−1q3 Sq4 · · · S−1qk Sqk+1]
= [q1 q2 q3 q4 · · · qk+3][h1 t1 h2 t3 h4 · · · tk hk+1],

(2.10)

where the matrix Qk+3 = [q1 q2 · · · qk+3] is of size n-by-(k + 3) and has
orthonormal columns by construction. The matrix [h1 t1 h2 t3 · · · tk hk+1]
is of size (k + 3)-by-(k+ 2) and is of an upper Hessenberg form after its last
row has been deleted. Notice that the relation (2.10) does not yet yield an
Arnoldi-type relation (1.13) of either S or S−1 in the basis generated for the
two-sided Krylov subspace K±

⌈k
2
⌉(S; q1).

To represent the vector Sqk+2 in the basis generated for K±
⌈k

2
⌉(S; q1), it

remains to compute hk+2 = Q∗
k+3Sqk+2 for k = 1, 3, . . . , m odd. We then

have the lth component of hl,k+2 as

hl,k+2 = (Sqk+2, ql), l = 1, . . . , k + 3. (2.11)

The computational rules (2.4), (2.6) and (2.11) describe how to construct
an orthonormal set of basis vectors {q1, q2, . . . , qk+3} for K±

⌈k
2
⌉(S; q1) together

with a representation of the matrix S in the basis generated. This construc-
tion can also be interpreted as a two-sided Arnoldi process. Using a modified



2.2. TWO-SIDED KRYLOV SUBSPACES 21

Algorithm 2.1 Two-sided Arnoldi process

1: Choose a vector q1 with ||q1||2 = 1
2: w = Sq1, h1,1 = (w, q1), w = w − h1,1q1, h2,1 = ||w||2, q2 = w/h2,1

3: for j = 1, 2, . . . , m+1
2

do
4: w = S−1q2j−1

5: for l = 1, . . . , 2j do
6: tl,2j−1 = (w, ql), w = w − tl,2j−1ql
7: end for
8: t2j+1,2j−1 = ||w||2, q2j+1 = w/t2j+1,2j−1

9: w = Sq2j

10: for l = 1, . . . , 2j + 1 do
11: hl,2j = (w, ql), w = w − hl,2jql
12: end for
13: h2j+2,2j = ||w||2, q2j+2 = w/h2j+2,2j

14: Compute w = Sq2j+1 and hl,2j+1 = (w, ql), for l = 1, . . . , 2j + 2
15: end for

Gram-Schmidt–type orthogonalization and setting k = 2j − 1 for simplicity,
we have Algorithm 2.1.

The two-sided Arnoldi process breaks down if ||q̂k+2||2 = 0 or ||q̂k+3||2 = 0
on lines of 8 and 13 of Algorithm 2.1. Then we have a division by zero and
the next basis vector cannot be generated. Assuming that Algorithm 2.1
does not break down, we have the following proposition for the structure of
the generated subspace.

Proposition 2.1. Assume Algorithm 2.1 does not break down before the
⌈m+1

2
⌉th step has been completed. Then, with m odd, the generated set

{q1, . . . , qm+2} is an orthonormal basis of

K±
⌈m

2
⌉(S; q1) = span�p�,��∈P⌈m

2 ⌉
{�p�(S)q1, ��(S−1)q1}.

Proof. The generated set of vectors is orthonormal by construction. It re-
mains to prove that the generated vectors form a basis for the two-sided
Krylov subspace K±

⌈m
2
⌉(S; q1). We have the relation q2 = q̂2/||q̂2||q, where

q̂2 = Sq1 − h1,1q1 with h1,1 = (Sq1, q1). In addition, for k odd, we have
qk+2 = q̂k+2/||q̂k+2||2 and qk+3 = q̂k+3/||q̂k+3||2 where q̂k+2 and q̂k+3 are de-
fined by (2.6).

Denote by �p�
j

and ��
j

polynomials of degree j at most. We prove the

claim by using induction. For j = 1 we have q1 = �p�
0
(S)q1, with �p�

0
(S) = I.



22 CHAPTER 2. TSMRES

Similarly, for q2 = q̂2/||q̂2||2 we have,

q̂2 = Sq1 − h1,1q1 = S �p�
0
(S)q1 − h1,1 �p�

0
(S)q1 = �p�

1
(S)q1,

with a polynomial �p�
1
(S) of degree one. Using q1 and q2, for q3 = q̂3/||q̂3||2

yields

q̂3 = S−1q1 − t1,1�p�
0
(S)q1 − t2,1

||q̂2||2 �p�
1
(S)q1 = ˜�p�

1
(S)q1 + ��

1
(S−1)q1,

where t1,1 = (S−1q1, q1), t2,1 = (S−1q1, q2) and the polynomials ˜�p�
1
(S) and��

1
(S−1) both of degree one. We then have

span{q1, q̂2, q̂3} = span{�p�
0
(S)q1, �p�

1
(S)q1, ˜�p�

1
(S)q1 + ��

1
(S−1)q1}.

Since the dimension of span{�p�
0
(S)q1, �p�

1
(S)q1, ˜�p�

1
(S)q1 + ��

1
(S−1)q1} equals

the dimension of K±
1 (S; q1), it then follows that span{q1, q2, q3} = K±

1 (S; q1)
and the claim holds for j = 1.

We now assume that the claim holds for two-sided Krylov subspaces
K±
⌈ j
2
⌉(S; q1) for all j ≤ k odd. By construction of the subspace and the

inductive hypothesis, we then have for j = 1, 3, . . . , k odd qj+1 = �p�⌈ j
2
⌉(S)q1 + ��⌈ j

2
⌉−1

(S−1)q1,

qj+2 = �p�⌈ j
2
⌉(S)q1 + ��⌈ j

2
⌉(S

−1)q1.
.

Let tl,j and hl,j be defined by the relations (2.9) and (2.11). For qk+3 =
q̂k+3/||q̂k+3||2 we have

q̂k+3 = Sqk+1 − h1,k+1q1 −
k+2∑
l=1

hl,k+1ql

= S

(�p�⌈k
2
⌉(S)q1 + ��⌈k

2
⌉−1

(S−1)q1

)
− h1,k+1�p�

0
(S)q1

−
k+2∑

l=3,l odd

hl,k+1

(�p�⌈ l−2
2
⌉(S)q1 + ��⌈ l−2

2
⌉(S

−1)q1

)

−
k+1∑

l=2,l even
hl,k+1

(�p�⌈ l−1
2
⌉(S)q1 + ��⌈ l−1

2
⌉−1

(S−1)q1

)
, (2.12)



2.2. TWO-SIDED KRYLOV SUBSPACES 23

i.e., we can express qk+3 as �p�⌈k
2
⌉+1

(S)q1 + ��⌈k
2
⌉(S)q1. Similarly for qk+4 =

q̂k+4/||q̂k+4||2, it follows that

q̂k+4 = S−1qk+2 − t1,k+2q1 −
k+3∑
l=1

tl,k+2ql (2.13)

= S−1

(�p�⌈k
2
⌉(S)q1 + ��⌈k

2
⌉(S

−1)q1

)
− t1,k+2p0(S)q1

−
k+2∑

l=3,l odd

tl,k+2

(�p�⌈ l−2
2
⌉(S)q1 + ��⌈ l−2

2
⌉(S

−1)q1

)

−
k+3∑

l=2,l even
tl,k+2

(�p�⌈ l−1
2
⌉(S)q1 + ��⌈ l−1

2
⌉−1

(S−1)q1

)
, (2.14)

i.e., we can express qk+4 as �p�⌈k
2
⌉+1

(S)q1 + ��⌈k
2
⌉+1

(S)q1. It then follows that

span{q1, . . . , qk+2, qk+3, qk+4} = span�p�,��∈P⌈k
2 ⌉+1

{�p�(S)q1, ��(S)q1},

where Pj denotes the set of polynomials of degree j at most. Again, since the
dimension of the set span�p�,��∈P⌈k

2 ⌉+1
{�p�(S)q1, ��(S)q1} equals the dimension of

K±
⌈k

2
⌉+1

(S; q1), the span of the set {q1, . . . , qk+2, qk+3, qk+4} is equal to the span

of vectors in the two-sided Krylov subspace K⌈k
2
⌉+1(S; q1) and the induction

is complete.

As a consequence of the proof of Proposition 2.1, we have the following
corollary for the structure of the generated basis vectors.

Corollary 2.2. Let k = 1, 3, 5, . . . , m, with m odd. By the construction of
the two-sided Krylov subspace K±

⌈m
2
⌉(S; q1), the vectors qk+1 and qk+2 can be

expressed as  qk+1 = �p�⌈k
2
⌉(S)q1 + ��⌈k

2
⌉−1

(S−1)q1,

qk+2 = �p�⌈k
2
⌉(S)q1 + ��⌈k

2
⌉(S

−1)q1,

where pj and qj denote polynomials of degree j at most.

Algorithm 2.1 constructs a relation similar to the standard Arnoldi’s
method as follows.



24 CHAPTER 2. TSMRES

Proposition 2.3. Let Qm+3 = [q1 q2 · · · qm+3] be the matrix having the
orthonormal basis vectors qj of the two-sided Krylov subspace K±

⌈m
2
⌉(S; q1) as

its columns. The two-sided Arnoldi process, i.e., Algorithm 2.1, produces the
relation

SQm+2 = Qm+3H̄m+2, (2.15)

where H̄m+2 is of size (m+ 3)-by-(m+ 2).
Denote by Hm+2 the square matrix obtained after the last row of H̄m+2 =

[h1 h2 h3 h4 · · · hm+2] has been deleted. Then

Hm+2 =

2666666666666666666666666664

h1,1 h1,2 h1,3 h1,4 · · · h1,m h1,m+1 h1,m+2

h2,1 h2,2 h2,3 h2,4 · · · h2,m h2,m+1 h2,m+2

0 h3,2 h3,3 h3,4 · · · h3,m h3,m+1 h3,m+2

0 h4,2 h4,3 h4,4 · · · h4,m h4,m+1 h4,m+2

0 0 0 h5,4 · · · h5,m h5,m+1 h5,m+2

0 0 0 h6,4 · · · h6,m h6,m+1 h6,m+2

0 0 0 0
. . . h7,m h7,m+1 h7,m+2

...
...

...
...

...
...

...
...

0 0 0 0 hm+1,m−1 hm+1,m hm+1,m+1 hm+1,m+2

0 0 0 0 0 0 hm+2,m+1 hm+2,m+2

3777777777777777777777777775

,

is a Hessenberg matrix except that the entries (2j + 2, 2j) are nonzero in
general for j ≥ 1.

Proof. By writing the relation (2.5) in a matrix form we have Sq1 = Q2h1.
Similarly, from (2.7) we have the matrix form of Sqk+1 as

Sqk+1 = Qk+3hk+1. (2.16)

On the other hand, since Qk+3 has orthonormal columns, a matrix form of
(2.11) directly yields

Sqk+2 = Qk+3hk+2.

Combining expressions for Sq1, Sqk+1 and Sqk+2 for k = 1, . . . , m, we have
the relation

[Sq1 Sq2 · · · Sqm+1 Sqm+2] = [Q2h1 Q4h2 · · · Qm+3hm+1 Qm+3hm+2].

When written in a matrix form this yields SQm+2 = Qm+3H̄m+2, with
H̄m+2 = [h1 h2 · · · hm+2]. The square matrix Hm+2 obtained after deleting
the last row of H̄m+2 has a Hessenberg structure with the entries (2j+ 2, 2j)
nonzero for j ≥ 1.



2.2. TWO-SIDED KRYLOV SUBSPACES 25

If either one of the basis vectors qk+2 or qk+3 on lines 8 or 13 of Algorithm
2.1 cannot be generated, the two-sided Arnoldi process breaks down and we
have generated a minimal polynomial of S at q1. Recall that the minimal
polynomial of S at q1 is the monic polynomial �p� of the least degree satisfying�p�(S)q1 = 0. We have the following proposition.

Proposition 2.4. The two-sided Arnoldi process, i.e., Algorithm 2.1 breaks
down at step k if and only if the minimal polynomial of the matrix S at q1 is
of degree k + 1 or k + 2.

Proof. The breakdown occurs if ||q̂k+2||2 = 0 (or ||q̂k+3||2 = 0). Then the
next basis vector cannot be generated. For k + 2 this implies, by (2.6), the
relation

0 = q̂k+2 = S−1qk −
k+1∑
l=1

(S−1qk, ql)ql. (2.17)

By the Proposition 2.1 and the Corollary 2.2, we can write qj for j =
1, . . . , k + 1 in the basis generated for K±

⌈k
2
⌉(S; q1) as qj+1 = �p�⌈ j

2
⌉(S)q1 +��⌈ j

2
⌉−1

(S−1)q1 and qj+2 = �p�⌈ j
2
⌉(S)q1+ ��⌈ j

2
⌉(S

−1)q1, where �p�
j
(S) and ��

j
(S−1)

denote polynomials of �p�
j

and ��
j

in S and S−1 of degree j at most. From

(2.17), we then have �p�⌈k
2
⌉(S)q1 + ��⌈k

2
⌉(S

−1)q1 = 0.

Multiplication by S⌈
k
2
⌉ from the left yields

S⌈
k
2
⌉
(�p�⌈k

2
⌉(S)q1 + ��⌈k

2
⌉(S

−1)q1

)
= �p�

k+1
(S)q1 = 0,

where �p�
k+1

(S) denotes a polynomial in S of degree k + 1. Thus it follows

that if ||q̂k+2||2 = 0, the minimal polynomial of S at q1 is of degree k + 1,
since having a minimal polynomial of S at q1 with a degree greater than k+1
would imply ||q̂k+2||2 6= 0, which is a contradiction.

For the necessary part, consider the case �p�
k+1

(S)q1 = 0. The degree

of the polynomial cannot be any smaller that k + 1, since by the first part
of this proof the construction would have stopped at an earlier step. After
multiplication of �p�

k+1
(S)q1 from the left by S−⌈

k
2
⌉, we have�p�⌈k

2
⌉(S)q1 + ��⌈k

2
⌉(S

−1)q1 = 0.

By Corollary 2.2 it then follows that ||q̂k+2||2 = 0.



26 CHAPTER 2. TSMRES

The proof for the case ||q̂k+3||2 = 0 having the minimal polynomial of
degree k + 2 is similar.

In exact arithmetic, to have a representation of Sqk+2 in the basis gen-
erated for k = 1, . . . , m odd, it is sufficient to compute inner products with
only the first k + 3 basis vectors. This motivates the following lemma.

Lemma 2.5. In exact arithmetic the vectors Sqk+2, for k = 1, 3, . . . , m, can
be represented in the set of basis vectors {q1, . . . , qk+3}.
Proof. By the first part of the relation (2.7), after multiplying by S from the
left we have

Sqk+2 =
1

||q̂k+2||2

(
qk −

k+1∑
l=1

(S−1qk, ql)Sql

)
. (2.18)

By Proposition 2.3, the products Sqk+1 can be represented with up to k + 3
coefficients in the basis generated for k = 1, 3, . . . , m. We now show the claim
by induction. For k = 1, we have

Sq3 =
1

||q̂3||2

(
q1 −

2∑
l=1

(S−1q1, ql)Sql

)
.

Since the vector Sq2 can be represented with up to 4 coefficients in the basis
{q1, q2, q3, q4}, the vector Sq4 can be represented with 4 coefficients at most
in the same basis.

Now assume that the claim hold up to k = j−2 ≥ 1, i.e., we can represent
the products Sqj in the basis {q1, . . . , qj+1} with up to j + 1 coefficients.
By the construction of qj+3 and the latter part of the relation (2.7), for
Sqj+1 then have a representation in the basis {q1, . . . , qj+3} with up to j + 3
nonzero coefficients. Thus, for the generated basis vector qj+2, the relation
(2.18) states that the product Sqj+2 can be represented with j + 3 nonzero
coefficients at most in the basis {q1, . . . , qj+3} and the induction is complete.

We note that Lemma 2.5 enables a more efficient way of computing hk+2.
This is presented in more detail in Chapter 4.

In this section, we have described the two-sided Arnoldi method for the
construction of the two-sided Krylov subspace K±

⌈m
2
⌉(S; q1). In the following

section, we consider approximating the solution of the linear system (2.1) by
using two-sided Krylov subspaces.



2.3. DERIVATION OF TSMRES 27

2.3 Derivation of TSMRES

Denote by r0 = b−(I+S)x0 the initial residual with an initial approximation
x0 to the solution of the linear system (2.1). We first set q1 = r0/||r0||2
and then construct an orthonormal basis for the two-sided Krylov subspace
K±
⌈m

2
⌉(S; q1) with the two-sided Arnoldi process. After completing ⌈m

2
⌉ steps,

we have a matrix relation of the form (2.15).
To approximately solve the linear system (2.1), for a GMRES -type of

approach, we must construct a representation for the matrix (I + S) in the
two-sided Krylov subspace K±

⌈m
2
⌉(S; q1). By using the Proposition 2.3 and

the relation (2.15), it follows that we have a representation of (I + S) in the
basis generated for K±

⌈m
2
⌉(S; q1) as

(I + S)Qm+2 = Qm+3(Ī + H̄m+2), (2.19)

with

Ī =

[
Im+2

0 · · ·0
]
,

where Im+2 denotes an (m+ 2)-by-(m+ 2) identity matrix.
With the matrix representation (2.19), we now consider solving the mini-

mization problem (2.3) in the two-sided Krylov subspace. By again following
Huhtanen and Nevanlinna [71], for a minimal residual approach, we have

min
v∈K±⌈m

2 ⌉
(S;q1)

||b− (I + S)(x0 + v)||2

= min
ym+2∈Cm+2

||b− (I + S)(x0 +Qm+2ym+2)||2
= min

ym+2∈Cm+2
||βe1 − (Ī + H̄m+2)ym+2||2, (2.20)

where H̄m+2 and Ī as before and β = ||r0||2. To find the minimizer ym+2, we
need to solve a (m + 3)-by-(m + 2) least-squares problem. Since generally
m≪ n, finding ym+2 is computationally inexpensive and (2.20) can be solved
in K±

⌈m
2
⌉(S; q1) without a significant effort. Once the minimizer has been com-

puted, we have the approximate solution as xm = x0 + zm = x0 +Qm+2ym+2.
Again to simplify our notation, we denote k = 2j − 1. By using the

Algorithm 2.1 and equations (2.19) and (2.20), we obtain a two-sided minimal
residual algorithm, or simply TSMRES as presented in Algorithm 2.2.

Efficient implementation and computational complexity of the TSMRES
method are discussed in more detail in Section 4.3. We also briefly consider,
in Section 4.5, the numerical stability of TSMRES.



28 CHAPTER 2. TSMRES

Algorithm 2.2 TSMRES

1: Compute r0 = b− x0 − Sx0, β = ||r0||2, q1 = r0/β
2: w = Sq1, h1,1 = (w, q1), w = w − h1,1q1, h2,1 = ||w||2, q2 = w/h2,1

3: for j = 1, 2, . . . , m+1
2

do
4: w = S−1q2j−1

5: for l = 1, . . . , 2j do
6: tl,2j−1 = (w, ql), w = w − tl,2j−1ql
7: end for
8: t2j+1,2j−1 = ||w||2, q2j+1 = w/t2j+1,2j−1

9: w = Sq2j

10: for l = 1, . . . , 2j + 1 do
11: hl,2j = (w, ql), w = w − hl,2jql
12: end for
13: h2j+2,2j = ||w||2, q2j+2 = w/h2j+2,2j

14: Compute w = Sq2j+1 and hl,2j+1 = (w, ql), for l = 1, . . . , 2j + 2
15: end for
16: Compute y2m+1 = Argminy||βe1 − (Ī + H̄2m+1)y||2
17: xm = x0 +Q2m+1y2m+1

In the next sections we discuss the properties and the speed of convergence
of TSMRES. We are particularly interested in the effect of using a two-
sided Krylov subspace K±

⌈m
2
⌉(S; q1) instead of the standard Krylov subspace

Km+2(S; q1).

2.4 Algebraic properties of TSMRES

The two-sided Krylov subspace K±
⌈m

2
⌉(S; q1) used by TSMRES is different

from an equal sized standard Krylov-subspace Km+2(S; q1) used by GMRES.
Since TSMRES minimizes the residual norm in K±

⌈m
2
⌉(S; q1), it is optimal but

different from GMRES. In this section, we analyze some algebraic properties
of the two-sided Krylov subspace K±

⌈m
2
⌉(S; q1) and the TSMRES method.

By Propositions 2.1 and 2.3, the two-sided Arnoldi process, i.e., Algorithm
2.1 generates an orthonormal basis for the two-sided Krylov subspace. In
addition, it computes a matrix representation of S in the basis generated.

Consider a monic polynomial of degree k, defined as�p�
k
(x) = xk + ck−1x

k−1 + · · ·+ c1x+ c0 =
k∑

j=0

cjx
j ,



2.4. ALGEBRAIC PROPERTIES OF TSMRES 29

with coefficients cj , for j = 1, . . . , k with ck = 1. Let j be the index of the
term with nonzero coefficient cj of the smallest degree xj . We then have,
after multiplication by c−1

j S−k from the left

c−1
j S−k �p�

k
(S) = c̃0 + c̃1S

−1 + · · ·+ c̃k+(j−1)S
−k+(j+1) + S−k+j = ��

k−j
(S−1),

where ��
k−j

denotes a monic polynomial of degree k − j.

In the previous section we have assumed that we could generate the two-
sided Krylov subspace K±

⌈m
2
⌉(S; q1) by using Algorithm 2.1 up to some prede-

fined m. However, if ||q̂k+2||2 = 0 or ||q̂k+3||2 = 0, we have a division by zero
and the next basis vector cannot be generated. In TSMRES this breakdown
happens on lines 8 or 13. For this, we have the following proposition.

Proposition 2.6. Let (I+S) be nonsingular. TSMRES breaks down at step
k odd if and only if the approximate solution xk+1 (or xk+2) is exact, i.e.,
||b− xk+1 − Sxk+1||2 = 0.

Proof. When ||q̂k+2||2 = 0, Proposition 2.4 implies that the degree of the
minimal polynomial of q1 is k + 1. Then we have�p�

k+1
(S)q1 = 0, (2.21)

where �p�
k+1

(S) denotes a polynomial of S of degree k + 1. We now show

that the relation (2.21) implies the exactness of the solution xk. Observe that
the degree of polynomial �p�

k+1
(S)q1 is translation invariant. Thus we have

˜�p�
k+1

(I + S)q1 = 0, with ˜�p�
k+1

(I + S)q1 having same degree but different

coefficients than �p�
k+1

(S)q1. It then follows that

˜�p�
k+1

(I + S)q1 = 0 ⇐⇒ (I + S)−1q1 = ˜�p�
k
(I + S)q1,

where ˜�p�
k
(I + S) is of degree k. Note that having (I + S)−1q1 = ˜�p�

j
(I +

S)q1 with j < k would contradict the minimality of �p�
k+1

(S)q1. Since q1 =

r0/||r0||2 with r0 = b− (I + S)x0, we have

(I + S)−1b = x0 + ˜�p�
k
(I + S)r0,

by which we set zk = ˜�p�
k
(I + S)r0. Thus, a breakdown in the construction

of qk+2 implies the exactness of the approximate solution xk = x0 + zk.
To show the necessary condition, we start from rk = b− (I + S)(x0 + y)

and observe that ||rk||2 = 0 implies

(I + S)y = r0 ⇐⇒ (I + S)−1r0 = ˜�p�
k
(I + S)r0,



30 CHAPTER 2. TSMRES

from which we have ˜�p�
k+1

(I + S)q1 = 0. By the first part of this proof, the

degree of the minimal polynomial must be equal to k + 1, since otherwise
construction would have stopped earlier. Since the degree of a polynomial is
translation invariant, we again have that the minimal polynomial of q1 is of
the form �p�

k+1
(S)q1 = 0. By Proposition 2.4, this implies a breakdown at

step k with ||q̂k+2||2 = 0 in the construction of the two-sided Krylov subspace.

The proof for the case ||q̂k+3||2 = 0 is similar.

As a numerical example of the breakdown of TSMRES, let us look at the
following.

Example 2.1 We take a set of n linearly independent normally distributed
random vectors T = [t1, t2, . . . , tn] of length n generated with Matlab. We
then form the QR factorization of T as T = QR to obtain an orthonormal
set of basis vectors Q = [q1, q2, . . . , qn]. We construct normally distributed
random λj ∈ C, j = 1, . . . , k and define a diagonal n-times-n matrix D as

D =



λ1

. . .

λk

1
. . .

1


.

With these, we set S = QDQ∗. Since Q is unitary we have S−1 = QD−1Q∗

with D−1 diagonal. In addition, I+S has only k+1 distinct eigenvalues and
its minimal polynomial is of degree k + 2.

We set n = 100 and k = 21 and b = b̂/||b̂||2 where b̂ is a vector of all
ones of size n and S defined as above. We then solve the linear system (2.1)
with both GMRES and TSMRES. After each step, we compute the norms
of the residual ||b − (I + S)xj ||2 for both algorithms. Figure 2.1 presents
the computed relative residuals after computing subspaces Kj(I + S; b) for
GMRES and K±

⌈ j
2
⌉(S; b) for TSMRES.

From Figure 2.1 we observe that both GMRES and TSMRES break down
after the size of the subspace has reached 23, i.e., k+2. By the construction
of S, this behaviour is to be expected for GMRES [105, Proposition 6.10, pp.
171] and for TSMRES by Proposition 2.6. Note that due to finite precision
arithmetics, for both algorithms the final residual is very small, but nonzero.



2.4. ALGEBRAIC PROPERTIES OF TSMRES 31

0 5 10 15 20 25
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

||b
−

x−
S

x|
| 2/||

b|
| 2

 

 
TSMRES
GMRES

Figure 2.1: Norm of the residual for GMRES (dashed green line) and TSM-
RES (solid blue line)

In order to be able to apply the TSMRES method to a linear system of
the form (2.1), the matrix S needs to be readily invertible. We deem a matrix
as being readily invertible if solving linear systems with it is inexpensive in
terms of floating point operations. By this we mean that solving a linear
system involving a matrix is allowed to be approximately O(log(n)) times
more expensive than multiplying a vector with the same matrix. In the case
of sparse matrices, an acceptable computational complexity of solving a linear
system matrices involving readily invertible matrices is usually O(n log(n))
at most. Otherwise, the cost of forming two-sided Krylov subspaces quickly
becomes prohibitive.

In the following, we give some examples of linear systems where the struc-
ture of the form (2.1) is either directly present or becomes available after pre-
conditioning the system. In the latter case, we consider linear system Ax = c
and splitting the matrix as A = L+R, where both parts are nonsingular and
readily invertible. After preconditioning by L−1 from the left, we have (2.1)
with b = L−1c and S = L−1R readily invertible.



32 CHAPTER 2. TSMRES

Example 2.2 The most generic type of splittings are purely algebraic Gauss-
Seidel–type of splittings of the form

A = L̂+D + R̂, (2.22)

where D is a block diagonal matrix and L̂ and R̂ are strictly lower and
upper triangular block matrices. The freedom is to split the elements in the
diagonal blocks of D between the two matrices, i.e.,

L = αD + L̂, R = (1− α)D + R̂, (2.23)

with some parameter α ∈ R. After preconditioning by the matrix L, we have
S which is readily invertible in approximately O(nz(A)) operations, where
nz(A) denotes the number of nonzero elements in A.

Another type of purely algebraic splittings of the form (2.22) are k-
Hessenberg splittings. Denote by ai,j an entry at position (i, j) in the matrix
A. We define Lk as the strictly lower k-diagonal part of A having the entries

li,j =

{
ai,j , (i− k) > j
0 , otherwise

(2.24)

and similarly Rk as the strictly upper k-diagonal part of A having the entries

ri,j =

{
ai,j , (j − k) > i
0 , otherwise

, (2.25)

i.e., Lk and Rk contain those entries of A which are below and above the
kth lower and upper diagonals of A, respectively. Let D be the band matrix
with upper and lower bandwidths k having the entries of A in this band
and L̂ = Lk and R̂ = Rk. With these, by using the relation (2.23), we
have a splitting where L and R are lower and upper k-Hessenberg matrices,
respectively.

In Chapter 6 we consider a direct method for the solution of sparse k-
Hessenberg linear systems in O((k+1)nz(A)) floating point operations, where
nz(A) denotes the number of nonzero elements in A as before. Therefore,
after preconditioning by the matrix L, we have S which is readily invertible
in O((k + 1)nz(A)) operations.

Example 2.3 Scattering problems in two and three dimensions for the Helm-
holz equation in the inhomogeneous media are equivalent to the Lippmann-
-Schwinger integral equations [118]. In a matrix form, the discretized equa-
tions can then be written as

(I + S)x = b, S = DaF−1
n K̂nFn,



2.5. THEORETICAL CONVERGENCE 33

where Da and K̂n are diagonal matrices and Fn is the Fourier basis matrix.
Using fast Fourier transform, S is readily invertible in O(n log(n)) operations.

Example 2.4 In ADI-type of iterations for two dimensional elliptic equations
with separable coefficients, a discretization in a grid is split into x- and y-
directions as

(H + V )x = c

where matrix H is block diagonal matrix with tridiagonal blocks and matrix
V is block tridiagonal with diagonal blocks (or vice versa if the ordering on
the grid is reversed) [105, 111, 112]. Then, after preconditioning from the
left by H , we have S which is readily invertible in O(n) operations. We note
that ADI methods seem to have an interesting connection to the solution of
Lyapunov matrix equations, see [41, 127].

Example 2.5 Linear systems of the form (λI+M)x = b with a shift param-
eter λ ∈ C often arise in eigenvalue computations. For a symplectic matrix
M of size 2n-by-2n, we have

MJMT = J

with

J =

(
0 In
−In 0

)
,

where In denotes an n-by-n identity matrix. For the inverse of J it holds
J−1 = JT = −J , so M−1 = −JMTJ and therefore M is readily invertible.
Symplectic matrices arise typically in Hamiltonian mechanics. In numerical
computations involving symplectic operators, it is advisable to use symplec-
tic numerical methods to numerically preserve physical properties such as
Hamiltonian flow on the manifold [44].

For other examples of splittings with readily invertible parts we refer to
[71].

2.5 Theoretical convergence of TSMRES

In this section, we consider the convergence properties of TSMRES. In addi-
tion to studying convergence theoretically, we conduct numerical experiments
to compare the two-sided Krylov subspaces K±

⌈m
2
⌉(S; q1) with the standard

Krylov subspaces Km+2(S; q1) used by GMRES.



34 CHAPTER 2. TSMRES

We begin by deriving a standard upper bound on the norm of the residual
of TSMRES.

Proposition 2.7. Let S be diagonalizable with S = XDX−1. For the resid-
ual norm of TSMRES we then have

min
v∈K±⌈m

2 ⌉
(S;q1)

||b− (I + S)v||2 ≤

min�p�,��∈P⌈m
2 ⌉

max
λ∈σ(S)

|1− (1 + λ)(�p�(λ) + ��(λ−1))| κ(X)||r0||2,
(2.26)

where Pj denotes the set of polynomials of degree j at most, σ(S) the spectrum
of S and κ(X) = ||X||2||X−1||2 the condition number of X.

Proof. We verify the claim by a direct calculation. It follows that

min
v∈K±⌈m

2 ⌉
(S;r0)

||b− (I + S)v||2

= min�p�,��∈P⌈m
2 ⌉
||b− (I + S)(�p�(S) + ��(S−1))b||2

= min�p�,��∈P⌈m
2 ⌉
||X(I − (I +D)(�p�(D) + ��(D−1)))X−1b||2

≤ min�p�,��∈P⌈m
2 ⌉
||X||2||I − (I +D)(�p�(D) + ��(D−1))||2||X−1||2||b||2

= min�p�,��∈P⌈m
2 ⌉
||I − (I +D)(�p�(D) + ��(D−1))||2κ(X)||b||2.

(2.27)

Since I − (I +D)(�p�(D) + ��(D−1)) is diagonal, by the definition of the two-

norm we have

||I − (I +D)(�p�(D) + ��(D−1))||2 = max
λ∈σ(S)

|1− (1 + λ)(�p�(λ) + ��(λ−1))|,

and the claim follows.

We note that by the third line of the proof of Proposition 2.7, with the
choice �� ≡ 0 we have the standard GMRES residual norm for a Krylov

subspace of size 2m+ 1 and the following corollary follows.

Corollary 2.8. For the residual vectors rts2m of TSMRES and r
gm
m of GMRES

it holds
||rts2m||2 ≤ ||rgmm ||2, (2.28)

i.e, the residual norm of TSMRES at the step 2m is at least as good as that
of GMRES at the step m.



2.5. THEORETICAL CONVERGENCE 35

The Proposition 2.7 and the Corollary 2.8 relate the residual of TSMRES
to the residual of standard GMRES. However, since S is readily invertible,
we can equally well consider solving the right-preconditioned linear system

(I + S−1)y = b, x = S−1y.

Then we have the residual as r = b − (I + S−1)y = b − (I + S−1)Sx =
b − (I + S)x, which is identical to the original unpreconditioned residual.
Similarly to (1.16), at the mth step of iteration, a correction zm for the
iterate ym = y0 + zm is determined in the Krylov subspace Km(S−1; q1) by
solving a minimization problem

min
v∈Km(S−1;r0)

||b− (I + S−1)(y0 + v)||2,

with q1 = r0/||r0||2 and the initial residual r0 = b− (I +S−1)y0. Multiplying
the computed approximate solution ym by S−1 from the left yields

S−1ym = S−1y0 + S−1zm ⇐⇒ xm = x0 + S−1zm.

after using xm = S−1ym. We denote this right-preconditioned GMRES as
GMRES−S−1, since it generates the subspace Km(S−1; q1).

We now observe that after setting �p� ≡ 0 in the third line of the proof of

Proposition 2.7, we have GMRES−S−1 residual for subspace of size 2m+ 1.

Corollary 2.9. For the residual vectors rts2m of TSMRES and r
gm−S−1

m of
GMRES−S−1, it holds

||rts2m||2 ≤ ||rgm−S−1

m ||2, (2.29)

i.e, the residual norm of TSMRES at the step 2m is at least as good as that
of GMRES−S−1 at the step m.

Recall that in the case S is not diagonalizable, or when the degree of
nonnormality is not mild, i.e., κ(X) is large, for GMRES the relation (1.17)
states that the eigenvalues may not provide a good estimate of the rate of
convergence. Several alternatives to assess the speed of convergence have
been proposed [33]. In the general case, however, the spectrum may not give
any useful information at all, see [56].

For TSMRES similar conclusion apply. From Proposition 2.7 we observe
that in the case κ(X) is not small, bound (2.26) is of little value in practice.
With TSMRES, we do not pursue the other approaches any further.



36 CHAPTER 2. TSMRES

2.6 Numerical illustrations of the polynomial

approximation problem

In studying the convergence properties of the two-sided Krylov subspaces,
understanding the approximation problem

min�p�,��∈P⌈m
2 ⌉

max
λ∈σ(S)

|1− (1 + λ)(�p�(λ) + ��(λ−1))| (2.30)

is of importance. It is challenging to construct direct theoretical estimates
to the approximation problem (2.30). For any �p� and ��, we can write

max
λ∈σ(S)

|1− (1 + λ)(�p�(λ) + ��(λ−1))|

= max
λ∈σ(S)

|(1 + λ)(
1

1 + λ
− (�p�(λ) + ��(λ−1)))|

≤ max
λ∈σ(S)

|( 1

1 + λ
− (�p�(λ) + ��(λ−1)))||(1 + λ)|

(2.31)

Set M = maxλ∈σ(S) |(1 + λ)|. Then

min�p�,��∈P⌈m
2 ⌉

max
λ∈σ(S)

|1− (1 + λ)(�p�(λ) + ��(λ−1))|

≤M min�p�,��∈P⌈m
2 ⌉

max
λ∈σ(S)

|( 1

1 + λ
− (�p�(λ) + ��(λ−1)))|.

(2.32)

Denote by S2 the Riemann Sphere, i.e., the set containing R2 and {∞}
and by f ∈ H(U) the class of all holomorphic functions f in U . We now
recall the Runge’s theorem, stated as in Rudin [98, pp. 270].

Theorem 2.10. Suppose K is a compact set in the plane and {αj} is a set
which contains one point in each component of S2 \K. If Ω is open, Ω ⊃ K,
f ∈ H(Ω), and ǫ > 0, there exists a rational function R, all of whose poles
lie in the prescribed set {αj}, such that

|f(λ)−R(λ)| ≤ ǫ (2.33)

for every λ ∈ K
We now assume that the discrete spectrum σ(S) is replaced by a compact

set K including σ(S). Since S is assumed to be invertible, we require 0 /∈ K.
Then the bound (2.32) used with Runge’s theorem gives some insight into
the convergence properties of TSMRES.



2.6. NUMERICAL ILLUSTRATIONS OF CONVERGENCE 37

Let f(λ) = 1/(1 + λ). When the points −1 and 0 belong to the same
component of S2 \K, we can set α1 as 0 and α2 as ∞ to have a point in the
components of S2 \K where there is a pole of f . Then, by Runge’s theorem
approximation by a rational function is feasible.

Similarly, when −1 and ∞ belong to the same component of S2 \K, we
can approximate f with polynomials. Otherwise Runge’s theorem cannot be
applied and the approximation by a rational function p(z) + q(z−1) cannot
be guaranteed.

These theoretical convergence results are concerned only with the case
of continuum. In practice, S2 \ K contains only one component. In the
following, we attempt to gain insight in the convergence properties of TSM-
RES by numerical experiments.

We choose S to be a diagonal matrix and set its eigenvalues to match
the case of interest. Then, by the equation (2.27), for a similar matrix Ŝ =
XSX−1 the convergence behaviour is similar when the condition number of
the similarity transformation matrix X is reasonable.

Denote by 1 a vector of all ones. In our experiments, we numerically solve
linear system (2.1) with a fixed right-hand side b = 1/||1||2 and compare the
residual norms of GMRES, GMRES preconditioned with S−1 and TSMRES.
The initial approximation for the solution was set as x0 = 0n, i.e., a vector
of all-zeroes, in all of the examples.

Concerning subspaces, with the standard GMRES, approximations are
generated from the Krylov subspaces Kj(S; b), whereas GMRES precondi-
tioned with S−1 from the right (here denoted as GMRES-S−1), uses Krylov
subspaces of the form Kj(S

−1; b). With TSMRES approximations are gener-
ated from the two-sided Krylov subspaces K±

⌈ j
2
⌉(S; b). For both the standard

and two-sided Krylov subspaces, we have a representation for I + S (or
I+S−1) in the basis generated by adjoining identity matrix to the upper left
corner of the representation obtained for S (or S−1).

To generate cases of interest, we randomize sets of points with a prede-
fined shape in the complex plane. In the following, we denote by Uk(a, b) a
set of k random numbers from uniform distribution in the interval (a, b), i.e.,

Uk(a, b) = {x | x ∈ (a, b), P (x) = 1/(b− a)}, (2.34)

where P (x) denotes the probability of x.
Our motivation for using sets of points from the uniform distribution is

based on emulating continuous clusters of eigenvalues. By using uniformly
distributed sets within some shape, we aim to construct a well-behaving gen-
eral case. For GMRES it is well known that eigenvalues separated from the
rest of the spectrum may slow down convergence [33, 91]. Also, since we



38 CHAPTER 2. TSMRES

are minimizing a discrete spectrum, it is well-known that the multiplicities
of the eigenvalues matter [33]. We note that in [33] it was shown that us-
ing random points from the uniform distribution on some interval provides
slightly better convergence than using points from the Chebyshev distribu-
tion, for instance. The reported difference between the two-distributions was
not drastic, though.

By the convergence theory of GMRES and by Proposition 2.7 for TSM-
RES, the convergence of the methods is linked to the polynomial approxi-
mation problem on the spectrum of S. Therefore, for each test case, we plot
the eigenvalues approximated with the Arnoldi and the two-sided Arnoldi
methods.

Denote by x
gm
m , x

gm−S−1

m and xtsm the approximate solutions generated
by GMRES, GMRES-S−1 and TSMRES, respectively. We monitor the con-
vergence of the methods by computing the residual norms r

gm
m = ||b− (I +

S)x
gm
m ||2, rgm−S−1

m = ||b − (I + S)x
gm−S−1

m ||2 and rtsm = ||b − (I + S)xtsm ||2
from scratch at each step of the iteration. For each test case, we plot the
computed residual norms in a logarithmic scale (y-axis) versus the subspace
size (x-axis).

First we consider cases where spectrum of S lies on the real axis.

Example 2.6 We choose σ(S) to be contained in the interval (1, 99) on the
real line. To this end, we set σ(S) = Un(1, 99) with n = 4000.

The spectrum approximated with the standard Arnoldi and two-sided
Arnoldi for a subspace of size 61 and the convergence of GMRES, GMRES-
S−1 and TSMRES are shown in Figure 2.2.

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

 

 
Arnoldi
Two−sided Arnoldi

(a) Computed spectrum
0 10 20 30 40 50 60 70

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 
GMRES

GMRES−S−1

TSMRES

(b) Residual norm

Figure 2.2: Example 2.6, approximated spectrum and convergence

Since σ(S−1) is tightly clustered on the interval (1/99, 1), approximation



2.6. NUMERICAL ILLUSTRATIONS OF CONVERGENCE 39

by polynomials in S−1 is efficient and we can expect GMRES-S−1 to con-
verge rapidly. On the other hand, since σ(S) is not very clustered, accurate
approximation requires high degree polynomials in S. However, since the
matrix S is symmetric positive definite, minimum residual methods, such as
GMRES converge, see [105, Theorem 5.10, pp. 141]. The convergence speed
can be slow, however. As expected, TSMRES converges between the two
extremes, using a subspace about twice the size of GMRES preconditioned
with S−1 to achieve a residual of the same magnitude.

Example 2.7 We choose to σ(S) be contained in the interval (0, 2) on the
real line by setting σ(S) = Un(0, 2) with n = 4000. Approximated spectrum
for a subspace of size 81 and the convergence of the methods are shown in
Figure 2.3.

0 0.5 1 1.5 2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

 

 
Arnoldi
Two−sided Arnoldi

(a) Computed spectrum
0 10 20 30 40 50 60 70 80 90

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 
GMRES

GMRES−S−1

TSMRES

(b) Residual norm

Figure 2.3: Example 2.7, approximated spectrum and convergence

The spectrum of S is clustered in the interval (0, 2) and thus approxima-
tion by polynomials in S is feasible. On the other hand, for S−1, we have
σ(S−1) ∈ {λ | λ ∈ (1/2,∞)}, and therefore approximation by polynomials
in S−1 requires polynomials of high degree. However, as in the previous ex-
ample, since the matrix S−1 is positive definite GMRES-S−1 is guaranteed
to converge, although slowly. We observe the convergence speed of GMRES-
S−1 to be much worse than that of the standard GMRES. Again, TSMRES
converges at slightly slower pace than GMRES, but faster than GMRES-S−1.

Example 2.8 We let σ(S) to contain two isolated regions on the real line
with σ(S) ∈ {λ | λ ∈ (−20,−20/19) ∪ λ ∈ (20/19, 20)} by setting σ(S) =



40 CHAPTER 2. TSMRES

Un(−20,−20/19) ∪ Un(20/19, 20) with n = 2000. Figure 2.4 shows the the
convergence and the approximated eigenvalues for a subspace of size 81.

−20 −15 −10 −5 0 5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

 

 
Arnoldi
Two−sided Arnoldi

(a) Computed spectrum
0 10 20 30 40 50 60 70 80 90

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 
GMRES

GMRES−S−1

TSMRES

(b) Residual norm

Figure 2.4: Example 2.8, approximated spectrum and convergence

For the spectrum of S−1 we have σ(S−1) ∈ {λ | λ ∈ (−19/20,−1/20) ∪
λ ∈ (1/20, 19/20)}, so the spectral radius of S−1 smaller than that of S.
Since the spectrum is on the real line, we can then expect to be able to
approximate the solution more efficiently with polynomials in S−1 than with
polynomials in S. From the numerical experiments we can conclude that
for this example the GMRES-S−1 method converges much faster than the
standard GMRES. In this case the TSMRES method requires approximately
two times more iterations than GMRES-S−1 to achieve a residual norm of
the same magnitude.

Example 2.9 In this example, we set σ(S) to contain a line in the proximity
of the origin σ(S) ∈ {λ | λ ∈ (−19/20, 19/20), λ 6= 0} by setting σ(S) =
Un(−19/20, 0) ∪ Un(0, 19/20) with n = 2000. The approximated spectrum
for a subspace of size 81 and the convergence of the methods are shown in
Figure 2.9.

The spectrum of S is clustered around the origin with the spectral radius
slightly smaller than one, so σ(I+S) does not surround the origin. Then the
approximation by polynomials in S is efficient and we can expect GMRES
to converge. On the other hand, for the spectrum of S−1 it holds σ(S−1) ∈
{λ | λ ∈ (−∞,−20/19) ∪ λ ∈ (20/19,∞)}, i.e., the spectrum of S−1 is
scattered over the real line excluding the interval (−20/19, 20/19). Thus,
since σ(I + S−1) surrounds the origin, the approximation by polynomials in
S−1 is not efficient and we can expect GMRES-S−1 to perform poorly. The
TSMRES method requires almost twice as many iterations as GMRES to



2.6. NUMERICAL ILLUSTRATIONS OF CONVERGENCE 41

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

 

 
Arnoldi
Two−sided Arnoldi

(a) Computed spectrum
0 10 20 30 40 50 60 70 80 90

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 
GMRES

GMRES−S−1

TSMRES

(b) Residual norm

Figure 2.5: Example 2.9, approximated spectrum and convergence

achieve a similar residual, but still converges much faster than GMRES-S−1.

Example 2.10 In the last example to involve a spectrum on the real line,
we construct the spectrum of S as σ(S) ∈ {λ | λ ∈ (−10, 10), λ 6= 0} by
setting σ(S) = Un(−10, 0) ∪ Un(0, 10) with n = 500. Figure 2.10 shows the
results and the approximated spectrum for a subspace of size 301.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

 

 
Arnoldi
Two−sided Arnoldi

(a) Computed spectrum
0 50 100 150 200 250 300 350

10
−15

10
−10

10
−5

10
0

 

 
GMRES

GMRES−S−1

TSMRES

(b) Residual norm

Figure 2.6: Example 2.10, approximated spectrum and convergence

For the spectrum of S−1 we have σ(S−1) ∈ {λ | λ ∈ (−∞,−1/10) ∪ λ ∈
(1/10,∞)}. Since the eigenvalues of S are evenly distributed in the interval
(−10, 10), most eigenvalues of S−1 are clustered in the sets (−1,−1/10) and
(1/10, 1). Therefore, once the approximations to the outermost eigenvalues
are complete, polynomials in S−1 can be efficiently used and we can expect



42 CHAPTER 2. TSMRES

GMRES-S−1 to converge rapidly. On the other hand, the spectrum of S is
very scattered and approximation by polynomials in S is difficult. Again,
TSMRES converges faster than GMRES, requiring about a third more itera-
tions when compared to GMRES-S−1 to achieve a residual norm of the same
magnitude.

The next two examples are concerned with cases where the spectrum of
S is purely imaginary.

Example 2.11 We construct the spectrum of S as σ(S) ∈ {λ | λ ∈ (i, 100i)}
by setting σ(S) = Un(1, 100)i with n = 4000. Figure 2.7 shows the results
and the approximated spectrum for a subspace of size 81

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

0

10

20

30

40

50

60

70

80

90

100

 

 
Arnoldi
Two−sided Arnoldi

(a) Computed spectrum
0 10 20 30 40 50 60 70 80 90

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 
GMRES

GMRES−S−1

TSMRES

(b) Residual norm

Figure 2.7: Example 2.11, approximated spectrum and convergence

The conclusions are almost similar to those of Example 2.6. Since σ(S) is
not tightly clustered and the spectral radius of S is large, high order polyno-
mials in S are required and the convergence speed of GMRES is slow. On the
other hand, for the spectrum of S−1 we have σ(S−1) ∈ {λ | λ ∈ (−i/100,−i)}
and the approximation by low degree polynomials in S−1 is feasible. Thus
the GMRES-S−1 can be expected to converge rapidly. The TSMRES method
convergences quite rapidly, requiring about a third more iterations than
GMRES-S−1 to achieve a residual norm of the same magnitude.

Example 2.12 We construct the spectrum of the matrix S as σ(S) ∈ {λ | λ ∈
(−10i, 0) ∪ λ ∈ (0, 10i)} by setting σ(S) = Un(−10, 0)i ∪ Un(0, 10)i with
n = 500. The spectrum approximated with a subspace of size 161 and the
convergence of the methods are shown in Figure 2.8.

The convergence is very similar to that of Example 2.6. For S−1 we
have σ(S−1) ∈ {λ | λ ∈ (−∞,−i/10) ∪ λ ∈ (i/10,∞)}, but again the most



2.6. NUMERICAL ILLUSTRATIONS OF CONVERGENCE 43

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−10

−8

−6

−4

−2

0

2

4

6

8

10

 

 
Arnoldi
Two−sided Arnoldi

(a) Computed spectrum
0 20 40 60 80 100 120 140 160 180

10
−15

10
−10

10
−5

10
0

 

 
GMRES

GMRES−S−1

TSMRES

(b) Residual norm

Figure 2.8: Example 2.12, approximated spectrum and convergence

eigenvalues of S−1 are clustered in the sets (−i,−i/10) and (i/10, i). The
convergence of TSMRES is quite similar to that of GMRES-S−1, although
almost a third more iterations are required to achieve a residual of the same
order of magnitude.

In the following examples, we consider cases where the spectrum of S is
on a circle of radius r with a midpoint α in the complex plane. The circle
can be parameterized as

{λ | λ = α+ rei2πθ, θ ∈ (0, 1)}. (2.35)

Example 2.13 We let the spectrum of S to lie on a circle centered at the
origin with a radius 2. To this end, we set α = 0, r = 2, n = 4000,
θ = Un(0, 1) and use the parametrization (2.35) to construct σ(S). The
spectrum approximated with a subspace of size 81 and the convergence of
the methods are shown in Figure 2.9.

For S−1 we have σ(S−1) ∈ {λ | λ ∈ 1
2
e−i2πθ}, i.e., the spectral radius

of S−1 is smaller than one. Then σ(I + S−1) does not surround the origin
and approximation by polynomials in S−1 can be expected to be successful.
Therefore GMRES-S−1 can be expected to converge. On the other hand,
since σ(I+S) surrounds the origin, approximation by low degree polynomials
in S is not possible. In practice the GMRES method does not converge before
the nth step.

By Theorem 2.10, approximation by a polynomial in both S and S−1 is
can be expected to be successful. The TSMRES method converges, requiring
twice the number of iterations when compared to GMRES-S−1 to achieve a
residual norm of the same magnitude. Such behaviour is due to the minimal
residual property of TSMRES in the two-sided subspace K±

⌈m
2
⌉(S; b). Since in



44 CHAPTER 2. TSMRES

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 
Arnoldi
Two−sided Arnoldi

(a) Computed spectrum
0 10 20 30 40 50 60 70 80 90

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 
GMRES

GMRES−S−1

TSMRES

(b) Residual norm

Figure 2.9: Example 2.13, approximated spectrum and convergence

the approximation problem (2.30), only polynomials in S can be interpreted
to be of use, we can expect the convergence speed to be roughly halved when
compared to that of GMRES-S−1.

Example 2.14 We now reverse the situation of the previous example, i.e.,
we let the spectrum of S to lie on a circle centered at the origin with a radius
1/2. We set α = 0, r = 1/2, n = 4000, θ = Un(0, 1) and again use (2.35) to
construct σ(S). The spectrum approximated with a subspace of size 81 and
the convergence of the methods are shown in Figure 2.10.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 
Arnoldi
Two−sided Arnoldi

(a) Computed spectrum
0 10 20 30 40 50 60 70 80 90

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 
GMRES

GMRES−S−1

TSMRES

(b) Residual norm

Figure 2.10: Example 2.14, approximated spectrum and convergence

As expected, the situation of Example 2.13 is reversed as suggested by
the theory. Since the spectral radius of S is smaller than one, σ(I + S) does
not surround the origin and an approximation by a low degree polynomials



2.6. NUMERICAL ILLUSTRATIONS OF CONVERGENCE 45

in S can be expected to be successful. Therefore GMRES can be expected
to converge. On the other hand, since σ(I + S−1) surrounds the origin,
approximation by polynomials in S−1 cannot be expected to be efficient and
GMRES-S−1 does not converge. When compared to GMRES, TSMRES
requires twice the number of iterations to achieve a residual norm of the
same magnitude.

In the extreme case, an approximation with polynomials of low degree is
not efficient at all, as shown by the following example.

Example 2.15 We now let the spectrum of S to be on an unit circle. To this
end, we set α = 0, r = 1, n = 4000, θ = Un(0, 1) and use the equation (2.35)
to construct σ(S). The spectrum approximated with a subspace of size 81
and the convergence of the methods are shown in Figure 2.11.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 
Arnoldi
Two−sided Arnoldi

(a) Computed spectrum
0 10 20 30 40 50 60 70 80 90

10
−0.9

10
−0.8

10
−0.7

10
−0.6

10
−0.5

10
−0.4

10
−0.3

10
−0.2

 

 
GMRES

GMRES−S−1

TSMRES

(b) Residual norm

Figure 2.11: Example 2.15, approximated spectrum and convergence

As shown by Figure 2.11, in this case GMRES, GMRES-S−1 and TSM-
RES perform equally poorly and all nearly stagnate. Since both σ(I+S) and
σ(I+S−1) nearly surround the origin, polynomials in S or in S−1 apparently
cannot be efficiently used for approximation. Thus the convergence speed is
very slow for all the methods and virtually no convergence to a solution is
acquired before the nth step of iteration is reached.

Summarizing the results of Examples 2.13, 2.14 and 2.15 for r > 1
GMRES-S−1 has the fastest convergence among the three methods. Re-
spectively, for r < 1, GMRES is the fastest of the three methods. In the
particular examples, the performance of TSMRES is always between GM-
RES and GMRES-S−1, with r = 1 being the special case where all methods
give equal results.



46 CHAPTER 2. TSMRES

We now consider generalizations of the previous examples, i.e., cases
where the spectrum of S is a disc (or a set of discs) with a midpoint α
and radius r in the complex plane. In the following, we denote by γ(α, r) =
{z | |z−α| ≤ r} a set of points α inside a disc with a radius r in the complex
plane. In the numerical examples, σ(S) is constructed to belong to

{λ |λ = p+ r0e
i2πθ, r0 ∈ (0, r], θ ∈ (0, 1)}. (2.36)

Example 2.16 In this example, we let the spectrum of S to lie on a disc on
the upper left half plane with the midpoint 2+2i and radius 1. To construct
σ(S), we use (2.36) with r = Un(0, 1), θ = Un(0, 1), α = 2+2i and n = 4000.
The spectrum approximated with a subspace of size 61 and the convergence
of the methods are shown in Figure 2.12.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

 

 
Arnoldi
Two−sided Arnoldi

(a) Computed spectrum
0 10 20 30 40 50 60 70

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 
GMRES

GMRES−S−1

TSMRES

(b) Residual norm

Figure 2.12: Example 2.16, approximated spectrum and convergence

The results are very similar to those of Example 2.6. The matrices S and
S−1 are positive definite, with both S−1 and S having the spectrum that is
tightly clustered. Again, by [105, Theorem 5.10, pp. 141], both GMRES and
GMRES-S−1 can be expected to converge.

For this example, all of the methods converge in very few iterations. The
convergence of GMRES-S−1 is slightly faster than that of standard GM-
RES due to better clustering of the eigenvalues of S−1 near the origin. The
TSMRES method converges a slightly slower than the GMRES-S−1 method,
requiring a third more iterations to achieve a residual norm of the same
magnitude.

Example 2.17 In this example, we let the spectrum of S to lie on a disc on
the upper left half plane similarly to the previous example, but modify the



2.6. NUMERICAL ILLUSTRATIONS OF CONVERGENCE 47

location and the radius of the disc. To construct σ(S), we set r = Un(0, 1/4)
and θ = Un(−15/16, 15/16)/2, α = 0 and n = 4000 and use the equation
(2.36). The spectrum approximated with a subspace of size 61 and the
convergence of the methods are shown in Figure 2.13.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

 

 
Arnoldi
Two−sided Arnoldi

(a) Computed spectrum
0 10 20 30 40 50 60 70

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 
GMRES

GMRES−S−1

TSMRES

(b) Residual norm

Figure 2.13: Example 2.17, approximated spectrum and convergence

The situation of the previous example is now reversed, similarly as in
Example 2.7 related to Example 2.6. Again, since S is positive definite, both
GMRES and GMRES-S−1 can be expected to converge. As expected, in this
example, the standard GMRES is the fastest method. TSMRES is slightly
slower than GMRES, requiring a third more iterations to achieve a residual
norm of the same magnitude.

Example 2.18 We now consider an extension of Example 2.13 by setting the
spectrum of S to form a ring around the origin, i.e., σ(S) ∈ {λ ∈ σ(S) | λ ∈
{γ(p0, r2) \ γ(p0, r1)}}. In order to construct σ(S), we use (2.36) with r0 =
(r1, r2) by choosing r0 = Un(r1, r2) and θ = Un(0, 1) with α = 0, r1 = 1,
r2 = 20, and n = 4000. The spectrum approximated with a subspace of size
81 and the convergence of the methods are shown in Figure 2.14.

Since σ(I+S) surrounds the origin, polynomials in S cannot be expected
to be used efficiently. Therefore this example is very difficult for the standard
GMRES, which nearly stagnates. On the other hand, σ(I + S−1) does not
surround the origin and the approximation by polynomials in S−1 can be ex-
pected to be efficient. Therefore GMRES-S−1 can be expected to converge.
Since polynomials in S are not very useful, the TSMRES method requires
twice the number of iterations to achieve a residual norm of the same magni-
tude, when compared to GMRES-S−1. Therefore the situation is analogous
to that of Example 2.13.



48 CHAPTER 2. TSMRES

−20 −15 −10 −5 0 5 10 15 20

−20

−15

−10

−5

0

5

10

15

20

 

 
Arnoldi
Two−sided Arnoldi

(a) Computed spectrum
0 10 20 30 40 50 60 70 80 90

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 
GMRES

GMRES−S−1

TSMRES

(b) Residual norm

Figure 2.14: Example 2.18, approximated spectrum and convergence

Example 2.19 We construct the spectrum of S to belong to a set of discs
symmetrically aligned about the origin in each quadrant of the complex plane,
i.e., σ(S) ∈ {λ ∈ σ(S) | λ ∈ γ(α1, r)∪λ ∈ γ(α2, r)∪λ ∈ γ(α3, r)λ ∈ γ(α4, r)}.
For each disc, we set radius r = 1 and choose the midpoints of the discs as
α1 = 2 + 2i, α2 = −2 + 2i, α3 = −2 − 2i, α4 = 2 − 2i. Using (2.36) with
r0 = Un(0, r), θ = Un(0, 1) and n = 1000 we form σ(S) as the union of the
four discs of eigenvalues.

The spectrum approximated with a subspace of size 81 and the conver-
gence of the methods are shown in Figure 2.15.

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

 

 
Arnoldi
Two−sided Arnoldi

(a) Computed spectrum
0 10 20 30 40 50 60 70 80 90

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 
GMRES

GMRES−S−1

TSMRES

(b) Residual norm

Figure 2.15: Example 2.19, approximated spectrum and convergence

Approximation by polynomials in S is apparently not efficient due to
the scattering of the eigenvalues and thus standard GMRES converges very
slowly . On the other hand, σ(S−1) is clustered in discs around points



2.6. NUMERICAL ILLUSTRATIONS OF CONVERGENCE 49

±1/2 ± 1/2 with radii of approximately 2/7, so σ(I + S−1) does not sur-
round the origin and therefore approximation by polynomials in S−1 can be
expected to be efficient. The GMRES-S−1 method converges quite rapidly.
The TSMRES method is slightly slower, requiring about twice the number
of iterations when compared to GMRES-S−1 to achieve a residual norm of
the same magnitude.

In the following example, we consider a case which is very difficult for the
two-sided Krylov subspaces.

Example 2.20 We construct the spectrum of S to form two complex rings,
one surrounding the point α1 = −10 with an internal radius r1 = 925/100
and an external radius r2 = 950/100 and the other surrounding origin at
α2 = 0 with an internal radius r3 = 100/950 and an external radius r4 =
100/925. We construct the rings as in Example 2.18, i.e., by using (2.36)
with r0 = Un(r1, r2) or r0 = Un(r3, r4), θ = Un(0, 1) and n = 150.

Denote by σ1(S) the spectrum of the ring surrounding point α1 and by
σ2(S) the spectrum of the ring surrounding point α2. Then the the spectrum
of S equals the union of two rings as σ(S) = σ1(S) ∪ σ2(S). The spectrum
approximated with a subspace of size 301 and the convergence of the methods
are shown in Figure 2.16.

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0

−10

−8

−6

−4

−2

0

2

4

6

8

10

 

 
Arnoldi
Two−sided Arnoldi

(a) Computed spectrum
0 50 100 150 200 250 300 350

10
−15

10
−10

10
−5

10
0

 

 
GMRES

GMRES−S−1

TSMRES

(b) Residual norm

Figure 2.16: Example 2.20

The polynomials in S can be efficiently used to approximate σ2(S) but
not σ1(S). On the other hand, the polynomials in S−1 can be efficiently used
to approximate σ1(S) but not σ2(S). Therefore, after an approximation to
σ2(S) (or σ1(S)) has been found, the GMRES method (or the GMRES-S−1

method) can be expected to converge rapidly. From the numerical results we
can observe that once the size of subspace has exceeded 150, i.e., the size of



50 CHAPTER 2. TSMRES

the complex rings σ1(S) and σ2(S), both GMRES and GMRES-S−1 converge
rapidly.

The use of the two-sided subspaces for approximation of σ(S) is difficult
since neither of the polynomials in S or in S−1 can be efficiently used for
approximation. With the two-sided subspaces, the degree of the polynomials
in S and in S−1 equals the current dimension of the subspace divided by
two. Due to the construction of σ(S), approximation with the two-sided
subspaces can be expected only to be efficient when the size of the subspace
has nearly reached the dimension of σ(S). The behaviour is verified by the
numerical results, where we observe that the TSMRES method achieves very
little reduction of the residual until the size of subspace is has nearly reached
the dimension of the problem.

In the final numerical example, we consider a case where the residual
norm of TSMRES is smaller than those of GMRES and GMRES-S−1.

Example 2.21 We construct the spectrum of S to form a ring around the
origin having an internal radius r1 = 9/10, an external radius r2 = 11/10
with a part having angle greater than 15π/16 or smaller than −15π/16 cut
off. We construct the spectrum by using the equation (2.36) with r0 =
Un(r1, r2), θ = Un(−15/16, 15/16)/2 and n = 4000. The resulting spectrum
for a subspace of size 81 and the convergence of the methods are shown in
Figure 2.17.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 
Arnoldi
Two−sided Arnoldi

(a) Computed spectrum
0 10 20 30 40 50 60 70 80 90

10
−3

10
−2

10
−1

10
0

 

 
GMRES

GMRES−S−1

TSMRES

(b) Residual norm

Figure 2.17: Example 2.21

Both σ(I + S) and σ(I + S−1) nearly surround the origin. Thus the
spectrum is almost equally difficult to approximate with polynomials in S
and in S−1. Thereby both GMRES and GMRES-S−1 can be expected to
slowly converge.



2.7. CONCLUSIONS 51

From the numerical results we can observe that the residual norm of
TSMRES is slightly smaller than the residual of both GMRES and GMRES-
S−1, especially when the size of the subspace is small. We attribute this
behaviour to the structure of σ(S) and the way the two-sided subspaces locate
eigenvalues. With two-sided subspaces, both large and small eigenvalues are
searched from the spectrum simultaneously. In this example such behaviour
is beneficiary since the spectrum of S has components on each side of the
unit circle.

2.7 Conclusions

In this chapter, we have considered the construction and analysis of the two-
sided Krylov subspaces, which can be considered an extension to the standard
Krylov-subspaces constructed by using the Arnoldi method. We also intro-
duced a minimum residual method using the two-sided Krylov subspaces,
called TSMRES and studied some of its properties both theoretically and
numerically.

To study the convergence of TSMRES, we related the two-sided Krylov
subspaces K±

⌈m
2
⌉(S; q1) to the standard Krylov subspaces Km+2(S; q1) and

Km+2(S
−1; q1). Theoretical results were verified by using numerical experi-

ments. We presented numerical examples where approximation properties of
the two-sided were either better of worse than those of the standard Krylov
subspaces.

In Chapter 3, we consider further generalizations of Krylov subspaces.
There we further extended the ideas presented in this chapter by allowing
more elements to be added in the Krylov subspaces.

In this chapter we have not considered the numerical implementation
of TSMRES at all. The topic was purposefully delayed because it requires
careful consideration. Numerically stable implementation of TSMRES is
presented in Chapter 4.



52 CHAPTER 2. TSMRES



Chapter 3

Generalized Krylov subspaces

3.1 Introduction

In this chapter, we consider a method that is a generalization of the method
for constructing two-sided Krylov subspaces K±

j (S; q1) defined in (2.2). The
generalization is based on the observation that if S−1 is replaced with a
matrix which commutes with S, a matrix function of S for instance, we
obtain a linearly growing recurrence.

We define generalized Krylov subspaces as

KJ(S;T ; q1) = span�p�∈Pj

{�p�(S, T )q1}, (3.1)

where J = (j + 1)(j + 2)/2 and Pj denotes the set of polynomials in two
variables of degree j at most and the matrices S ∈ Cn×n and T ∈ Cn×n have
the property ST = TS, i.e., S and T commute. By commutativity we can
write �p�(S, T ) as�p�(S, T ) =

j∑
k=0

k∑
l=0

αk−l,lS
k−lT l (3.2)

= α0,0I + (α1,0S + α0,1T ) + (α2,0S
2 + α1,1ST + α0,2T

2)

+(α3,0S
3 + α2,1S

2T + α1,2ST
2 + α0,3T

3) + · · · ,
with coefficients αi,j ∈ C.

To increase the degree of the polynomial �p� of degree j by one we need

to add j + 1 new terms to the resulting new polynomial. A generalized
Krylov subspace with a polynomial degree j + 1 is thus KJ+(S, T ; q1) with
J+ = (m+ 2)(m+ 3)/2, i.e., we have a linearly growing recurrence. In [70],
Huhtanen and Larsen consider constructing polynomials in both N and N∗

53



54 CHAPTER 3. GENERALIZED KRYLOV SUBSPACES

for a normal matrix N . For the case where S and T do not commute, there
exists even more general formulations of Krylov subspaces [4, 65, 83]. Also,
in Hoffnung et. al. [65], the commutative case ST = TS is considered a
special case of a more a general algorithm, but no explicit formulation is
given. The derivation and algorithms given in this chapter were discovered
independently, however.

Denote by J− = j(j + 1)/2 and J = (j + 1)(j + 2)/2 the number of
generated basis vectors after polynomials up to degree j−1 and j have been
generated, respectively. This is what can be expected generically. Assuming
that the matrix S is computationally more inexpensive to apply than T , we
device a Gram-Schmidt–type process for constructing an orthonormal basis
{q1, q2, . . . , qJ} for the generalized Krylov subspace Kj(S, T ; q1). We then
have

SQJ− = QJH̄J−,

where QJ ∈ Cn×J has orthonormal columns spanning (3.1) and H̄J ∈ CJ×J−

has a block Hessenberg structure with subdiagonal blocks of linearly increas-
ing size.

The generalized Krylov-subspaces KJ(S, T ; q1) relate to the two-sided
subspaces K±

j (S; q1) considered earlier. Setting T = S−1, for the polyno-
mial (3.2) of the generalized subspace KJ(S;S−1; q1), we have�p�(S, S−1) =

j∑
k=0

k∑
l=0

αk−l,lS
k−lS−l

= α0,0I + (α1,0S + α0,1S
−1) + (α2,0S

2 + α1,1I + α0,2S
−2)

+(α3,0S
3 + α2,1S + α1,2S

−1 + α0,3S
−3) + · · · ,

from which it then follows, for the span of vectors �p�(S, S−1)q1,

span�p�∈Pj

{�p�(S, S−1)q1} = span�p�,��∈Pj

{�p�(S)q1, ��(S−1)q1} = K±
j (S; q1). (3.3)

Thus the generalized Krylov subspace KJ(S;T ; q1) can be considered as a
generalization of the two-sided subspace K±

j (S; q1), generating the two-sided
subspace as a special case with T = S−1.

The generalized Krylov subspaces can be constructed for any matrices S
and T having the commutative property ST = TS. When given a matrix S,
valid choices of T are also analytic functions f in the domain of the matrix
S. For such f we have

Sf(S) = f(S)S,



3.2. GENERALIZED KRYLOV SUBSPACES 55

i.e., S and f(S) commute. For example, the matrix T can be chosen as the
matrix exponential function T = exp(S) =

∑∞
j=0 S

j/j!. Of course, such a
function may not be computationally inexpensively available.

In the following sections, we describe the construction of an orthonor-
mal basis for the generalized Krylov subspace KJ(S;T ; q1) and consider its
properties. Finally, we present some applications for the generalized Krylov
subspaces.

3.2 Orthonormal bases for generalized Kry-

lov subspaces

In this section, we describe a method for the construction of an orthonormal
basis {q1.q2, . . . , qM} for the generalized Krylov subspace

KM(S;T ; q1) = span�p�∈Pm

{�p�(S, T )q1},

where M = (m + 1)(m + 2)/2, Pm denotes the set of polynomials in two
variables of degree m at most and �p�(S, T ) is defined by the formula (3.2).

We assume that matrix-vector products with S are computationally more in-
expensive than matrix-vector products with T and formulate our algorithms
accordingly. At the kth step, we perform k−1 multiplications with operator
S and apply T once. After performing the related orthogonalizations, we
obtain k new basis vectors. Thus we obtain a linearly growing recurrence.

Let m be the maximum degree of the set of polynomials in two variables
in the generalized Krylov subspace. We begin by choosing q1 with ||q1||2 = 1.
After this, we compute

q̂2 = Sq1 − (Sq1, q1)q1,

and normalize to have a new basis vector as q2 = q̂2/||q̂2||2. By rearranging
the definition of q2 we have Sq1 =

∑2
j=1 hj,1qj , with h1,1 = (Sq1, q1) and

h2,1 = ||q̂2||2.
Then we compute

q̂3 = Tq1 − (Tq1, q1)q1 − (Tq1, q2)q2,

and normalize to have a new basis vector as q3 = q̂3/||q̂3||2. Note that with the
above computations, we have acquired two new basis vectors, i.e., computed
step k = 2 to have three orthonormal vectors spanning K3(S;T ; q1).



56 CHAPTER 3. GENERALIZED KRYLOV SUBSPACES

We continue the construction of the orthonormal basis for KM(S;T ; q1)
by computing the basis vectors of degree 2, i.e., the vectors associated with
the terms α2,0S

2, α1,1ST and α0,2T
2 in (3.2). To this end, we compute

q̂4 = Sq2 − (Sq2, q1)q1 − (Sq2, q2)q2 − (Sq2, q3)q3

and

q̂5 = Sq3 − (Sq3, q1)q1 − (Sq3, q2)q2 − (Sq3, q3)q3 − (Sq3, q4)q4,

to have, after normalization, two new basis vectors q4 = q̂4/||q̂4||2 and q5 =
q̂5/||q̂5||2. In addition, with q3 we compute

q̂6 = Tq3 − (Tq3, q1)q1 − (Tq3, q2)q2 − (Tq3, q3)q3 − (Tq3, q4)q4 − (Tq3, q5)q5,

and normalize to have q6 = q̂6/||q̂6||2. Again by rearranging the definitions
for q4 and q5 we have Sq2 =

∑4
j=1 hj,2qj and with hj,2 = (Sq2, qj), for j =

1, . . . , 3 and h4,2 = ||q̂4||2. Similarly, rearranging the definition for q5 yields
Sq3 =

∑5
j=1 hj,3qj with hj,3 = (Sq3, qj), for j = 1, . . . , 4 and h5,2 = ||q̂5||2

We now generalize the construction for the kth step. At the step 2 ≤
k ≤ m + 1, we compute the basis vectors of degree k − 1, i.e., the vectors
associated with the terms αk−l,lS

k−lT l, l = 0, . . . , k− 1 in (3.2). To this end,
we need to perform k− 1 multiplications with S and one multiplication with
T to obtain k new basis vectors of degree k − 1 in total.

Let k0 = k(k − 1)/2 and k1 = k(k + 1)/2. We compute

q̂k0+l = Sqk0−(k−1)+l −
k0+l−1∑

j=1

hj,k0−(k−1)+lqj, l = 1, . . . , k − 1, (3.4)

where we denote

hj,k0−(k−1)+l = (Sqk0−(k−1)+l, qj), l = 1, . . . , k − 1. (3.5)

After normalization we have k − 1 new basis vectors qk0+l = q̂k0+l/||q̂k0+l||2
and the relations Sqk0−(k−1)+l =

∑k0+l
j=1 hj,k0−(k−1)+lqj , with

hk0+l,k0−(k−1)+l = ||q̂k0+l||2, l = 1, . . . , k − 1. (3.6)

In addition, we have

q̂k1 = Tqk0 −
k1−1∑
j=1

(Sqk0, qj)qj, (3.7)



3.2. GENERALIZED KRYLOV SUBSPACES 57

which yields qk1 =
q̂k1

||q̂k1
||2 .

By the relations (3.4) and (3.7) we obtain a linearly growing recurrence,
with M =

∑m+1
k=1 k = (m + 1)(m + 2)/2 basis vectors in total, assuming we

do not have any linear dependencies during the construction. We note that
the structure of the set {q1, q2, . . . , qM}, generated with the relations (3.4)
and (3.7), is formally shown in Proposition 3.1.

Denote by M− =
∑m

k=1 k = m(m + 1)/2 the number of basis vectors
generated after the mth step. After the step k = m+ 1 has been completed,
by (3.4) we have a matrix relation

SQM− =
[
QM− qM−+1 . . . qM−+m

]
H̃M−, (3.8)

where QM− ∈ Cn×M− has orthonormal columns spanning KM−(S;T ; q1) and

H̃M− ∈ CM−+m×M− has a block Hessenberg structure. The matrix H̃M−
contains subdiagonal blocks of linearly increasing size. The nonzero structure
of H̃M− is shown in (3.9), where Xj×k denotes a j-by-k nonzero block, X̃j×k

a j-by-k nonzero block with a Hessenberg structure and 0 an all-zero block
of an appropriate size.

H̄M− =


X̃2×1 X2×2 X2×3 · · · X2×m

0 X̃3×2 X3×3 · · · X3×m
... 0 X̃4×3 · · · ...
...

. . . 0
. . .

...

0 · · · · · · 0 X̃(m+1)×m

 (3.9)

After the relation (3.8) has been acquired, to have representation of S of the
form (1.13) in the basis generated, it remains to compute inner products of
the form

hk,j = (Sqk, qj), (3.10)

for k = M− + 1, . . . ,M and j = 1, . . . ,M . We then have a representation of
S in the basis generated for KM(S;T ; q1) as

SQM = QMH̄M , (3.11)

where the values of the nonzero entries hi,j of H̄M ∈ CM×M are determined
by the relations (3.5), (3.6) and (3.10). The nonzero structure of H̄M is of
the form

[
HM− H̄M,m

]
where H̄M,m is a full M-by-(m+ 1) matrix and

HM− =

[
H̃M−
0

]
,



58 CHAPTER 3. GENERALIZED KRYLOV SUBSPACES

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

nz = 834

Figure 3.1: The nonzero structure of the matrix H̄36

where the nonzero structure of H̃M− defined as in (3.9) and 0 denotes an
all-zero matrix of the size 1-by-M−. For an illustration, Figure 3.1 shows the
nonzero structure of the matrix H̄M with M = 36, i.e., m = 7.

In the implementation, we use the iterated modified Gram Schmidt pro-
cess to orthogonalize the generated basis vectors. Denote by u the machine
precision. By Hoffmann [64], see also [15, 26, 99], we have Algorithm 3.1 to
orthonormalize a vector w against an orthonormal basis [q1, q2, . . . , qk]. The
algorithm, which we call ORTHOGON, constructs a vector qk+1 and coef-
ficients hj = (w, qj), j = 1, . . . , k + 1 such that qk+1 = q̂k+1/||q̂k+1||2 with

q̂k+1 = w −∑k
j=1 hjqj holds, i.e., the computed qk+1 vector is a numerically

orthogonal projection to the complement of span{q1, . . . , qk}.
In Algorithm 3.1, the parameter κ needs to be chosen positive and such

that the condition κ > (0.83 − u)−1 holds. In our implementation, we set
κ =

√
2. For other choices of κ, see [64] and references therein.

The relations (3.4) and (3.7) describe a construction of the orthonor-
mal set of basis vectors {q1, q2, . . . , qM} for the generalized Krylov subspace
KM(S;T ; q1). From the construction, after the remaining inner products have
been computed, we also obtain a representation of the form (3.11). We inter-
pret the given construction as a generalized Arnoldi process for commuting



3.2. GENERALIZED KRYLOV SUBSPACES 59

Algorithm 3.1 [qk+1, [h1, h2, . . . , hk+1]]=ORTHOGON([q1, . . . , qk], w)

1: ω0 = ||w||2
2: repeat
3: ω = ||w||2
4: for j = 1, . . . , k do
5: sj = (w, qj)
6: w = w − sjqj
7: hj = hj + sj

8: end for
9: if ||w||2 < 2nuω0 then

10: hk+1 = 0
11: qk+1 = 0
12: return
13: end if
14: until ||w||2 > ω/κ
15: hk+1 = ||w||2
16: qk+1 = w/hj+1

operators S and T . Using ORTHOGON, we have the generalized Arnoldi
process as Algorithm 3.2.

To keep Algorithm 3.2 simple, we have assumed that the construction
does not break down before the (m+ 1)th step has been completed, i.e., the
basis vectors qk0+l, l = 1, . . . , k − 1 and qk1 can always be generated on lines
7 and 10. Denote by kS and kT the indices of the first of those vectors which
cannot be generated on lines 7 and 10, respectively. Then the set of vectors
{q1, . . . , qkS−1, SqkS−(k−1)} (or {q1, . . . , qkT−1, T qkT−k}) is linearly dependent
and the construction continues from the next index which produces a new
linearly independent basis vector. This complicates the indexing somewhat
since in order to generate a set of new vectors, we have to keep track of
the vectors which have been successfully generated in the previous iteration
round.

Denote by N the amount of the basis vectors generated. For clarity, we
now present a more general version of Algorithm 3.2 by using index sets for
the generated basis vectors. Denote by QS and QT the sets containing the
indices of the basis vectors generated in the (k − 1)th iteration round after
multiplications by S and T , respectively. Similarly, denote by QN

S and QN
T

the sets containing indices of the basis vectors of degree k − 1, generated on
the kth iteration round.

In the kth iteration round we generate a set of new basis vectors of degree
k − 1 by multiplying the basis vectors with the indices in the set QS

⋃QT



60 CHAPTER 3. GENERALIZED KRYLOV SUBSPACES

Algorithm 3.2 Generalized Arnoldi process, simple version

1: Choose q1 such that ||q1||2 = 1
2: for k = 2, . . . , m+ 1 do
3: k0 = k(k − 1)/2, k1 = k(k + 1)/2
4: for l = 1, . . . , k − 1 do
5: j = k0 − (k − 1) + l
6: w = Sqj
7: [qk0+l, [h1,j, . . . , hk+1,j]] =ORTHOGON([q1, . . . , qk0+l−1], w)
8: end for
9: w = Tqk0

10: [qk1 , [t1,k1, . . . , tk+1,k1]] =ORTHOGON([q1, . . . , qk1−1], w)
11: end for
12: M = (m+ 1)(m+ 2)/2
13: for l = 1, . . . , m+ 1 do
14: j = M − (m+ 1) + j
15: w = Sqj
16: [qt, [h1,j, . . . , hM,j, hM+1,j]] =ORTHOGON([q1, . . . , qM ], w)
17: end for

by S and the basis vectors with the indices in the set QT by T . After
multiplications with S, we augment the set QN

S to contain the indices of the
new basis vectors generated. Similarly, after a multiplication with T , if a
new basis vector is generated, we augment the set QN

T to contain the index
of that vector. Then finally, after the (m+1)th step has been completed, we
compute the inner products of the form (Sqk, qj), where j = 1, . . . , N and
k ∈ QS

⋃QT . As a result, we have Algorithm 3.3.

We note that during the iteration, the sets QS and QN
S can contain at

most m elements, respectively. Similarly, the sets QT and QN
T can contain

at most one element. If no breakdowns occur in the generation of the basis
vectors, Algorithm 3.3 is equivalent to Algorithm 3.2, i.e., it generates exactly
the same set {q1, . . . , qN} with N = (m+ 1)(m + 2)/2. If some of the basis
vectors cannot be generated, the recursion obtained for the basis vectors
does not grow linearly and the nonzero structure of the matrix HM may be
difficult to determine beforehand.

In the following section, we consider the theoretical properties of the
generalized Arnoldi process, i.e., Algorithm 3.2. We also consider how the
generalized Arnoldi process relates to the two-sided Arnoldi process 2.1 given
in Section 2.2 both in an exact and finite precision arithmetic.



3.3. PROPERTIES OF GENERALIZED KRYLOV SUBSPACES 61

Algorithm 3.3 Generalized Arnoldi process

1: Choose q1 such that ||q1||2 = 1
2: N = 1, QS = QT = {1}, QN

S = QN
T = ∅

3: for k = 2, . . . , m+ 1 do
4: if QS

⋃QT = ∅ then
5: return
6: end if
7: for ∀j ∈ QS

⋃QT do
8: w = Sqj
9: [qt, [h1,j , . . . , hN,j, hN+1,j]] =ORTHOGON([q1, . . . , qN ], w)

10: if hN+1,j > 0 then
11: N = N + 1, qN = qt, QN

S = QN
S

⋃{N}
12: end if
13: end for
14: if QT 6= ∅ then
15: Set j equal to first element of QT

16: w = Tqj
17: [qt, [t1, . . . , tN+1]] =ORTHOGON([q1, . . . , qN ], w)
18: if tN+1 > 0 then
19: N = N + 1, qN = qt, QN

T = {N}
20: end if
21: end if
22: QS = QN

S , QT = QN
T , QN

S = QN
T = ∅

23: end for
24: for ∀j ∈ QS

⋃QT do
25: w = Sqj
26: [qt, [h1,j , . . . , hN,j, tN+1]] =ORTHOGON([q1, . . . , qN ], w)
27: end for

3.3 Properties of generalized Krylov subspa-

ces

In this section, we describe some properties of Algorithm 3.2. We begin with
a generalization of Proposition 2.1, describing the structure of the generated
basis vectors.

Proposition 3.1. Assume Algorithm 3.2 does not break down before the
(m + 1)th step and let M = (m + 1)(m + 2)/2 be the number of basis vec-
tors generated. Then, the set {q1, q2, . . . , qM} is an orthonormal basis of the



62 CHAPTER 3. GENERALIZED KRYLOV SUBSPACES

generalized Krylov subspace

KM(S;T ; q1) = span�p�∈Pm

{�p�(S, T )q1},

where M = (m+ 1)(m+ 2)/2 and Pm denotes the set of polynomials in two
variables of degree m at most and the polynomial �p�(S, T ) is defined as in

(3.2).

Proof. The proof is a straightforward generalization of the proof of Proposi-
tion 2.1. Again, the generated set of vectors is orthonormal by construction.
It remains to show that the generated set forms a basis for the generalized
Krylov subspace KM(S;T ; q1). We show the claim by induction.

For j = 1, the inner loop on lines from 2 to 11 in Algorithm 3.2 runs
through once. After applying S and computing the related orthonormaliza-
tions, we have q2 = q̂2/||q̂2||2 with q̂2 = Sq1− (Sq1, q1)q1. Thus for q2 is holds
q2 ∈ span{q1, Sq1}. Similarly, after applying T , we have q3 = q̂3/||q̂3||2 with
q̂3 = Tq1−(Tq1, q1)q1−(Tq1, q2)q1. Thus for q3 it holds q3 ∈ span{q1, Sq1Tq1}.
Thus it follows that span{q1, q2, q3} = K3(S;T ; q1) and the claim holds for
j = 1.

We now assume that the claim holds up to j = m− 1. In the next step,
with j = m, by the relations (3.4) and (3.7), we compute m − 1 new basis
vectors associated with the matrix S and a single basis vector associated with
the matrix T .

With j = m we have k0 = m(m+1)/2 and k1 = (m+1)(m+2)/2. By the
induction assumption, it holds qk0−m+l ∈ KM−(S;T ; q1) where l = 1, . . . , m
and M− = m(m + 1)/2. By the relation (3.4), after generating m − 1
new basis vectors associated with the matrix S, the span of the vectors
{q1, . . . , qk0, qk0+1, . . . , qk0+m} equals span�p�∈P̃m

{�p�(S, T )q1}, where P̃m de-

notes the set of polynomials in two variables such that the degree of the
first variable is m and the degree of the second variable is (m − 1) at most.
After generating the basis vector associated with the matrix T , we have
{q1, . . . , qk0, qk0+1, . . . , qk0+m, qk1} ∈ span�p�∈Pm

{�p�(S, T )q1} = KM(S;T ; q1)

and the claim follows.

Since the matrices S and T commute, they share the same invariant
subspace. Define the set of eigenvectors of T as V = {v ∈ Cn| Tv = µv}. If
S and T commute, for v ∈ V we have

T (Sv) = S(Tv) = S(µv) = µ(Sv),

and it follows that Sv ∈ V , i.e., V is an invariant subspace of S. By induction
it then follows that there exists unitary matrix Q such that QSQ∗ = RS and
QTQ∗ = RT with RS and RT both upper triangular.



3.3. PROPERTIES OF GENERALIZED KRYLOV SUBSPACES 63

For the case when Algorithm 3.3 terminates with k < m+1, we have the
following proposition.

Proposition 3.2. When Algorithm 3.3 terminates with k < m + 1 after
generating N vectors, the generated set {q1, . . . , qN} is an invariant subspace
of both S and T .

Proof. Denote byQS,QT ,QN
S andQN

T the index sets of the (k−1)th iteration
round. When Algorithm 3.3 terminates on the kth round having k < m+ 1,
the condition on line 4 holds, i.e., sets QN

S and QN
T must both be empty,

i.e., no new basis vectors have been generated during the (k− 1)th iteration
round. On the other hand, the sets QS and QT must both be nonempty,
or else the algorithm would have stopped already in the beginning of the
(k − 1)th iteration round.

Since no new basis vectors were generated during the (k − 1)th iteration
round, all the vectors Sqj with the indices j ∈ QS

⋃QT must be linearly
dependent in the set {q1, . . . , qN}. By the relation (3.4), we then have

Sqj =
N∑

l=1

hl,jql,

with hl,j = (Sqj, ql) for all j ∈ QS

⋃QT . Similarly, by the relation (3.7), for
the vector Tqj with index j ∈ QT we have

Tqj =

N∑
l=1

tlql,

with tl = (Tqj , ql) for j ∈ QT . Thus, the set {q1, . . . , qN} is an invariant
subspace for both S and T .

Our interest into generalized Krylov subspaces arises from the relation
(3.3). When Algorithm 3.3 is used with T = S−1 up to the (j + 1)th
step, the two-sided subspace K±

j (S; q1) is generated. We now assume ex-
act arithmetic and that Algorithm 2.1 does not break down before the jth
step. By Lemma 2.5 we have that in Algorithm 3.3, only two new basis
vectors can be generated each iteration round, i.e., the length of the recur-
sion is two. After computing the (j + 1)th step of Algorithm 3.3, we have
SQ2j+1 = Q2j+2H̄2j+1, where Q2j+1 denotes the matrix having orthonormal
columns spanning K±

j (S; q1) and H̄2j+1 is a block upper Hessenberg matrix
with 2-by-2 subdiagonal blocks. This essentially proves the following propo-
sition.



64 CHAPTER 3. GENERALIZED KRYLOV SUBSPACES

Proposition 3.3. Assume exact arithmetic and that Algorithm 2.1 does not
break down before the mth step. Then, with T = S−1, Algorithm 3.3 generates
a subspace K±

j (S; q1) with relation SQ2j+1 = Q2j+2H̄2j+1 where Q2j+1 and
H̄2j+1 are defined as in Proposition(2.3).

In finite precision arithmetic we cannot expect the condition SS−1 = I
to hold, especially if the matrix S is very ill-conditioned. Therefore, with
T = S−1, Algorithm 3.2 may generate more than two new basis vectors each
iteration round in practice and a linearly growing recursion is obtained. Since
in finite precision arithmetic the condition SS−1 = S−1S is often much less
strict than SS−1 = I, Algorithm 3.2 can be used to generate the basis of the
two-sided Krylov subspace K±

j (S; q1) in a numerically stable way. For finite
precision error analysis, we refer to [61].

In the previous sections we have considered the generalized Krylov sub-
space KM(S;T ; q1) merely as an extension of the two-sided Krylov subspace
K±

m(S; q1). In the following section, we present cases where the generalized
Krylov subspaces can be used.

3.4 Applications for generalized Krylov sub-

spaces

We now briefly consider applications, where the generalized Krylov subspaces
can be used. Denote by f an analytic function in an open subset containing
the spectrum of A. We consider the computation of

u = f(A)v, (3.12)

where the matrix A is large and sparse. As an example of such a function,
we consider the matrix exponential function, defined as

exp(S) = I + S +
S2

2!
+ · · · =

∞∑
j=0

Sj/j!. (3.13)

The matrix exponential function appears, for instance, in solving the initial
value problems

x′ = Ax, x(t0) = x0

with a large and sparse constant coefficient matrix A ∈ Cn×n and an initial
condition x0. The solution vector x at time t is given by

x = exp(tA)x0,



3.4. APPLICATIONS FOR GENERALIZED KRYLOV SUBSPACES 65

i.e., only a matrix-vector product of the form

exp(tA)v, (3.14)

for a vector v ∈ Cn is needed.
For a more general example, consider exponential integration methods for

large nonlinear initial value problems

x′ = f(x), x(t0) = x0, (3.15)

with a a nonlinear function f(x) and an initial condition x0. The solution of
(3.15) can be approximated with the exponentially fitted Euler method [63],
written as

x1 = x0 + hϕ(hA)f(x0),

where h is the step size, A = f ′(x0) is the Jacobian matrix and

ϕ(z) =
exp(z)− 1

z
. (3.16)

Again, only a matrix-vector product of the form

ϕ(hA)v, (3.17)

for a vector v ∈ Cn is needed. Since the matrices exp(tA) and ϕ(hA) are gen-
erally full even when the matrix A is sparse, we seek a method for computing
(3.14) or (3.17) without computing the matrices exp(tA) or ϕ(hA).

Let us now consider an approximation of (3.12) in the Krylov subspace
Km(A; v1) = span{v1, Av1 . . . , A

m−1v1} with v1 = v/||v||2. After performing
m steps of the Arnoldi method, i.e., Algorithm 1.1, we have

AVm = VmHm + hm+1,mvm+1e
T
m = Vm+1H̄m,

where, as before, Vm has orthonormal columns spanning Km(A; v1), Hm is
an m-by-m upper Hessenberg and em denotes the mth column of an m-by-m
identity matrix. Therefore the product f(A)v is approximated in the Krylov
subspace Km(A; v1) as

um = ||v||2Vmf(Hm)e1, (3.18)

where e1 denotes the first column of anm-by-m identity matrix. For instance,
for the matrix exponential function we have

exp(A)v ≈ ||v||2Vm exp(Hm)e1.



66 CHAPTER 3. GENERALIZED KRYLOV SUBSPACES

Thus we have reduced the computation of a large sparse matrix exponential
into a small full one. The small full matrix exponential can be computed
with direct methods, such as Padé approximation combined with scaling and
squaring, see survey [86] and references therein. Similar techniques can be
used to have approximations for ϕ(hA)v by computing the values of ϕ(hHm),
see [63].

For the product exp(A)v, good approximations can be often found for a
relatively small m [100]. Preconditioning of the matrix exponential function
is studied, among others, by Eshof and Hochbruck [119] and by Castillo and
Saad in [21]. In the case of a general matrix function, such as (3.16) or
the matrix square root, using Krylov subspaces generated with S and S−1

can lead to an improved convergence [35]. For an additional analysis and
applications, see Knizhnerman [78], Hochbruck and Lubich [62], Hochbruck,
Lubich and Selhofer [63] and Beckermann and Reichel [5].

Another frequent application for the generalized Krylov subspaces is the
solution of quadratic eigenproblems. In the quadratic eigenproblem one seeks
scalars λ with vectors x, y ∈ Cn such that

(λ2M − λD −K)x = 0, y∗(λ2M − λD −K) = 0, (3.19)

with the matrices M,D,K ∈ Cn×n holds. Vectors x and y are called the
right and the left eigenvectors, corresponding to the quadratic eigenvalues λ.
Note that the quadratic eigenproblem (3.19) may have up to 2n eigenvalues
and eigenvectors [86].

The use of the generalized Krylov subspace for solving (3.19) in the case
of noncommuting matrices M,D,K and nonsingular M has been proposed
by Bai and Su in [4]. In their approach, the quadratic eigenproblem (3.19)
is reduced to

(θ2Mm + θDm +Km)g = 0,

with
Mm = QT

mMQm, Dm = QT
mDQm, , Km = QT

mKQm,

where Qm ∈ Cn×m denotes a matrix containing orthonormal basis for the
generalized subspace Km(−M−1D;−M−1K; u) as its columns. The small
quadratic eigenproblem (3.4) for the pairs (θ, z) with z = Qmg is then solved
in two steps. First, a transformation into generalized eigenproblem of the
form

Cy = λGy,

is made by setting yT = [λgT gT ] and

C =

[ −Dm −Km

Im 0

]
, G =

[
Mm 0
0 Im

]
.



3.5. CONCLUSIONS 67

Then the generalized eigenproblem is solved with the QZ-algorithm [55]. For
similar approaches see Li and Ye [83] and Hoffnung, Li and Ye [65].

In the context of the quadratic eigenvalue problem, the generalized Krylov
subspaces presented in this chapter can be used if the matrices M−1D and
M−1K commute. An example of such a case arises in vibrational acoustics
with proportional damping, see [27, Chapter 11.9] and references therein.

3.5 Conclusions

In this chapter we have considered a generalization of the two-sided Krylov
subspaces K±

m(S; q1) in terms of subspaces KM(S;T ; q1) where the matrices S
and T commute. It was shown that with such a generalized Krylov subspace
we acquire a linearly growing recurrence.

We also considered some potential applications for the generalized Krylov
subspaces. These were shown to include equations involving matrix exponen-
tials (3.14), matrix functions (3.17) and solving quadratic eigenvalue prob-
lems (3.19). Although our interest in the generalized Krylov subspaces stems
from the numerical computation of the two-sided subspaces, a potential use
for Algorithm 3.3 could also be computation of approximations to the prod-
ucts of the form (3.12).

With the choice T = S−1, Algorithm 3.2 can be used to generate a basis
for a two-sided Krylov subspace and a representation of the matrix S in the
basis generated in a numerically stable way. When Algorithm 2.1 is used
to generate the basis for the two-sided Krylov subspace Km(S; q1), 2m + 1
basis vectors are generated assuming no breakdown occurs before the mth
step. Due to the linearly growing recurrence, in finite precision arithmetic,
the basis generated for KM(S; q1) with Algorithm 3.2 can contain up to (m+
1)(m+2)/2 basis vectors. To generate and store the additional basis vectors,
Algorithm 3.2 requires more computations and more storage when compared
to using Algorithm 2.1. Therefore, the generation of the two-sided subspaces
K±

m(S; q1) with Algorithm 3.2 is not computationally efficient. In the next
Chapter, we consider the numerical computation of the two-sided Krylov
subspaces used by TSMRES without resorting to a computation and storage
of additional basis vectors.



68 CHAPTER 3. GENERALIZED KRYLOV SUBSPACES



Chapter 4

Implementation of TSMRES

4.1 Introduction

In this chapter, we consider a computationally efficient and numerically stable
implementation of TSMRES. Both of the subjects are extremely important
for real-life computations and therefore require a careful consideration.

We begin by considering efficient solution of the least-squares problem
(2.20), i.e., minym+2∈Cm+2 ||βe1− (Ī + H̄k+2)y||2. We show how to solve (2.20)
by using Givens rotations to transform the block Hessenberg matrix Ī+H̄k+2

into an upper triangular form. It is also shown how to efficiently compute a
representation of the matrix S in the basis generated for the two-sided Krylov
subspace K±

⌈m
2
⌉(S; q1) without performing additional orthogonalizations or

matrix-vector products.

After considering the efficient implementation, we describe a numerically
stabilized implementation of TSMRES. The new implementation is math-
ematically equivalent to the implementation of TSMRES given in Chapter
2, but by our numerical experiments seems to be numerically more stable.
We then analyze the computational complexity and memory consumption of
different implementations of TSMRES and compare the results obtained to
those of GMRES. It is shown, that for subspaces of similar size, the compu-
tational effort is of equivalent magnitude.

In the end of this chapter, we consider the numerical stability of TSMRES.
Some consideration is given why the numerically stabilized implementation
of TSMRES, given in Section 4.4, seems to be numerically more stable than
the implementation given in Section 2.3. By our experiments this is linked
with the phenomenon that in a finite precision arithmetic, a numerically
accurate representation of the vectors Sqk+2 with k = 1, . . . , m in the basis
generated for K±

⌈m
2
⌉(S; q1) cannot be computed by using only the first k + 3

69



70 CHAPTER 4. IMPLEMENTATION OF TSMRES

basis vectors.
We begin this chapter by making some observations on how to implement

TSMRES efficiently. For completeness, we begin by reviewing how the Givens
rotations are defined.

4.2 Givens rotations

Givens rotations, sometimes also referred as Jacobi rotations, are orthogonal
transformations commonly used for transforming elements of a matrix into
zeroes. They were originally used by Jacobi in solving symmetric eigenvalue
problems [55, 72]. In this section, we follow the definition for numerically
accurate computation of the Givens rotations as given in [12, 13].

We define a Givens rotation Gj,k as an unitary n-by-n matrix which only
acts on the components j and k of a given vector v. Then the Givens ro-
tation Gj,k is an identity matrix, except for the part affecting jth and kth
components, i.e., the entries gj,j, gj,k, gk,j and gk,k. Restricting to this 2-by-2
part we have(

gj,j gj,k

gk,j gk,k

)(
vj

vk

)
=

(
cj,k sj,k

−s̄j,k cj,k

)(
vj

vk

)
=

(
r
0

)
, (4.1)

where vj denotes the jth component the vector v. Since Gj,k is unitary, we
have

Gj,kG
∗
j,k = I,

from which we have the conditions

|cj,k|2 + |sj,k|2 = 1, cj,k − c̄j,k = 0. (4.2)

By (4.2) we have the restriction cj,k ∈ R. For real and positive entries vj and
vk, it is common to choose cj,k and sj,k as

cj,k =
vj√
v2

j + v2
k

,

sj,k =
vk√
v2

j + v2
k

,

r =
√
v2

j + v2
k,

even though also negative values of cj,k, sj,k and r would also satisfy the
conditions (4.2). If either or both of vj and vk are complex, the conditions
(4.2) are not sufficient to determine cj,k, sj,k and r uniquely. Requiring the



4.3. PRACTICAL IMPLEMENTATION CONSIDERATIONS 71

mapping from (vj , vk) to (cj,k, sj,k, r) to be continuous whenever possible, for
vj , vk 6= 0 we have

cj,k =
|vj|√|vj|2 + |vk|2

,

sj,k = sign(vj)
v̄k√|vj|2 + |vk|2

, (4.3)

r = sign(vj)
√
|vj|2 + |vk|2,

where sign(x) denotes the sign function, defined for x ∈ C as

sign(x) =

{
x/|x|, |x| 6= 0,
1, x = 0.

(4.4)

When vk = 0 (including the case vj = 0), again by continuity, the relations
(4.3) simplify to cj,k = 1, sj,k = 0 and r = vj . Finally, with vj = 0 but
vk 6= 0, we choose cj,k and sj,k to be continuous as vj approaches zero from
the right, which yields cj,k = 0, sj,k = sign(v̄k) and r = |vk|.

Ignoring the special cases, when properly implemented, the computa-
tional complexity for computing a single Givens rotation readily follows from
(4.3) as 7 floating point operations plus a single square root, i.e., O(1).

4.3 Practical implementation considerations

We now consider the implementation of Algorithm 2.2 in practice. Efficient
means to solve the least-squares problem (2.20) and to monitor the residual
norm ||b − (I + S)xm||2 of the approximation xm are presented. We also
consider how to efficiently compute a representation of the matrix S in the
basis generated, i.e., how to compute the columns hk+2 of H̄m+2 for k =
1, 3, . . . , m, without performing any additional orthogonalizations or matrix-
vector products.

A practical difficulty in Algorithm 2.2 is that it does not provide either the
approximate solution xk or the norm of the residual vector ||b− (I + S)xk||2
explicitly at each step. Therefore it is not easy to know when to stop.

A technique commonly used in the GMRES method to solve the GMRES
minimization problem (1.16), is to transform the upper Hessenberg matrix
into an upper triangular form by using plane rotations. This allows the norm
of the residual to be monitored and enables an efficient way solve the GMRES
minimization problem (1.16). For a reference, see for example [105, Chapter
6.5.3, pp.167]. In what follows, we present a similar technique for TSMRES.



72 CHAPTER 4. IMPLEMENTATION OF TSMRES

Consider solving the TSMRES minimization problem (2.20), that is,
minym+2∈Cm+2 ||βe1−(Ī+H̄m+2)ym+2||2. Since the matrix H̄m+2 has a Hessen-
berg-like structure with 2-by-2 subdiagonal blocks, to transform it into an up-
per triangular form we need to eliminate entries at the positions (j+3, j+1),
(j+ 2, j+ 1) and (j+ 3, j+ 2), for j = 1, 3, . . . , m odd. This is accomplished
in O(m2) operations by using plane rotations.

Assume that m steps of Algorithm 2.2 have been performed. For the jth
step of the iteration with j = 1, 3, . . . , m odd, we define the product of the
Givens rotation matrices Gj,k ∈ C(m+3)×(m+3) as

Ωj = Gj+3,j+2Gj+2,j+1Gj+3,j+1, (4.5)

where Gj,k denotes a rotation to clear the entry at position (j, k). After
denoting by Gm = ΩmΩm−2 . . .Ω1G2,1 the product of matrices to transform
H̄k+2 into upper triangular form, we have

R̄m+2 = Gm(Ī + H̄m+2), (4.6)

ḡm+2 = Gm(βe1) = (γ1, . . . , γm+3)
T , (4.7)

where R̄m+2 is an upper triangular (m+ 3)-by-(m+ 2) matrix with the last
row containing only zeroes.

An important observation considering the practical implementation of
rotations Gm is that Gk+3,k+1 commutes with Ωj for all j < k. This allows
us to write

Gm = ΩmΩm−2 · · ·Ω1

= Gm+3,m+2Gm+2,m+1Gm+3,m+1

Gm+1,mGm,m−1Gm+1,m−1 · · ·
G4,3G3,2G4,2G2,1

= Gm+3,m+2Gm+2,m+1Gm+1,mGm,m−1 · · ·
G4,3G3,2G2,1Gm+3,m+1Gm+1,m−1 · · ·G(4, 2),

by which the rotations to clear entries at positions (j + 3, j + 1) can be
applied simultaneously and before the rotations Gj+3,j+2 and Gj+2,j+1 for all
j = 1, 3, . . . , m odd.

The use of Givens rotations to transform the matrix Hk+2 into an upper
triangular form is illustrated by the following example.

Example 4.1 Consider transforming the matrix H̄5 into an upper triangu-
lar form by using Givens rotations G3 = G6,5 · · ·G2,1G6,4G4,2. Denoting a
nonzero entry by x and a modified nonzero entry by x̃ (or by ˜̃x if the entry



4.3. PRACTICAL IMPLEMENTATION CONSIDERATIONS 73

2666664
x x x x x
x x x x x
0 x x x x
0 x x x x
0 0 0 x x
0 0 0 x x

3777775
G6,4G4,2−−−−−→

2666664
x x x x x
x x x x x
0 x̃ x̃ x̃ x̃
0 0 x̃ x̃ x̃
0 0 0 x̃ x̃
0 0 0 0 x̃

3777775
G6,5···G2,1−−−−−−→

26666664

x̃ x̃ x̃ x̃ x̃
0 x̃ x̃ x̃ x̃

0 0 ˜̃x ˜̃x ˜̃x

0 0 0 ˜̃x ˜̃x

0 0 0 0 ˜̃x
0 0 0 0 0

37777775

Figure 4.1: Transforming H̄5 into an upper triangular matrix R̄5 by using
plane rotations

has been modified twice), the process of transforming the matrix H̄5 into an
upper triangular matrix R̄5 proceeds as presented in Figure 6.1.

Following Saad [105, Proposition 6.9, p. 169], we obtain the following
proposition.

Proposition 4.1. Let R̄m+2 and q̄m+2 be defined as in (4.6) and (4.7). In
addition, let m be odd and Ωj , j = 1, 3, . . . , m be the rotation matrices as
defined in (4.5) to transform (Ī + H̄m+2) to upper triangular form. Denote
by Rm+2 the (m + 2)-by-(m + 2) upper triangular matrix and by gm+2 the
(m + 2)-dimensional vector acquired after the last row and component of
R̄m+2 and ḡm+2 have been deleted. Then we have the following properties:

1. rank((I + S)Qm+2) = rank(Rm+2)

2. Residual vector, which minimizes ||βe1− (Ī + H̄m+2)ym+2||2 is given by

y = R−1
m+2gm+2 (4.8)

3. Residual at step m satisfies

||b− (I + S)xm||2 = |γm+3| (4.9)

Proof. 1. From (2.15) we obtain

(I + S)Qm+2 = Qm+3(Ī + H̄m+2)

= Qm+3G∗mGm(Ī + H̄m+2)

= Qm+3G∗mR̄m+2

Since Qm+3G∗m is unitary, rank of (I + S)Qm+2 equals rank of R̄m+2

which equals rank of Rm+2.



74 CHAPTER 4. IMPLEMENTATION OF TSMRES

2. For any vector ym+2 it holds

||βq1 − (Ī + H̄m+2)ym+2||22 = ||G∗mGm(βe1 − (Ī + H̄m+2)ym+2)||22
= ||ḡm+2 − R̄m+2ym+2||22
= |γm+3|+ ||gm+2 −Rm+2ym+2||22

The minimum is clearly reached when ||gm+2 −Rm+2ym+2||22 is zero.

3. Since any vector in the basis generated by S can be written as xm =
x0 +Qm+2ym+2, we have

b− (I + S)xm = b− (I + S)(x0 +Qm+2ym+2)

= r0 −Qm+3(Ī + H̄m+2)ym+2

= Qm+3(βe1 − (Ī + H̄m+2)ym+2)

= Qm+3G∗mGm(βe1 − (Ī + H̄m+2)ym+2)

= Qm+3G∗m(ḡm+2 − R̄m+2ym+2)

which may be minimized as in part (2). This leads to a relation

b− (I + S)xm = Qm+3G∗m(γm+3em+3) (4.10)

where Qm+3G∗m is unitary and em+3 denotes the (m+3)th column of an
(m + 3)-by-(m + 3) identity matrix. Since the 2-norm is unitarily in-
variant, we have ||Qm+3G∗m(γm+3em+3)||2 = ||γm+3em+3||2 and the claim
follows.

For the computational complexity of the two-sided Arnoldi-type process
used in TSMRES to be equal to the standard Arnoldi process used by GM-
RES, we need a method to compute the columns hk+2 without performing an
additional matrix-vector product and the related orthogonalizations. By a
simple manipulation of the upper part of the relation (2.6), we can efficiently
compute the columns hk+2 of H̄k+2, for k = 1, 3, . . . , m odd. This yields the
following proposition.

Proposition 4.2. Let k = 1, 3, . . . , m odd. Colums hk+2 of H̄k+2 can be
computed as

hk+2 = t−1
k+2,k

(
ēk − H̄k+1t̄k

)
, (4.11)

where ēk ∈ Cm+3 denotes the kth column of the matrix Ī, H̄k+1 the top k+ 3
rows of the matrix [h1 h2 . . . hk+1] and t̄k the first k + 1 components of tk.



4.3. PRACTICAL IMPLEMENTATION CONSIDERATIONS 75

Proof. By the relation (2.6), we have q̂k+2 = S−1qk −
∑k+1

l=1 (S−1qk, ql)ql,
where qj denotes the generated basis vectors of the two-sided Krylov sub-
space K±

⌈m
2
⌉(S; q1). After multiplication with S from the left, we obtain

Sq̂k+2 = qk −
k+1∑
l=1

tl,kSql, (4.12)

where tl,k = (S−1qk, ql) by the relation (2.8) and q̂k+2 denotes the (k + 2)th
basis vector before it has been scaled by t−1

k+2,k = ||qk+2||2.
Multiplying (4.12) by t−1

k+2,k yields an expression for Sqk+2. After multi-
plying from the left by Q∗

k+3 and using orthogonality, for hk+2 = Q∗
k+3Sqk+2

we then have

hk+2 = Q∗
k+3t

−1
k+2,k

(
qk −

k+1∑
l=1

tl,kSql

)
= t−1

k+2,k

(
ēk −

k+1∑
l=1

tl,khl

)
.

After writing the expression obtained for hk+2 in a matrix form, we have the
claim.

When the Givens rotations are used to solve the minimization problem, a
practical difficulty in Algorithm 2.2 is the computation of the representation
of S in K±

⌈m
2
⌉(S; q1) if the original matrix H̄k+1 is not stored. Then the relation

(4.11) can not be directly used to compute the vectors hk+2.
To compute the last column of R̄k+2 without having the matrix H̄k+1

directly available we have the following. For k = 1, 3, . . . , m, after computing
the basis vectors qk+2 and qk+3 we first apply the rotations from the previous
iteration rounds to transform the matrix Ī + H̄k into an upper triangular
form, i.e., we apply Gk−2 to the vector ēk+1 + hk+1. We then determine and
apply the rotations Gk+3,k+1 and Gk+2,k+1 to clear the (k+3)th and (k+2)th
entries of ek+1 + hk+1 to have

G̃k(Ī + H̄k+1),

where G̃k = Gk+2,k+1Gk+3,k+1Gk−2 and ēk, H̄k+1 and t̄k defined as in Propo-
sition 4.2.

By using the relations (4.11) and (4.6), for the vector ēk+2 +hk+2 we then
have

G̃k(ēk+2 + hk+2) = G̃kēk+2 + t−1
k+2,kG̃k(ēk − H̄k+1t̄k). (4.13)

To compute the product G̃kH̄k+1t̄k, we use the relation (4.6). This yields

G̃kH̄k+1t̄k = R̃k+1t̄k − G̃k t̄k,



76 CHAPTER 4. IMPLEMENTATION OF TSMRES

where the matrix R̃k+1 is of the size (k + 3)-by-(k + 1) and contains the
rotated columns of the matrix H̄k+1. From (4.13) it then follows

r̂k+2 = G̃k(ēk+2 + h̄k+2) = G̃kēk+2 + t−1
k+2,k(G̃k(ēk + t̄k)− R̄k+1t̄k).

From the vector r̂k+2 we then determine the Givens rotation Gk+3,k+2 to clear
its (k + 3)th entry. After applying Gk+3,k+2 we have r̄k+2, i.e., the (k + 2)th
column of the matrix R̄k+2, as

r̄k+2 = Gm+3,m+2r̂k+2. (4.14)

The relation (4.14) enables us to compute the matrix R̄k+2 directly without
storing the original matrix H̄k+1.

In the following section, we describe a numerically stable implementation
of TSMRES.

4.4 Numerically stabilized TSMRES

In Chapter 2 the actual numerical implementation of the TSMRES method
was not considered. For motivation, we first consider the following numerical
example illustrating numerical difficulties of Algorithm 2.2.

Example 4.2 Consider solving the linear system (2.1) where the matrix S is
diagonal matrix having randomly generated uniformly distributed diagonal
entries in the interval (−10,−1), i.e., σ(S) = {x | x ∈ (−10,−1)}. We
construct the spectrum of the matrix S by setting σ(S) = Un(−10,−1),
where n = 400 and Un(a, b) is defined by the relation (2.34). The right-hand
side is chosen as b = 1n/||1n||2, where 1n denotes a vector of all ones of
length n.

The matrix S is well-conditioned. We have ||S||2 ≤ 10, ||S−1||2 ≤ 1.
Thus, for the condition number of the matrix S, we have the upper bound
κ(S) ≤ 10. Then by the numerical error result of the matrix-vector mul-
tiplication [61, pp. 69], the numerical error in the products Sqk+1 can be
expected to be small. Also, since the matrix S is diagonal, the solutions
computed to the linear systems Sx = qk only have a small componentwise
error, see [61].

We let the dimension of the subspaces Kk(S; b) with k = 2m + 1 and
K±
⌈m

2
⌉(S; b) to equal 205 at most. To ensure orthogonality, the basis vectors

of the two-sided subspace K±
⌈m

2
⌉(S; q1) were computed with Algorithm 3.1 by

using 2 orthogonalization steps at most. For both algorithms, we compute
the residual norms from scratch each iteration round, i.e., no estimation of



4.4. NUMERICALLY STABILIZED TSMRES 77

the form (4.9) was used. Figure 4.2 shows the spectrum of S approximated
with the standard Arnoldi and two-sided Arnoldi methods with subspaces
of size 205 and the residual norms of the Householder GMRES [128] and
TSMRES, i.e., Algorithm 2.2 without Proposition 4.2.

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1
−1.5

−1

−0.5

0

0.5

1

1.5

 

 
Arnoldi
Two−sided Arnoldi

(a) Computed spectrum

0 50 100 150 200 250
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 
GMRES
TSMRES

(b) Residual norm

Figure 4.2: Approximated spectrum and convergence with numerically un-
stable TSMRES

The Householder GMRES method is numerically backward stable [34].
Thus the solution computed with the Householder GMRES method can be
expected to be accurate in a numerical sense when the matrix S is well-
conditioned. By the results of Figure 4.2, once the size of the subspace
Kk(S; q1) has reached 205, the residual norm of GMRES has converged near
the machine precision.

The numerical behaviour of TSMRES in this example is intriguing. In
the following, we denote by Qm+2 the matrix having orthonormal columns
spanning the two-sided Krylov subspace K±

⌈m
2
⌉(S; q1). Also let the entries of

the (m + 3)-by-(m + 2) matrix H̄m+2 be defined by the relations (2.9) and
(2.11). Also denote by Hm+2 the (m + 2)-by-(m + 2) the matrix obtained
after the (m+3)th row of H̄m+2 deleted. We note that since the dimension of
the two-sided Krylov subspace K±

⌈m
2
⌉(S; b) equals 205 at most, the maximum

degree of the polynomials �p� and �� in S and S−1 equals 102.

From Figure 4.2 we immediately observe that the eigenvalues of Hm+2

approximating σ(S) in the two-sided Krylov subspace are inaccurate. Even
though σ(S) is real, the approximations computed from Hk+2 contain some
approximate eigenvalues with a large imaginary part. This numerical be-
haviour of the computed eigenvalues seems to have a close resemblance to
the effect of rounding errors in computing the roots of the Wilkinson poly-
nomial of high degree, see [131, 133, 134].



78 CHAPTER 4. IMPLEMENTATION OF TSMRES

The convergence behaviour of TSMRES is also affected. Initially TSM-
RES converges, but after the size of the subspace has reached the dimension
of approximately 50, no reduction of the residual norm is achieved.

The basis vectors generated for the two-sided Krylov subspace are numer-
ically nearly orthonormal, i.e., the computed quantity ||Ik+2 − Q∗

k+2Qk+2||F
is near machine precision. Thus the numerical error is contributing to the
entries of the matrix Hk+2, i.e., the computed representation of the matrix
S in the basis generated for K±

⌈m
2
⌉(S; q1).

The generated set of basis vectors is numerically nearly orthogonal. The
matrix I + S is quite well-conditioned with a computed condition number
estimate κest(I + S) = 1.3E + 4. Therefore we now consider the quantity
E = Hm+2−Q∗

m+2SQm+2, which can be interpreted as the error between the
computed and actual projections of the matrix S in the basis generated for
the two-sided Krylov subspace K⌈m

2
⌉(S; b). Figure 4.3 shows the entries ei,j

of E for which it holds |ei,j| ≥ 1E − 14.

0 50 100 150 200

0

20

40

60

80

100

120

140

160

180

200

nz = 1391

Figure 4.3: Entries ei,j of matrix E = H205 − Q∗
205SQ205 for which |ei,j| ≥

1E − 14

From Figure 4.3 we observe that Hk+2 computed with Algorithm 2.1 is
numerically not near the actual projection Q∗

m+2SQm+2. In fact, some entries
in the lower triangular part of the matrix E are nearly one in magnitude. We



4.4. NUMERICALLY STABILIZED TSMRES 79

conclude, that in this particular example, a numerically accurate represen-
tation of the vectors Sqk+2 in the basis generated for the two-sided Krylov
subspace K±

⌈m
2
⌉(S; q1) cannot be computed with Algorithm 2.1 .

By Propositions 2.1 and 2.3, the two-sided Krylov subspaces K±
⌈m

2
⌉(S; q1)

can be generated with Algorithm 2.1 in exact arithmetic. As show by Ex-
ample 4.2, in floating point arithmetic Algorithm 2.1 may fail to construct a
numerically accurate representation of the vectors Sqk+2 in the basis gener-
ated for the two-sided Krylov subspace.

From Example 4.2, we observe that since the computed quantity ||I −
Q∗

m+3Qm+3||2 is near machine precision, the basis vectors generated for the
two-sided Krylov subspace K±

⌈m
2
⌉(S; q1) are numerically nearly orthogonal.

In spite of the near orthogonality, a representation of the vectors Sqk+2,
for k = 1, 3, . . . , m odd, in the basis generated cannot be computed in a
numerically stable way for large k. Roughly speaking, this happens because
numerically, due to the accumulating rounding errors, the basis vectors do
not exactly form a basis for the two-sided subspace K±

⌈m
2
⌉(S; q1) and Lemma

2.5 cannot be applied. A brief analysis of this phenomenon is given in Section
4.5.

In what follows, we present a numerically stable version of the TSMRES
method. We modify TSMRES based on the observation that even though
Algorithm 2.1 is unable to produce a representation of the vectors Sqk+2 in
the two-sided Krylov subspace in a numerically stable way, the computed
basis vectors are nearly orthonormal and form a basis for K±

⌈m
2
⌉(S; q1) in a

numerical sense.
Denote by Qm+2 = [q1 q2 · · · qm+2] the matrix having the generated

basis vectors of K±
⌈m

2
⌉(S; q1) as its columns. In addition, denote by Q−

m =

[q1 q3 q5 · · · qm] and Q+
m+1 = [q1 q2 q4 · · · qm+1] the generated basis vectors

associated with the operators S−1 and S, respectively. By the relation (2.10),
for m odd, Algorithm 2.1 generates

S−1Q−
m = Qm+3T̄m+1,

SQ+
m+1 = Qm+3H̄m+2,

with T̄m+1 = [t1 t3 · · · tm] ∈ C(m+3)×⌈m
2
⌉ and H̄m+2 = [h1 h2 h4 · · · hm+1] ∈

C(m+3)×(⌈m
2
⌉+1) where tj and hj+1 are defined by the relations (2.8) and (2.9).

Let q1 = r0/||r0||2 with the initial residual r0 = b − (I + S)x0. We now
consider solving the TSMRES minimization problem (2.20), defined as

min
v∈K±⌈m

2 ⌉
(S;q1)

||b− (I + S)(x0 + v)||2.



80 CHAPTER 4. IMPLEMENTATION OF TSMRES

Setting v = v+ + v−, we rewrite the TSMRES minimization problem to
involve both S and S−1. We have

min
v∈K±⌈m

2 ⌉
(S;q1)

||b− (I + S)(x0 + v)||2

= min
(v++v−)∈K±⌈m

2 ⌉
(S;q1)

||r0 − (I + S)v+ − (I + S)v−||2,

= min
v+∈K⌈m

2 ⌉(S;q1),

v̄−∈K⌈m
2 ⌉(S

−1;q1)

||r0 − (I + S)v+ − (I + S−1)v̄−||2, (4.15)

after setting v̄− = Sv−. In the following, we describe how the acquired two-
sided minimization problem (4.15) can be solved with the two-sided Krylov
subspaces K⌈m

2
⌉(S; q1) constructed with Algorithm 2.1.

In the basis generated for K±
⌈m

2
⌉(S; q1), with m odd, we have

(I− + S−1)Q−
m = Qm+3(Ī

− + T̄m+1),
(I+ + S)Q+

m+1 = Qm+3(Ī
+ + H̄m+2),

(4.16)

where I− = [e1 e3 · · · em] and I+ = [e1 e2 · · · em+1], ej denotes the jth
column of an n-by-n identity matrix and matrices Ī− and Ī+ denote the first
(m+ 3) rows of I− and I+.

With (4.16), we now have the minimization problem (4.15) as

min
v+∈K⌈m

2 ⌉(S;q1),

v̄−∈K⌈m
2 ⌉(S

−1;q1)

||r0 − (I + S)v+ − (I + S−1)v̄−||2

= min
y+

m∈C⌈m
2 ⌉+1,

ȳ−m∈C⌈m
2 ⌉

||r0 − (I+ + S)Q+
m+1y

+
m − (I− + S−1)Q−

mȳ
−
m||2

= min
y+

m∈C⌈m
2 ⌉+1,

ȳ−m∈C⌈m
2 ⌉

||βe1 − (Ī+ + H̄m+2)y
+
m − (Ī− + T̄m+1)ȳ

−
m||2. (4.17)

This is equivalent to the original formulation (2.20) in the two-sided Krylov
subspace K±

⌈m
2
⌉(S; q1). Once the minimizers y+

m and ȳ−m have been computed,

it remains to set v+ = Q+
k+2y

+
m, v̄− = Q−

k+1ȳ
−
m and compute v− = S−1v̄− to

have the approximate solution as xm = x0 + zm = x0 + (v+ + v−).
To find the minimizers y+

m and ȳ−m, we need to solve a (m+3)-by-(m+2)
least-squares problem. Writing the acquired minimization problem (4.17) in
a matrix form yields

min
y+

m∈C⌈m
2 ⌉+1,

ȳ−m∈C⌈m
2 ⌉

||βe1 − [(Ī+ + H̄m+2) (Ī− + T̄m+1)]

[
y+

m

ȳ−m

]
||2.



4.4. NUMERICALLY STABILIZED TSMRES 81

Denote by ej the jth column of a (m+ 2)-by-(m+ 2) identity matrix. Then,
after applying a permutation

P = [e1 e⌈m
2
⌉+2 e2 e⌈m

2
⌉+3 e3 · · · em+2 e⌈m

2
⌉+1],

for the least-squares approach we have

Ȳm+2y = βe1, (4.18)

where Ȳm+2 denotes a (m+ 3)-by-(m+ 2) upper Hessenberg matrix, defined
as

Ȳm+2 = [(e1 + h1) (e1 + t1) (e2 + h2) · · · (em + tm) (em+1 + hm+1)] (4.19)

and

y = P

[
y+

m

ȳ−m

]
.

Once the least-squares problem (4.18) has been solved, it remains to set
P+ = [e1 e3 · · · em+2] and P− = [e2 e4 · · · em+1] to have the computed
minimizers as y+

m = P+y and ȳ−m = P−y.
Let ORTHOGON denote an algorithm which orthonormalizes a given

vector against a given orthonormal basis, defined as in Algorithm 3.1. For
the alternate formulation of TSMRES, we have Algorithm 4.1.

Algorithm 4.1 Numerically stabilized TSMRES

1: Compute r0 = b− x0 − Sx0, β = ||r0||2, q1 = r0/β
2: w = Sq1, h1,1 = (w, q1), w = w − h1,1q1, h2,1 = ||w||2, q2 = w/h2,1

3: for j = 1, 2, . . . , m+1
2

do
4: w = S−1q2j−1

5: [q2j+1, [t1,2j−1, . . . , t2j+1,2j−1]] =ORTHOGON([q1, . . . , q2j ], w)
6: w = Sq2j

7: [q2j+2, [h1,2j, . . . , h2j+2,2j]] =ORTHOGON([q1, . . . , q2j+1], w)
8: end for
9: Compute y = Argminy||βe1 − Ȳm+2y||2

10: Set y+
m = P+y and ȳ−m = P−y

11: Compute xm = x0 +Q+
m+2y

+
m + S−1Q−

m+1ȳ
−
m

As before, in the practical implementation of Algorithm 4.1, we solve the
least-squares problem (4.18) by transforming the upper Hessenberg matrix
Ȳm+2 into an upper triangular form by using plane rotations. The main
difference to efficiently solving the original TSMRES minimization problem
(2.20) is, that for the jth iteration round with j = 1, 3, . . . , m odd, the plane



82 CHAPTER 4. IMPLEMENTATION OF TSMRES

rotations have only to be applied to clear the entries at positions (j+2, j+1)
and (j + 3, j + 2).

Denote by Gj,k the Givens rotation to clear element at position (j, k). For

the jth iteration round with j = 1, 3, . . . , m odd, set Ω̂j = Gj+3,j+2Gj+2,j+1

to clear entries at positions (j + 2, j + 1) and (j + 3, j + 2). Denoting by Gm

the product of these rotations, we have

Gm = Ω̂mΩ̂m−2 · · ·G2,1. (4.20)

With Gm, similarly to (4.6) and (4.7), we then have

R̄m+2 = GmȲm+2, (4.21)

ḡm+2 = Gm(βe1) = (γ1, . . . , γm+3)
T , (4.22)

where R̄m+2 again denotes an upper triangular (m + 3)-by-(m + 2) matrix
with the last row containing only zeroes. Similarly to Proposition 4.1, we
have the following.

Proposition 4.3. Let R̄m+2 and q̄m+2 be defined as in (4.21) and (4.22).
In addition, let m be odd and Ω̂j , j = 1, 3, . . . , m be the rotation matrices
as defined in (4.20) to transform Ȳm+2 to upper triangular form. Denote by
Rm+2 the (m+2)-by-(m+2) upper triangular matrix and by gm+2 the (m+2)-
dimensional vector acquired after the last row and component of R̄m+2 and
ḡm+2 have been deleted. Then we have the following properties:

1. rank(Ȳm+2) = rank(Rm+2)

2. Residual vector, which minimizes ||βe1 − Ȳm+2y||2 is given by

y = R−1
m+2gm+2 (4.23)

3. Residual at step m satisfies

||b− (I + S)xm||2 = |γm+3| (4.24)

Proof. The steps of the proof exactly follow to those of Proposition 4.1, but
with alternate definitions of Rm+2 and gm+2 and the minimization problem
(4.15).

We now reconsider Example 4.2 to illustrate the stability of the numeri-
cally stabilized TSMRES method.



4.4. NUMERICALLY STABILIZED TSMRES 83

Example 4.3 Let the matrix S and the vector b be equal to those used in
Example 4.2. As previously, we let the dimension of the subspaces Kk(S; b)
with k = 2m+ 1 and K±

⌈m
2
⌉(S; b) to equal 205 at most.

After an orthonormal basis of the two-sided Krylov subspace K±
⌈m

2
⌉(S; q1)

has been generated, we compute the projections ĥk+2 = Q∗
m+3Sqk+2 for k =

1, 3, . . . , m and set Ĥm+2 =
[
h1 h2 ĥ3 · · · hm+1 ĥm+2

]
. With the two-sided

Arnoldi method, we then approximate the eigenvalues of the matrix S in the
basis generated for K±

⌈m
2
⌉(S; q1) by computing the eigenvalues of the matrix

Ĥm+2. Figure 4.3 shows the spectrum of S approximated with the standard
Arnoldi method and with the two-sided Arnoldi method using the computed
Ĥm+2 for a subspace dimension 205.

Figure 4.3 also describes the residual norms of the Householder GMRES
and numerically stabilized TSMRES methods. As previously, the residual
norms have been computed from scratch each iteration round.

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 
Arnoldi
Two−sided Arnoldi

(a) Computed spectrum

0 50 100 150 200 250
10

−15

10
−10

10
−5

10
0

 

 
GMRES
TSMRES

(b) Residual norm

Figure 4.4: Approximated spectrum and convergence of numerically stabi-
lized TSMRES for Example 4.2

For the two-sided subspaces, the approximate eigenvalues computed from
the matrix Ĥm+2 seem numerically much more accurate than the ones approx-
imated from the matrix H̄m+2 computed with the two-sided Arnoldi method,
i.e., Algorithm 2.1. The residual norm of the numerically stabilized TSM-
RES is also improved when compared to the residual norm of the standard
TSMRES method. As the size of the subspace increases, the residual is re-
duced as is expected. The numerically stabilized TSMRES method is able to
reduce the residual norm approximately to the same level as the Householder
GMRES method.

From Figure 4.3 we also observe, that after the dimension of the two-
sided Krylov subspace has reached approximately 50, the speed of which



84 CHAPTER 4. IMPLEMENTATION OF TSMRES

the residual norm reduces per iteration step of TSMRES is reduced slightly.
The reduction is due to the least squares problem (4.17) of the numerically
stabilized TSMRES becoming nearly rank deficient.

In our numerical experiments with Algorithm 2.2, with and without
Proposition 4.2, we observed behaviour similar to Example 4.2 in several
other cases. In those cases, the numerical instability was observed when
the dimension of the two-sided Krylov subspace K±

⌈m
2
⌉(S; q1) was large, usu-

ally well over 50. On the other hand, we never encounter a case where the
numerically stabilized TSMRES, i.e., Algorithm 4.1 was unstable.

In the following section, we briefly consider the numerical stability of the
different formulations of TSMRES.

4.5 Aspects of the numerical stability of TSM-

RES

It is well known that the GMRES method is numerically backward stable.
The Householder implementation of GMRES, proposed by Walker in [128],
has been shown to be backward stable in the normwise sense in [34]. In the
Householder implementation of GMRES, the Householder transformations
are used to construct an orthonormal basis of the Krylov subspace Km(A; q1).
In [94] Paige, Rozložńık and Strakoš proved that under some mild assump-
tions also the modified Gram-Schmidt version of GMRES is backward stable.

In this section, we consider the effect of rounding errors in the computa-
tion of the two-sided subspace K±

j (S; q1) and the computation of the repre-
sentation of the matrix S in the basis generated. We do not claim to establish
the backward stability of the numerically stabilized TSMRES method, how-
ever. The aim is to present arguments supporting the fact that the stabilized
formulation seems to be numerically more stable in practical computations.
As is customary in the floating point error analysis, throughout this section
we assume real arithmetic.

In the following, we denote by γ̃k the quantity

γ̃k =
cku

1− cku
, (4.25)

where u is the machine precision and c is a small integer constant whose exact
value is unimportant. In this section, we use “hats” to refer to the computed
quantities and denote by fl(·) the floating point result of the operation (·).

We now consider the numerical error arising in the computation of a
two-sided Krylov subspace K±

⌈m
2
⌉(S; q1). We begin by observing that both



4.5. ASPECTS OF THE NUMERICAL STABILITY OF TSMRES 85

implementations of the TSMRES method compute a QR-decomposition of
the matrix

[q1 Sq1 S
−1q1 Sq2 · · · S−1qm], (4.26)

where qj denotes the jth orthonormal basis vector of K⌈m
2
⌉(S; q1). Let K =

[Sq1 S
−1q1 · · · S−1qm]. Then the matrix [q1 K] is of the size n-by-(m + 3).

By the relation (2.10), we then have the QR-decomposition of the matrix
[q1 K] as

[q1 K] = [q1 q2 · · · qm+3][βe1 h1 t1 h2 t3 h4 · · · tm hm+1] = Qm+3Rm+3,
(4.27)

where Rm+3 ∈ R(m+3)×(m+3) is an upper triangular matrix and the matrix
Qm+3 ∈ Rn×(m+3) has the generated basis vectors of the two-sided Krylov
subspace K⌈m

2
⌉(S; q1) as its columns. By rewriting the relation (4.27) for the

two-sided Arnoldi process presented in Section 2.3, we have

K = Qm+3H̄m+2, (4.28)

where H̄m+2 = [h1 t1 h2 · · · tm hm+1] is a (m+ 3)-by-(m+ 2) matrix with a
Hessenberg structure.

For the standard Arnoldi process, the basis generated with the House-
holder transformations is known to be numerically nearly orthonormal in-
dependent of the matrix A [133]. A similar result was conjectured to hold
also for the iterated modified Gram-Schmidt process by Hoffmann in [64].
When the matrix A is of full rank, such a result was shown to hold with two
orthogonalization steps by Giraud et al. in [53].

To our knowledge no rounding error results concerning the two-sided
Arnoldi process exist. Let κ be positive and chosen as in Algorithm 3.1.
Similarly to [34], see also [64], by the results of several numerical experi-
ments we believe that it is plausible to assume the near orthonormality of
the basis computed with Algorithm 4.1.

Assumption 4.4. For sufficiently small κ, the basis generated with Algo-
rithm 4.1 satisfies

||I − Q̂T
m+3Q̂m+3||F ≤ ζκ(m+ 3)αu (4.29)

while the total number of reorthogonalization steps does not exceed ξ(m+ 3).
Here ξ and α are constants close to one and ζ is a constant independent of
(m+ 3), κ and u.

If the condition (4.29) holds, it then follows that for the computed Q̂m+3

there exists an exactly orthonormal matrix Q̄m+3 such that Q̂m+3 = Q̄m+3 +
∆Qm+3 and the condition

||∆Qm+3||2 = ||Q̂m+3 − Q̄m+3||F ≤ ζκ(m+ 3)αu,



86 CHAPTER 4. IMPLEMENTATION OF TSMRES

holds, i.e., the computed set of basis vectors for K±
⌈m

2
⌉(S; q1) is numerically

very close to being exactly orthonormal.
For a basis which is exactly orthonormal, in finite precision arithmetic we

have
fl(fl(K̂) + ∆K) = Q̄m+3Ĥm+2, (4.30)

with ∆K arising from the finite precision orthogonalization of the computed
fl(K̂) = K̂ + ∆KS. The error term ∆KS in fl(K̂) is of the form

∆KS = [∆Sq̂1 ∆S−1q̂2 · · · ∆S−1q̂m], (4.31)

where ∆Sq̂j and ∆S−1q̂j denote the errors from the finite precision computa-
tion of the matrix vector product zj = Sq̂j and solution of the linear system
Szj = q̂j.

Since the two-sided Arnoldi process constructs a QR-decomposition of
the computed matrix [q̂1 K̂], the standard floating point error analysis can
be used. The following theorem is from Higham [61, pp. 372].

Theorem 4.5. Suppose the modified Gram-Schmidt method is applied to
A ∈ Rm×n of rank n, yielding computed matrices Q̂ ∈ Rm×n and R̂ ∈ Rn×n.
Then there are constants ci ≡ ci(m,n) such that

A+ ∆A1 = Q̂R̂, ||∆A1||2 ≤ c1u||A||2, (4.32)

||Q̂T Q̂− I||2 ≤ c2uκ(A) +O((uκ(A))2), (4.33)

and there exists an orthonormal matrix Q̄ such that

A+ ∆A2 = Q̄R̂, ||∆A2,j||2 ≤ c3u||aj||2, j = 1, . . . , n (4.34)

where ∆A2,j denotes the jth column of ∆A2.

By Theorem 4.5 and the relation (4.30) it then follows, with an exactly
orthonormal matrix Q̄m+3,

Q̄m+3(fl(K̂) + ∆K) = Ĥm+2,

with the error bound ||∆K||2 ≤ c1u||K + ∆KS||2. Since the matrix Q̄m+3 is
exactly orthonormal, we then have

K̂ + E = Q̄T
m+3Ĥm+2, (4.35)

where ||E||2 ≤ ||∆KS||2 + c1u(||K||2 + ||∆KS||2)
We now consider the error term E in more detail. For K̂, we have

||K̂||2 = ||[Sq̂1 S−1q̂1 · · · S−1q̂m]||2 = ||[SQ̂+ S−1Q̂−]P ||2, (4.36)



4.5. ASPECTS OF THE NUMERICAL STABILITY OF TSMRES 87

where P denotes permutation to rearrange the columns of K̂ and q̂j denotes

the jth column of the matrix Q̂m+3. Analogously as in Section 4.4, the matri-
ces Q̂+ and Q̂− contain the computed basis vectors related to the operators
S and S−1 such that Q̂+ = [q̂1 q̂2 q̂4 · · · q̂m+1] and Q̂− = [q̂1, q̂3 q̂5 . . . q̂m].
In the following, we also use similar definitions for the exactly orthonormal
matrices Q̄+ and Q̄− and the error terms ∆Q+ and ∆Q−.

By the properties of the operator norm we have

||[SQ̂+ S−1Q̂−]P ||2 = ||[S(Q̄+ + ∆Q+) S−1(Q̄− + ∆Q−])||2
≤ ||[S S−1]||2||Q̄± + ∆Q±||2
≤ ||[S S−1]||2

(||Q̄±||2 + ||∆Q±||2
)
,

where Q̄± and ∆Q± are 2n-by-(m+ 2) matrices defined as

Q̄± =

[
Q̄+ 0
0 Q̄−

]
, ∆Q± =

[
∆Q+ 0

0 ∆Q−

]
.

For ||[S S−1]||2 we have

||[S, S−1]T ||2 = max
||x||2=1

||[S, S−]Tx||2
= max

||x||2=1
(||STx||22 + ||S−Tx||22)1/2

≤ (||ST ||22 + ||S−T ||22)1/2

≤
√

2 max{||S||2, ||S−1||2}.
The matrix Q̄± has exactly orthonormal columns, i.e., ||Q̄±||2 = 1. Since
the columns of ∆Q+ and ∆Q+ are extracted from the columns of ∆Qm+3,
it follows that ||∆Qm+3||2 ≥ max{||∆Q+||2, ||∆Q−||2}. Then by Assumption
4.4 we have for ∆Q± the inequality

||∆Q±||2 = max{||∆Q+||2, ||∆Q−||2} ≤ ζκ(m+ 3)αu.

For K̂ we then have

||K̂||2 ≤
√

2max{||S||2, ||S−1||2}
(
1 + ζκ(m+ 3)αu

)
. (4.37)

A similar analysis for the term ∆KS yields

||∆KS||2 ≤
√

2max{||∆S||2, ||∆S−1||2}
(
1 + ζκ(m+ 3)αu

)
,

with ∆S and ∆S−1 as before.
Denote by |X| a matrix with elements |xi,j | and let the inequalities be-

tween such matrices hold componentwise. To bound the term ∆S, we use an
elementary backward error result of matrix-vector multiplication, given for
completeness in the following [61, pp. 69].



88 CHAPTER 4. IMPLEMENTATION OF TSMRES

Lemma 4.6. Let A ∈ Rm×n, x ∈ Rn and y = Ax. Then, for the computed
matrix vector product ŷ, we have

ŷ = (A+ ∆A)x, |∆A| ≤ γn|A|. (4.38)

By the standard norm inequalities, equation (4.38) then implies ||∆A||2 ≤√
min{m,n}γn||A||2.
By using Lemma 4.6, for the term ∆S arising from the matrix vector

products Sq̂k+1 with k = 1, . . . , m we then have

||∆S||2 ≤
√
nγn||S||2 +O(u2). (4.39)

We note that a better error bound could be obtained by taking into account
the sparsity of S.

It remains to bound the term ∆S−1, arising from the solution of the linear
systems Sz = q̂k, k = 1, . . . , m. For the computed solution ẑ we have

(S + ∆Ŝ−1)ẑ = q̂k,

where ∆Ŝ−1 is a bounded error term. Roughly we cannot expect the error
∆S−1 to be better than ∆S, since solving a linear system usually involves at
least as many operations as matrix-vector multiplication.

When solving linear systems with the matrix S is not numerically stable,
the term ∆Ŝ−1 will be large and dominate the total error of the two-sided
orthogonalization process. We now assume that solving linear systems with
S is backward stable. For the term ∆S−1 it then follows

||∆S−1||2 = ||ẑ − z||2 ≤ Cκ(S)u||z||2,
where constant C is independent of S and q̂k. Since q̂j is nearly of unit
length, for the norm of the exact solution z it holds ||z||2 = ||S−1q̂k||2 =
||S−1||2 + ||S−1||2||∆qk||2, where ∆qk denotes the kth column of ∆Qm+3.
This yields the backward error as

||∆S−1||2 ≤ Cuκ(S)||S−1||2 +O(u2).

For the error term E, we then finally have the bound

||E||2 ≤ ||∆KS||2 + c1u(||K||2 + ||∆KS||2)
≤

√
2max{||∆S||2, ||∆S−1||2} (4.40)

+c1u(
√

2max{||S||2, ||S−1||2}) +O(u2)

≤
√

2max{√nγn||S||2, Cuκ(S)||S−1||2} (4.41)

+c1u(
√

2max{||S||2, ||S−1||2}) +O(u2), (4.42)



4.6. COMPUTATIONAL COST 89

i.e., the error depends on the norms ||S||2 and ||S−1||2.
The bound (4.42) explains why Theorem 4.2 is not numerically stable for

large values of k. When the vectors hk+2 are computed as

hk+2 = t−1
k+2,k

(
ēk − H̄k+1t̄k

)
,

the computed equivalents of the terms t̄k and H̄k+1 contain numerical error
depending on the norms ||S||2 and ||S−1||2. Thus the computed ĥk+2 will
contain an error which is the product of the errors of the computed terms
H̄k+1 and t̄k in magnitude. Unless the error terms cancel out, repeatedly
using the relation (4.11) will increase the numerical error exponentially and
therefore cannot be expected to be numerically stable for large values of m.

We now consider Lemma 2.5 in finite precision arithmetic. Even if Qk+3

would be exactly orthogonal, neglecting the error from arising in the orthog-
onalization process, we have the computed ĥk+2 as

ĥk+2 = QT
k+3(S + ∆S)qk+2

= QT
k+3(S + ∆S)((S−1 + ∆S−1)qk −Qk+1t̄k)/tk+2,k

= hk+2 + ∆hk+2,

where
||∆hk+2||2 ≤ ||S−1∆S||2 + ||S∆S−1||2 + ||∆S||2||t̄k||2,

where ∆S and ∆S−1 are bounded as before, i.e., the numerical error is mul-
tiplied by the norms ||S||2 and ||S−1||2, but the growth is not exponential.

Algorithm 4.1, i.e., the numerically stabilized TSMRES method avoids
computing the columns hk+2 explicitly. Therefore only sources of the nu-
merical error are the construction of an orthonormal basis for the two-sided
Krylov subspace and the solution of (m+3)-by-(m+2) least-squares problem.
Therefore, in a numerical sense, the minimizers produced by the numerically
stabilized TSMRES method can be expected to be nearly as good as they
can be in the basis generated for the two-sided Krylov subspace. In spite of
this, as shown by the latter part of Example 4.2, the least-squares problem
obtained can be numerically nearly ill-conditioned even for well-conditioned
matrices S and S−1. Thus, at this point we do not attempt to make claims
of backward stability.

We now analyze the computational cost of both versions of the TSMRES
method.

4.6 Computational cost

In this section, we analyze the computational cost and storage requirements
of TSMRES. We compare the computational cost of both implementations



90 CHAPTER 4. IMPLEMENTATION OF TSMRES

of TSMRES and relate them to the computational cost of the GMRES and
Householder GMRES methods. In both implementations of the TSMRES
method, most of the floating point operations arise from the computation of
matrix-vector products and orthogonalization of basis vectors. Since gener-
ally m≪ n, the computational cost of applying plane rotations to transform
H̄k+2 to upper triangular form is of the order O(m2), which is neglible and
therefore omitted.

We first consider the standard TSMRES method, i.e., Algorithm 2.2,
which uses the two-sided Gram-Schmidt process to construct an orthonormal
basis for the two-sided Krylove subspace K±

⌈m
2
⌉(S; q1). The construction of

q2 on line 2 requires one matrix-vector product and approximately O(7n)
operations for orthogonalization. The computation of qk+2 on lines from 4
to 8 requires a matrix-vector product and k + 1 inner products and vector
updates, requiring

S1 =

k+1∑
l=1

(
n+ (n− 1) + 2n

)
+ 2n+ n = (k + 1)(4n− 1) + 3n

operations for orthogonalizations in total. Similarly, to generate qk+3 on lines
from 9 to 13 we need a matrix-vector product and

S2 =
k+2∑
l=1

(
n+ (n− 1) + 2n

)
+ 2n+ n = (k + 2)(4n− 1) + 3n

operations for orthogonalizations. Assuming that the line 16 is computed by
using the relation (2.11), we need one matrix-vector product and k+3 inner
products and vector updates, which yields

S3 =

k+3∑
l=1

(
n + (n− 1) + 2n

)
= (k + 3)(4n− 1)

operations to compute hk+2 each round. Combining the parts S1, S2 and
S3, we then get the computational cost of one step of Algorithm 2.2. Since
each step of the iteration increases the size of subspace by two, to generate a
Krylov subspace of size m+ 3, we only need to take 1

2
(m+ 1) steps in total.

Setting k = 2j − 1, the computational cost of generating an orthonormal
basis for K±

⌈m
2
⌉(S; q1) becomes

(m+1)/2∑
j=1

(
S1 + S2

)
= O(2nm2 + 13nm+ 11n)



4.6. COMPUTATIONAL COST 91

operations for the orthogonalizations and (m + 1) matrix-vector products
in total. In addition, to compute a representation of the vectors Sqk in
the Krylov subspace K±

⌈m
2
⌉(S; q1), we need to compute hk+2, for each k =

1, 3, . . . , m by using the relation (2.11). After setting k = 2j − 1, we obtain
that this requires

(m+1)/2∑
j=1

S3 = O(nm2 + 8nm+ 7n)

operations and 1
2
(m+ 1) matrix-vector products in total.

We now consider the effect of using Proposition 4.2 to compute the vectors
hk+2. If the relation (4.11) is used, we do not need to compute any additional
matrix vector products or orthogonalizations. With (4.11) the computation
of the vectors hk+2 requires

S̃3 = (k + 3)
(
(k + 1) + k

)
+ 1 + (k + 3)

floating point operations at each step of the iteration. Since the vector hk+2

needs to be computed 1
2
(m + 1) times in total, after setting k = 2j − 1 we

again have the computational cost as

(m+1)/2∑
j=1

S̃3 = O(
1

3
m3).

The cost is independent of n and is usually neglible since often m≪ n.

We now consider the computational complexity of the numerically stabi-
lized TSMRES, i.e., Algorithm 4.1 which uses the modified Gram-Schmidt
process with reorthogonalization to construct the two-sided Krylov subspace
K±
⌈m

2
⌉(S; q1).

We begin by considering the computational cost of Algorithm 3.1, which
orthonormalizes a given vector w against a given orthonormal basis Qk =
{q1, q2, . . . , qk} and produces a vector qk+1 which is orthogonal projection to
the complement of span{q1, . . . , qk}.

Denote by Nr the number of orthogonalization steps required. Each inner
step in the orthogonalization process requires k inner products and vector
updates. Therefore, to compute a single inner step approximately

S0 =
k∑

j=1

(
n+ (n− 1) + 2n+ 1

)
= 4kn



92 CHAPTER 4. IMPLEMENTATION OF TSMRES

operations are required. Including the additional operations required for
checking if the generated vector is numerically in the span of Qk, to compute
qk+1 with Nr orthogonalization steps we need

S1 = 2n+Nr(2n+ S0 + 2n+ 4 + 2) + n = Nr(4kn + 4n+ 6) + 3n (4.43)

operations in total. Thus, when only a single orthogonalization step is used,
the cost is practically equivalent to the cost of the modified Gram-Schmidt
process without reorthogonalization.

With the computational cost of Algorithm 3.1 determined, we now con-
sider the cost of Algorithm 4.1. The computation of qk+2 on lines 4 and 5
requires one matrix-vector product and an orthogonalization against a basis
of size k + 1. Therefore, by (4.43)

S1 = Nr(4(k + 1)n+ 4n + 6) + 3n

operations are required by the orthogonalizations in total. Similarly, to com-
pute qk+3 on lines 6 and 7 we need a matrix-vector product and an orthogo-
nalization against a basis of size k + 2, i.e.,

S2 = Nr(4(k + 2)n+ 4n + 6) + 3n

operations are needed for orthogonalizations. As before, to compute a basis
for the two-sided Krylov subspace K±

⌈m
2
⌉(S; q1), only 1

2
(m+1) steps of the iter-

ation are needed in total. After denoting k = 2j− 1, the computational cost
of generating a two-sided subspace K±

⌈m
2
⌉(S; q1) with Algorithm 4.1 becomes

(m+1)/2∑
j=1

(
S1 + S2

)
= O(Nr(2nm

2 + 14nm+ 12n) + 3nm+ 3n)

operations for orthogonalizations and m+ 2 matrix-vector products in total.
In addition to solving a (m+3)-by-(m+2) least-squares problem, the cost

of which is negligible, to compute the approximate solution xm, Algorithm
4.1 needs to apply the operator S−1 once. No other additional operations,
such as computing the representation of the vectors Sqk in the generated
subspace K±

⌈m
2
⌉(S; q1), are needed.

Summarizing, we have Table 4.1 containing the most significant terms for
constructing a subspace of size (m+3) and obtaining an approximate solution
xm, for m odd. As mentioned already at the beginning of this section, since
typically m ≪ n, the computational cost for the solution of a (m + 3)-by-
(m+2) least-squares problem is of the order O(m2) when plane rotations are
used and is therefore neglible.



4.7. CONCLUSIONS 93

Complexities for different implementations of GMRES in Table 4.1 were
obtained from [105]. It was assumed that the initial guess x0 equals an
all-zero vector. Flops refers to the number of operations required for or-
thogonalizations, that is, cost to orthonormalize K±

⌈m
2
⌉(S; q1) for TSMRES

and Km+2(S; q1) for GMRES. Mvp refers to the number of matrix-vector
products used. Mem denotes the amount of storage required.

TSMRES TSMRES, Stabilized
GMRES

Householder
Prop. 4.2 TSMRES GMRES

Flops 3nm2 2nm2 2Nrnm2 2nm2 4nm2

Mvp 3
2 (m + 1) + 1 m + 2 m + 3 m + 2 m + 2

Mem (m + 3)n (m + 3)n (m + 3)n (m + 3)n (m + 3)n− 1
2m2

Table 4.1: Computational complexity of TSMRES versus GMRES, where Nr

denotes the number of orthogonalization steps

From Table 4.1 we observe that TSMRES without the use of Proposition
4.2 is computationally slightly more expensive than GMRES. With Proposi-
tion 4.2 the computational costs are of the same order of magnitude assuming
that operating with S and S−1 is equally expensive.

Similar conclusions hold also to the numerically stabilized TSMRES met-
hod, i.e., Algorithm 4.1. When Nr = 1, that is, only a single orthogonaliza-
tion step is used to orthogonalize each basis vector constructed, the number
of the operations required by orthogonalizations is of the same order of mag-
nitude. The additional matrix-vector required by the numerically stabilized
TSMRES method arises in the computation of the approximate solution.

We can also observe that the Householder implementation of GMRES
requires about twice the number of floating point operations to construct an
orthonormal basis for the subspace Km+2(S; q1) when compared to the imple-
mentations using Gram-Schmidt process. When Algorithm 4.1 is used with
two orthogonalization steps, the cost is similar to the Householder GMRES
method.

The memory usage of the different versions of the TSMRES and GMRES
methods is essentially equal. The small gain for the Householder version of
GMRES is explained by the decreasing length of the Householder vectors.

4.7 Conclusions

In this chapter, we have considered the implementation of TSMRES. In par-
ticular, efficient solution of the minimization problem (2.20) and the con-



94 CHAPTER 4. IMPLEMENTATION OF TSMRES

struction of a representation of the matrix S in the basis generated for the
two-sided Krylov subspace K±

⌈m
2
⌉(S; q1) were presented. When solving very

large linear systems with Algorithms 2.2 and 4.1, these implementation de-
tails are especially important.

We also introduced a new version of TSMRES, implemented by using it-
erative modified Gram-Schmidt process and reformulated minimization prob-
lem. In numerical experiments, we noticed that the numerically stabilized
TSMRES was, in some cases, numerically more stable than the TSMRES
method described by Huhtanen and Nevanlinna in [71].

We then briefly analyzed the numerical properties of both implementa-
tions of TSMRES. Although no backward stability was established, we gave
some theoretical justification on why the numerical behaviour of the nu-
merically stabilized TSMRES method is better than that of the standard
TSMRES method.

Finally, we analyzed the computational complexity and memory con-
sumption of TSMRES. It was shown, that when properly implemented the
computational cost of both versions of TSMRES is equal to that of GMRES,
assuming operating with S−1 is computationally as expensive as operating
with S. Thus, in the cases where the convergence of TSMRES is better than
that of GMRES, TSMRES can be a viable alternative.



Chapter 5

Restarting and preconditioning
of TSMRES

In this chapter, we consider the use of TSMRES for solving linear systems
of the form (2.1) in practice. To address the growing computational com-
plexity and memory consumption of the full version of TSMRES, we present
a restarted version of the algorithm. Another option is to use a truncated
version of the recurrence similarly to DQGMRES [108], for instance, but here
we do not pursue this further. For subspaces of similar size we present sev-
eral cases where the restarted GMRES method stagnates, but the restarted
TSMRES method converges.

For solving the standard linear system (1.1), we consider splitting the
matrix A into two readily invertible parts L and R. Then, after multiplying
by the inverse L of the matrix (or R), the linear system is the form (2.1)
with S = L−1R (or S = R−1L). The operation of splitting and multiplying
by the inverse a readily invertible part can be considered as preconditioning
a linear system for TSMRES. The aim is to choose L and R such that the
spectrum of S = L−1R benefits the TSMRES method.

We begin by presenting a restarted version of TSMRES. We also shortly
consider the effects of restarts with the two-sided Krylov subspaces.

5.1 Restarted TSMRES

The computational complexity analysis of Section 4.6 (see Table 4.1) shows
that the amount of computational work required for the orthogonalization
of the basis vectors grows quadratically as TSMRES iteration proceeds. To
compute a subspace of the size m + 2 with the TSMRES method approxi-
mately O(m2n) operations are required in total. Regarding memory, at each

95



96 CHAPTER 5. RESTARTED TSMRES

step of the iteration two new basis vectors have to be stored. Thus, for a sub-
space of the size m+2, the storage of the basis vectors requires O((m+2)n)
memory. In addition to the basis vectors, a full (m + 3)-by-(m + 2) block
Hessenberg matrix has to be stored.

Now consider the case where n is very large and assume that the products
Sv and S−1v for vectors v ∈ Cn can be computed in approximately O(kn)
operations. For m2 > k the computational cost of the orthogonalization
process becomes the dominating cost. Also, for very large m, the memory
requirement for the storage of the basis vectors may become a prohibitive
factor.

As with the GMRES method, a simple remedy to the problem of the
growing orthogonalization cost and memory consumption is to stop the TSM-
RES method after m steps have been taken. The method is then restarted
by using the mth iterate as the new initial guess, i.e., setting x0 = xm.

In the following, we denote by Nk the maximum number of restarts and
rtol the stopping tolerance. A restarted version of TSMRES is described in
Algorithm 5.1.

Algorithm 5.1 Restarted TSMRES

1: for k = 1, 2, . . . , Nk do
2: Lines 1-17 of Algorithm 2.2
3: If ||b− (I + S)xm||2/||b||2 ≤ rtol stop, otherwise set x0 = xm

4: end for

We denote Algorithm 5.1, i.e., the TSMRES method restarted every m
iterations, by TSMRES(m). We note that each inner cycle of TSMRES(m)
contains m iterations of TSMRES for a subspace size of 2m + 1 at most.
For Nk restarts, at most Nkm iterations and the computation of Nk(2m+ 1)
matrix-vector products in total are required.

Denote by r
(m)
k , 1 ≤ k ≤ Nkm the kth residual vector of the restarted

TSMRES method. In the absence of the numerical error, the norm of the
restarted residual vector is nonincreasing by the minimum residual property
of TSMRES. Thus we have ||r(m)

k ||2 ≤ ||r(m)
j ||2 for all j < k. Note that with

m = n, we have the unrestarted full method.

Analogously to the restarted GMRES method, the problem with the
restarted TSMRES is the loss of optimality. For the restarted TSMRES
we have ||r(n)

k ||2 ≤ ||r(m)
k ||2 with k > m, i.e., the speed of convergence of

the restarted method may be slower than that of the full method, at least
when measured by the amount of iterations computed. In practice the wall-
clock time taken by the computations of the restarted TSMRES method may



5.1. RESTARTED TSMRES 97

actually be much lower due to the reduced computational cost of orthogo-
nalization, however.

On the other hand, as with the restarted GMRES method, it is very
difficult to consider how the restarted TSMRES behaves for different values
of the restart parameter m. A natural assumption would be that increasing
m leads to a faster convergence. However, for the restarted GMRES method,
it is well known that there are cases where ||r(m)

k ||2 > ||r(l)
k ||2 with l < m < k,

[42], i.e., increasing the restart parameter actually slows down convergence.
A more serious matter with the restarted TSMRES method is that it can

stagnate, i.e., achieve no reduction of the residual norm after a restart has
been made. Then ||r(m)

l ||2 = ||r(m)
k ||2 for all 1 ≤ l ≤ k ≤ Nkm and the

restarted method fails to converge. This happens when essentially the same
two-sided Krylov subspace is generated before and after a restart.

Let the GMRES-S−1 method be defined as in Section 2.5. We denote
by GMRES(m) and GMRES-S−1(m) the GMRES and GMRES-S−1 meth-
ods restarted after m steps, respectively. Then, for the convergence of the
restarted TSMRES method, we have the following proposition.

Proposition 5.1. Let S be a positive definite matrix. Then the restarted
TSMRES method converges for any m ≥ 1.

Proof. If the matrix S is positive definite, then also then matrix S−1 is pos-
itive definite. The two-sided Krylov subspace generated by TSMRES(m)
equals K±

⌈m
2
⌉(S; q1) = span�p�,��∈P⌈m

2 ⌉
{�p�(S)q1, ��(S−1)q1} where q1 = r0/||r0||2

and Pj denotes the set of polynomials of degree j at most.
With GMRES(⌈m

2
⌉) a subspace K⌈m

2
⌉(S; q1) = span�p�∈P⌈m

2 ⌉
{�p�(S)q1} is

generated and we have K⌈m
2
⌉(S; q1) ⊂ K±

⌈m
2
⌉(S; q1). On the other hand, with

GMRES-S−1(⌈m
2
⌉) a subspace K⌈m

2
⌉(S−1; q1) is generated, and again we have

K⌈m
2
⌉(S−1; q1) ⊂ K±

⌈m
2
⌉(S; q1).

When S is positive definite, both GMRES(⌈m
2
⌉) and GMRES-S−1(⌈m

2
⌉)

converge, see [105, Theorem 6.30, pp. 205]. TSMRES(m) minimizes the
residual norm in the two-sided Krylov subspace K±

⌈m
2
⌉(S; q1), which contains

the subspaces K⌈m
2
⌉(S; q1) and K⌈m

2
⌉(S−1; q1). Therefore, the residual norm

of the TSMRES(m) method before a restart must be at least as good as
the minimum of the residual norms of GMRES(⌈m

2
⌉) and GMRES-S−1(⌈m

2
⌉)

before a restart and thus the TSMRES(m) method converges.

Several methods have been proposed to prevent the stagnation and im-
prove the convergence of the restarted GMRES method. These include aug-
menting the subspace with approximate eigenvectors, restarting the iteration
implicitly and using deflated restarting [87, 88, 89]. In the nested Krylov



98 CHAPTER 5. RESTARTED TSMRES

methods such as GMRESR [123] and FGMRES [102], the approximation
subspace is modified to achieve a convergence more similar to that of the full
method without the added computational and memory cost. Many of such
techniques are applicable in the restarted TSMRES method. In this chapter
we only concentrate on the restarted TSMRES method without any other
modifications.

Concerning the numerical stability, the restarted TSMRES method has
some benefits over the full method. Since generally m ≪ n, the maximum
dimension of the two-sided subspace is moderate and thus the degree of the
polynomials �p�

k
and ��

k
in S and S−1 in the relation (2.26) is also moderate.

Thus the numerical stability is less of a concern. For the restarted TSMRES
method, the numerical stabilization is not usually needed and all versions of
TSMRES can be used. Regarding the computational complexity, this means
that the number of matrix-vector products required by restarted TSMRES
is equal to that required by the restarted GMRES.

In the following section, we discuss the numerical behaviour of the restar-
ted TSMRES method in more detail.

5.2 Convergence of restarted TSMRES

In this section, we reconsider the numerical examples of Section 2.6. In
the numerical experiments, we consider how the convergence of the restarted
TSMRES compares to that of the restarted GMRES or GMRES-S−1 methods
for different values of the restart parameter m.

Denote by GMRES(k) and GMRES-S−1(k), the GMRES and GMRES-
S−1 methods restarted after k steps, respectively. Then, after setting k =
2m + 1, the dimension of the standard Krylov subspaces K2m+1(S; q1) and
K2m+1(S

−1; q1) used by GMRES(k) and GMRES-S−1(k) equals to that of
the two-sided Krylov subspace K±

⌈m
2
⌉(S; q1) used by TSMRES(m).

In the numerical experiments, the restart parameter is chosen as m =
3, 5, 15 or 30. The right-hand side is always b = b̂/||b̂||2, where b̂ = 1 =
(1, . . . , 1)T is the vector of all ones. As a stopping criterion

||b− (I + S)x||2
||b||2 ≤ 1E − 6 (5.1)

is used, i.e., we compute the residual from scratch each iteration round and
terminate the iteration once the relative residual is reduced by six orders
of magnitude. The maximum number of restarts Nk is chosen such that
approximately 2000 matrix-vector products are computed at most.



5.2. CONVERGENCE OF RESTARTED TSMRES 99

For Examples from 2.6 to 2.21 of Section 2.6, we describe the number
of the matrix-vector products required by the restarted GMRES, GMRES-
S−1 and TSMRES methods to reach the stopping criterion (5.1) for different
values of the restart parameter m. A dagger-symbol (†) indicates that the
stopping criterion is not reached within a maximum number of matrix-vector
products. Stagnation of the iteration is denoted by a double dagger-symbol
(‡). A bold value indicates the fastest convergence among the three methods
for each example–restart parameter pair. Table 5.1 describes the results.

GMRES(k) GMRES-S−1(k) TSMRES(m)
7 11 31 61 7 11 31 61 3 5 15 30

Ex 2.6 59 51 48 46 8 8 8 8 17 16 15 15
Ex 2.7 11 11 11 11 1071 516 116 80 19 20 21 21
Ex 2.8 632 389 200 172 11 10 10 10 24 22 21 21
Ex 2.9 51 45 43 42 † † † † 115 99 83 84
Ex 2.10 † † † † † † 459 104 † † † 1025
Ex 2.11 146 115 91 90 34 28 21 21 66 58 36 35
Ex 2.12 153 145 138 136 419 230 96 68 257 231 149 110
Ex 2.13 † † † † 20 20 20 20 47 44 42 41
Ex 2.14 20 20 20 20 † † † † 35 36 38 39
Ex 2.15 † † † † † † † † † † † †
Ex 2.16 20 20 20 20 11 11 11 11 17 16 15 15
Ex 2.17 11 11 11 11 21 21 21 21 14 14 15 15
Ex 2.18 † † † † 149 110 79 60 493 379 191 163
Ex 2.19 † 1383 761 669 16 16 16 16 38 36 31 31
Ex 2.20 ‡ ‡ † † ‡ ‡ † † ‡ ‡ † †
Ex 2.21 1443 586 270 257 1594 598 288 267 416 322 279 257

Table 5.1: Number of matrix-vector products required to reach the conver-
gence criterion (5.1) for GMRES(k), GMRES-S−1(k) and TSMRES(m)

The results are similar to those presented in Section 2.6. We observe that
the differences in the convergence speed are emphasized when the methods
are being restarted, especially for small m. For the cases considered, the
restarted TSMRES is the most robust method, failing to converge only when
both the GMRES and GMRES-S−1 methods fail to converge.

In most cases, the convergence speed of the restarted TSMRES method
is between the convergence speed of the restarted GMRES and GMRES-
S−1 methods. If either GMRES or GMRES-S−1 converges rapidly, in most
cases TSMRES also converges rapidly, requiring approximately two times
the number of matrix-vector products when compared to the fastest method.
We attribute such behaviour to the construction of the two-sided subspaces
K±
⌈m

2
⌉(S; q1) and the minimum residual property of TSMRES. In such cases,

approximately half of the generated set of basis vectors cannot be efficiently
used in reducing the residual. The phenomenon is observable in Examples
2.6 and 2.14, for instance.



100 CHAPTER 5. RESTARTED TSMRES

None of the restarted methods converge for Example 2.15 or 2.20. By the
construction of σ(S) in these examples, such behaviour is to be expected,
since the approximation with polynomials �p�

j
or ��

j
in S or S−1 is not efficient

until the degree of the polynomials has reached n or n/2, respectively. Thus,
for these examples, restarting the iteration yields very poor convergence.

For the full methods, in Example 2.21 of Section 2.6, TSMRES converges
faster than GMRES and GMRES-S−1 by a small margin. For the same ex-
ample with the restarted algorithms, TSMRES is usually the most efficient
method by a more significant margin, especially when m is small. Approx-
imately a thousand matrix-vector products less are required by TSMRES
for m = 3 when compared to GMRES and GMRES-S−1. For m = 5, the
reduction is reduced to about a two hundred matrix-vector products. For
larger m, all the methods perform almost equally, reaching the convergence
criterion (5.1) within a twenty matrix-vector products of each other.

From the numerical results of this section, we conclude that when the
spectrum of S resembles that of Example 2.21, the restarted TSMRES is a
viable alternative to the restarted GMRES methods. In the next section, we
consider preconditioning a general linear system (1.1) to the form (2.1).

5.3 Preconditioning of general linear systems

for the TSMRES method

In this section, we consider solving the linear system (1.1), i.e,

Ax = b

with A ∈ Cn×n and b ∈ Cn. We now assume that there exists a splitting of
the matrix A of the form

A = L+R, (5.2)

with L,R ∈ Cn×n both readily invertible. Then, after preconditioning from
the left with L−1 (or R−1) we have the linear system (2.1), i.e.,

(I + S)x = L−1b (5.3)

with S = L−1R (or S = R−1L) readily invertible. With a similar splitting,
preconditioning can also be applied from the right to have

(I + S)y = b, x = L−1y, (5.4)

with S = RL−1 again readily invertible. In both cases, the preconditioning
operation becomes cleverly splitting A into L and R with the aim of having
such a spectrum for S that benefits the full or the restarted TSMRES method.



5.3. PRECONDITIONING FOR TSMRES 101

Our preconditioning approach is different from the standard approach
to preconditioning. With the methods based on standard Krylov subspaces
Kj(A; q1), such as GMRES, the aim is usually to heuristically find a precon-
ditioner M such that the distance of MA to the identity operator is smaller
than that of the matrix A alone. Then, the preconditioned Krylov subspaces
Kj(MA; q1) can usually be expected to yield a faster convergence than the
unpreconditioned ones.

We note that an attempt to apply the conventional left preconditioning
strategy to (1.1) leads to a new decomposition of A. After applying the
inverse of ML we then have

(ML+MR)x = Mb⇔ (I + S)x = L−1b, (5.5)

which is equivalent to the linear system (2.1) with a modified right-hand side.
An attempt to use the right preconditioning yields

(LM +RM)u = b, u = M−1x (5.6)

Multiplying by the inverse of LM from the left, we have

(I +M−1SM)u = M−1L−1b, ⇔M−1(I + S)Mu = M−1L−1b, (5.7)

i.e., a similarity transformation by the matrix M . Since the preconditioned
matrix M−1(I + S)M has the same eigenvalues as the original matrix I + S,
from the view of the approximation problem (2.30), the right preconditioning
does not transform the system into a one that is easier to solve with TSM-
RES.

Now briefly consider splitting a general nonsingular matrix A with non-
zero diagonal entries as A = L + R. The standard Gauss-Seidel splitting is
of the form

A = D −E − F, (5.8)

where D is the diagonal and −E and −F are the strictly lower and upper
diagonal parts of A. In the Gauss-Seidel iteration operations are then per-
formed with the matrices L = D − E (or L = D − F ) and R = −F (or
R = −E). With the Gauss-Seidel splitting, the matrix R does not need to
be invertible.

Splitting a matrix is even more complex when both parts of the splitting
must be readily invertible. A special care must be taken in order to obtain
L and R which are not only nonsingular, but also not too ill-conditioned to
be used in practical computations.

By our assumptions the diagonal of the matrix A is always nonzero, which
may seem very restrictive at first. However, a way to deal with matrices



102 CHAPTER 5. RESTARTED TSMRES

having zeroes on their diagonal is to nonsymmetrically permute A so that
its diagonal entries become nonzero. We can also try to seek a permutation
maximizing the sum (or product) of the diagonal entries. Algorithms for
constructing such permutations, called the maximum weighted matchings
of a bipartite graph of A in graph theoretic terms, have been studied by
Duff and Koster in [37]. Benzi et al. studied their effects in the context of
preconditioning iterative methods in [8]. For a nonsingular matrix A, such
a matching always exists [93]. Thus it is, at least in theory, always possible
to obtain an invertible Gauss-Seidel-type splitting after the matrix has been
permuted to have nonzero diagonal entries.

In the following subsections, we consider solving the linear system (2.1)
obtained after splitting the original matrix A into two readily invertible parts
and then preconditioning the linear system (1.1) by one of the parts from
the right. Therefore we have the linear system (5.4) with S = RL−1. In
exact arithmetic, the residual norms computed by GMRES, GMRES-S−1

and TSMRES for the preconditioned linear system (5.4) are equivalent to
the residual norms computed for the original linear system. In spite of this,
we use the stopping criterion

||b− Ax||2
||b||2 ≤ 1E − 6, (5.9)

i.e., the iteration is terminated once the relative residual norm of the original
linear system (1.1), computed from scratch each iteration round, has been
reduced by six orders of magnitude. We note that in the numerical experi-
ments, the computed residual of the preconditioned linear system was always
of the same order of magnitude as the residual used in the stopping criterion
(5.9).

In the numerical experiments, we compare the convergence speed of TSM-
RES(m) with that of GMRES(k) and GMRES-S−1(k) where k = 2m+1 and
m = 5, 10 and 15. The maximum number of restarts Nk is chosen such that
approximately 2500 matrix-vector products are computed at most. As a
right-hand side we use b = b̂/||b̂||2, where b̂ = 1 = (1, 1, . . . , 1)T denotes a
vector of all ones as previously.

To construct a readily invertible matrix S we split the matrix A as de-
scribed in what follows. We consider two basic types of splittings: purely
algebraic and ones based on the underlying equations. As purely algebraic
splittings we consider the splittings of the Gauss-Seidel and the k-Hessenberg
–type. As an example of a splitting based on splitting the underlying dis-
cretized equations, we study splittings of the ADI –type.

Denote by nz(X) the number of nonzero elements in a matrix X. In
the numerical experiments with purely algebraic splittings, we let the matrix



5.3. PRECONDITIONING FOR TSMRES 103

A be a matrix selected from the MatrixMarket collection [92]. We use the
following test problems.

• JPWH991 is generated by circuit physics modelling. It is of the size
n = 991 with nz(A) = 6027. The condition number estimate is moder-

ate κest(A) = 7.3E + 2.

• Sherman1 is from a black oil simulation of shale barriers. The matrix
size is n = 1000 with nz(A) = 3750 and the condition number estimate

κest(A) = 2.3E + 4.

• Sherman4 is from an IMPES simulation with flow barriers. The ma-
trix size is n = 1104 with nz(A) = 3786 and the condition number

estimate κest(A) = 7.2E + 3.

• Sherman5 is from a fully implicit black oil simulator. The matrix size
is n = 3312 with nz(A) = 20793 and the condition number estimate

κest(A) = 3.9E + 5.

With ADI–type of splittings we consider finite difference discretizations of
elliptic equations of the type

−(aux)x − (buy)y + cux + (cu)x + duy + (duy)y + eu = f, (5.10)

on a rectangular region Ω ⊂ R2. We use Dirichlet boundary conditions u = 0
on the boundary ∂Ω. Denote by Ω the closure of Ω, i.e., Ω = Ω∪∂Ω. Then, for
the functions a(x, y), b(x, y), c(x, y) and d(x, y) we assume C1(Ω)∩C0(Ω) to
hold, i.e., the functions are continuously differentiable inside the domain and
continuous on the closure of Ω. Function e(x, y) is assumed to be continuous
on Ω.

For comparison, we now consider solving the linear system (1.1), i.e.,

Ax = b

for all the test problems from the MatrixMarket collection with GMRES(k).
We also consider the case with a right preconditioner (1.22)

APy = b, x = Py,

where we use ILU(τ) preconditioner, i.e., the incomplete LU -decomposition
with threshold dropping, computed with Matlab’s luinc-function. With
ILU(τ), we choose the threshold of the numerical dropping for the test prob-
lems JPWH991, Sherman1, Sherman4 and Sherman5 as τ = 5E −



104 CHAPTER 5. RESTARTED TSMRES

1, τ = 7E−2, τ = 1.5E−1 and τ = 7E−3, respectively. With these choices
of τ , the number of the entries in the computed incomplete factors of the
preconditioner and in the original matrix is approximately the same. We use
the stopping criterion (5.9), i.e., the iteration is stopped when the relative
residual has been reduced by six orders of magnitude.

Table 5.2 describes the number of matrix-vector products required by the
restarted GMRES method with and without ILU(τ) preconditioner to reach
the stopping criterion (5.9). Operations required to apply the preconditioner
were not taken into account. Nonconvergence and stagnation of the method
is denoted by dagger (†) and double dagger (‡) –symbols, respectively.

GMRES(k) GMRES(k)-ILU(τ)
11 21 31 11 21 31

JPWH991 73 52 43 57 45 39
Sherman1 † † † 100 74 69
Sherman4 697 495 351 162 114 62
Sherman5 † † † 74 53 33

Table 5.2: Number of matrix-vector products required to have (5.9) for
GMRES(k) with and without ILU(τ) preconditioning for the linear system
(1.1)

From Table 5.2 we observe that without preconditioning, only the prob-
lems JPWH991 and Sherman4 are relatively easy to solve with the restar-
ted GMRES method. On the other hand, by using the ILU(τ) precondi-
tioner, practically all of the problems become quite easy to solve.

5.3.1 Gauss-Seidel –type splittings

In this section, we consider algebraic splitting of the matrix A into block
lower and upper triangular matrices. Let the matrix A be partitioned into
s2 blocks such that there are s blocks both row- and columnwise. We have

A =


A1,1 A2,1 · · · A1,s

A2,1 A2,2 · · · A2,s
...

...
. . .

...
As,1 As,2 · · · As,s

 ,



5.3. PRECONDITIONING FOR TSMRES 105

which yields a block splitting of A as

D =


A1,1

A2,2

. . .

As,s

 , (5.11)

E = −


0
A2,1 0

...
...

. . .

As,1 · · · As,s−1 0

 , F = −


0 A1,2 · · · A1,s

0
...

...
. . . As−1,s

0

 ,
where D is the block diagonal and −E and −F are the strictly lower and
upper block diagonal parts of A and 0 an all-zero block matrix of an appro-
priate size. We assume that in the splitting all the diagonal blocks of Aj,j are
invertible, i.e., the matrix D is invertible. With D, −E and −F defined as
in (5.11), we obtain a readily invertible block triangular L and R by setting
L = 1

2
D −E and R = 1

2
D − F .

The block triangular splittings present a connection between direct and
iterative methods. As the TSMRES iteration proceeds, operations on S and
S−1 are applied multiple times. In order to efficiently solve block triangular
systems with a block forward or back substitution, we can compute and store
the LU -decompositions of the diagonal blocks of A as Dj,j = Lj,jUj,j. Then
the process of solving linear systems with L and R becomes inexpensive in
terms of floating point operations since the diagonal elements 1

2
Dj,j are not

repeatedly factorized.

Storing the LU -decompositions of the diagonal blocks has an additional
memory cost determined by the structure of the diagonal blocks. If the blocks
are sparse, fill-in reducing permutations such as the reverse Cuthill-McKee
[52] or the column approximate minimum degree [30] can be used blockwise
to reduce the amount of storage required.

Even if the blocks are full, assuming l ≪ n and that s2 blocks of constant
size l-by-l are used, storing the LU -decompositions of the diagonal blocks
takes approximately O(sl2) memory. The amount is equivalent to what is
required by the standard block Jacobi-preconditioner.

We now consider solving the test problems with the block lower and
upper triangular splittings. If possible, we select the blocksize l ∈ N as a
fixed constant such that n = ls holds with s ∈ N, i.e., l is selected to divide
n. For the matrix JPWH991, the last block was always selected to be of
the size l + 1.



106 CHAPTER 5. RESTARTED TSMRES

As previously, we describe the number of the matrix-vector products re-
quired by the restarted GMRES, GMRES-S−1 and TSMRES methods to
reach the stopping criterion (5.9). Nonconvergence and stagnation of the
methods are denoted by dagger (†) and double dagger (‡) –symbols, re-
spectively. A bold value indicates the fastest convergence among the three
methods for each example–restart parameter pair. Table 5.3 describes the
results for each test problem for different blocksizes l with the restarted
GMRES(k), GMRES-S−1(k) and TSMRES(k) methods for m = 5, 10 and
15 and k = 2m+ 1.

GMRES(k) GMRES-S−1(k) TSMRES(m)
11 21 31 11 21 31 5 10 15

JPWH991
l = 1 82 57 49 86 55 49 84 57 44
l = 5 82 57 49 85 56 49 84 57 44
l = 11 83 56 48 82 54 48 84 55 44
Sherman1
l = 1 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡
l = 10 216 134 114 316 123 118 174 131 120
l = 20 154 98 100 212 98 95 135 103 93
Sherman4
l = 1 ‡ 714 332 ‡ ‡ 515 ‡ 418 323
l = 6 ‡ 451 399 ‡ ‡ 362 ‡ 402 302
l = 16 ‡ 376 337 ‡ ‡ 331 ‡ 360 290
Sherman5
l = 1 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ †
l = 69 ‡ † 327 ‡ † 264 ‡ ‡ 313
l = 144 ‡ 495 184 ‡ 293 179 ‡ 269 170

Table 5.3: Number of matrix-vector products required to have (5.9) for
GMRES(k), GMRES-S−1(k) and TSMRES(m) for the linear system (2.1)
obtained after a block triangular splitting.

By the numerical results of Table 5.3, we observe that for the test problem
JPWH991 all the methods perform nearly equally. For the test problem
Sherman1, when the methods do not stagnate, TSMRES is the fastest
method when the maximum size of the subspace is 11. Also, for the test
problem Sherman4, the TSMRES method is the fastest method in all cases
when the methods do not stagnate. The test problem Sherman5 is difficult
to solve with the block triangular splitting approach. Large sized blocks and



5.3. PRECONDITIONING FOR TSMRES 107

large sized subspaces are required to prevent stagnation.
In the cases where TSMRES is the fastest method, its convergence speed

is not competitive with ILU preconditioning. By the results of Table 5.2, the
iteration counts for TSMRES are larger than those of the restarted GMRES
method with an ILU(τ) preconditioner applied to the original linear system
(1.1).

We note that all of the ShermanX test problems are structured, i.e., they
arise from finite difference discretizations. In the numerical experiments, we
selected the block sizes for these problems according to the parameters used
in the discretization. For a black-box method such information is not always
directly available, but can be extracted automatically, see [39].

With the restarted TSMRES method, increasing the block size l is bene-
ficiary to the convergence speed of the iteration for all of the test problems.
When the problem is structured, also the restarted GMRES and GMRES-
S−1 methods benefit from the increased block size. When the test problem is
unstructured, the benefits of the block splitting approach are not so clear. For
all the methods the convergence for the test problem JPWH991 is largely
similar even if the block size is increased.

By the numerical results, we conclude that preconditioning linear systems
for TSMRES by using block splittings seems to be applicable at least in the
case where the linear system has some predefined block structure. On the
other hand, using an ILU(τ) preconditioner on the original linear system
can yield much faster convergence. In the next section, we consider split-
tings better suited to cases where the structure of the matrix is not known
beforehand.

5.3.2 k-Hessenberg splittings

In this section we consider algebraic splitting of the original matrix A into
lower and upper k-Hessenberg matrices. By an upper k-Hessenberg matrix
we mean an upper triangular matrix with k extra nonzero diagonals below
the main diagonal. Lower k-Hessenberg matrices are defined similarly as
lower triangular matrices having k extra nonzero diagonal above the main
diagonal.

In the following we partition the matrix A into lower and upper k-
Hessenberg parts. Denote by ai,j the entries of the matrix A. We then
have

A =


a1,1 a2,1 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n

 ,



108 CHAPTER 5. RESTARTED TSMRES

which yields a k-band splitting of A as

B =



a1,1 · · · a1,k+1
...

. . .
. . .

ak+1,1
. . .

. . .
. . .

. . . an−k−1,n

. . .
. . .

...
an,n−k−1 · · · an,n


, (5.12)

E = −

 ak+2,1
...

. . .

an,1 · · · an,n−k−2

 , F = −


a1,k+2 · · · a1,n

. . .
...

an−k−2,n

 ,
where B is the k-band and −E and −F are the strictly lower and upper
k-diagonal parts of the matrix A. With these, we have the k-Hessenberg
splitting of A as L = 1

2
B −E and R = 1

2
B − F .

Linear systems involving sparse k-Hessenberg matrices are numerically
inexpensive to solve. Consider a linear system

Hx = b, (5.13)

where H ∈ Cn×n denotes an upper (or lower) k-Hessenberg matrix and b ∈
Cn. Denote by τ = nz(H)/n2 the density of the matrix H . Then, solving
the linear system (5.13) requires O(τ(k + 1)n2) floating point operations
and O(kn) memory. In Chapter 6, we present an algorithm having such a
computational complexity in detail.

Compared to the block triangular splittings, the k-Hessenberg splittings
have the advantage of requiring less knowledge about the structure of the
original matrix. On the other hand, nonsingularity of the k-Hessenberg parts
can be much harder to determine.

Table 5.4 describes the results of the numerical experiments with k-
Hessenberg splittings for several different values of the parameter k. As
with the block triangular splittings, we describe the number of matrix-vector
products required by the restarted GMRES(k̂), GMRES-S−1(k̂) and TSM-
RES(m) methods for m = 5, 10 and 15 and k̂ = 2m+1 to reach the stopping
criterion (5.9). As before, nonconvergence and stagnation are denoted by
dagger (†) and double dagger (‡) –symbols. A bold value indicates the fastest
convergence among the three methods for each example–restart parameter
pair.



5.3. PRECONDITIONING FOR TSMRES 109

GMRES(k̂) GMRES-S−1(k̂) TSMRES(m)
11 21 31 11 21 31 5 10 15

JPWH991
k = 0 82 57 49 86 55 49 84 57 44
k = 1 82 57 49 86 56 49 84 57 46
k = 5 83 56 48 82 55 48 84 55 44
Sherman1
k = 0 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡
k = 1 216 134 114 316 123 118 174 131 120
k = 11 101 79 66 103 80 65 95 78 65
Sherman4
k = 0 ‡ 714 332 ‡ ‡ 515 ‡ 418 323
k = 1 ‡ 376 337 ‡ ‡ 331 ‡ 360 290
k = 16 ‡ 226 95 ‡ 226 105 247 156 91
Sherman5
k = 0 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ †
k = 1 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡
k = 5 ‡ ‡ 1738 ‡ ‡ 394 ‡ ‡ 463

Table 5.4: Number of matrix-vector products required to have (5.9) for
GMRES(k̂), GMRES-S−1(k̂) and TSMRES(m) for the linear system (2.1)
obtained after a k-Hessenberg splitting.

We select the band sizes k by finding the nonzero diagonals of the test
matrices. For the test problems Sherman1 and Sherman4, the values
selected correspond to the smallest ones which yield nonzero diagonals. With
JPWH991 and Sherman5 we use the those diagonals for which the band
size k is suitably small. Splitting the matrix A with the band size k = 0
corresponds to splitting the matrix into lower and upper triangular parts.
Thus the results for each test problem with k = 0 are identical to those
presented in Table 5.3 with block size l = 1. The results were included to
make comparison easier.

By the numerical experiments increasing the number of diagonals in the
matrix B also increases the speed of convergence when the test problem is
structured. With the test problem JPWH991, increasing the band size
does not yield any notable increase in the speed of convergence for any of
the methods tested. For the ShermanX test problems, increasing the band
size k generally improves convergence.

In general, the convergence behaviour is very similar to increasing the



110 CHAPTER 5. RESTARTED TSMRES

block size l with the Gauss-Seidel –type of splittings. As with the block
triangular splittings, in most cases the iteration counts for TSMRES with k-
Hessenberg splittings are larger than those of the restarted GMRES method
with an ILU(τ) preconditioner applied to the original linear system (1.1).
The exception is the Sherman1 test problem with m = 5 and k = 11, where
the speed of convergence obtained with TSMRES is faster.

The conclusions are largely similar to those of the previous section. For
the structured problems, splittings of the k-Hessenberg type can be used to
precondition linear systems for TSMRES. For the test problems, the restarted
TSMRES method is a bit more robust, since it does not stagnate for the
Sherman4 test problem when k = 16 and m = 5. For all the methods tested,
increasing the band size k is beneficiary to the convergence speed of the
iteration for the structured test problems.

5.3.3 ADI –type splittings

In this section, we consider splittings of the ADI–type for the elliptic equa-
tions (5.10). Alternating Direction Implicit (ADI)-iterations were originally
introduced by Peaceman and Rachford in [96] (see also [125]). ADI -iterations
are based on splitting the two-dimensional discretization by its x- and y-
directions to have a linear system of the form

(H + V )x = b, (5.14)

where H and V are large and sparse matrices having a special structure.
With the splitting (5.14), the ADI method can be formulated as

(ϕI +H)x(j+1/2) = (ϕI − V )x(j) + b,

(ψI − V )x(j+1) = (ψI +H)x(j+1/2) − b,
(5.15)

where ϕ, ψ ∈ R are parameters which can vary each step. Let E and F be
disjoint compact sets such that σ(V ) ⊆ E and −σ(H) ⊆ F , where σ(V )
and σ(H) denote the spectrum of V and H , respectively. Then, for the
commutative case HV = V H , optimal choice for the sets of parameters
{ϕ1, ϕ2, . . . , ϕl} and {ψ1, ψ2, . . . , ψl} leads to a rational minimization problem

min
r∈Rll

maxz∈E |r(z)|
minz∈F |r(z)| , (5.16)

where Rll denotes the set of rational functions with a denominator and nu-
merator degree not exceeding l.

In the commutative case, an algorithm for computing an optimal set of
parameters via the approximation problem (5.16) was given in [126]. This



5.3. PRECONDITIONING FOR TSMRES 111

was later found to be linked to the one of the four classical approximation
problems solved by Zolotarev with elliptic functions, see [114].

In the nonsymmetric case the problem of choosing optimal parameters
is considerably more difficult. An asymptotically optimal approach is to
use Leja points in solving the nonsymmetric equivalent of (5.16). Then the
asymptotic behaviour is reached with relatively few parameters [111]. The
ADI method can also be used as an effective preconditioner for an iterative
method, such as GMRES, see [112].

In the following, we consider using the splitting (5.14) to transform the
linear system (1.1) into the form (2.1), i.e., we do not consider the use of the
parameters ϕ or ψ. We consider the following two test problems.

1. The Poisson’s equation{ −△u = f, in Ω,
u = 0, on ∂Ω,

which is obtained from (5.10) by setting a(x, y) = b(x, y) = 1 and
c(x, y) = d(x, y) = e(x, y) = 0.

2. The nonsymmetric problem{ −△u+ τ(xux + yuy) + ηu = f, in Ω,
u = 0, on ∂Ω,

with τ = 100 and η = −50. The problem is obtained from the equation
(5.10) by setting a(x, y) = b(x, y) = 1, c(x, y) = τ

2
x, d(x, y) = τ

2
y and

e(x, y) = η − τ .

Let Ω = (0, 1) × (0, 1) be the unit square and f(x, y) = 1. Using cen-
tered difference approximations ux = ∂xu ≈ ui+1,j−ui−1,j

2h
and uy = ∂yu ≈

ui,j+1−ui,j−1

2h
to the derivatives we have the discretized linear system on a n-by-

n point grid with the splitting (5.14) where H and V are n2-by-n2 matrices.
For matrices H and V we then have

[H ]i,j =
(
ai+1/2,j + ai−1/2,j

)
ui,j − ai+1/2,jui+1,j − ai−1/2,jui−1,j

+ [(ci,j + ci+1,j)ui+1,j − (ci,j + ci−1,j) ui−1,j]h/2 + ei,jui,jh
2/2

(5.17)
and

[V ]i,j =
(
bi,j+1/2 + bi,j−1/2

)
ui,j − bi,j+1/2ui,j+1 − bi,j−1/2ui,j−1

+ [(di,j + di,j+1) ui,j+1 − (di,j + di,j−1) ui,j−1] h/2 + ei,jui,jh
2/2,

(5.18)



112 CHAPTER 5. RESTARTED TSMRES

GMRES(k) GMRES(k)-ILU(0)
11 21 31 11 21 31

Problem 1
16× 16 63 26 25 14 14 14
32× 32 303 148 90 28 24 23
64× 64 1088 621 458 119 52 42
128× 128 4189 2258 1581 408 243 133
Problem 2
16× 16 ‡ ‡ 214 20 16 16
32× 32 ‡ ‡ ‡ 74 37 26
64× 64 ‡ ‡ ‡ ‡ 232 115
128× 128 † † † ‡ ‡ ‡

Table 5.5: Number of matrix-vector products required to have (5.9) for
GMRES(k) with and without ILU(0) preconditioning for the linear system
(5.14)

with h = 1/(n + 1) and where ai,j, bi,j, ci,j, di,j and ei,j denote the values of
the functions a, b, c, d and e in the grid point (i, j).

For comparison, we now consider solving the linear system (5.14) by using
GMRES(k) with and without a preconditioning. We use ILU(0), i.e., the
incomplete LU -decomposition with no fill-in as a preconditioner, computed
with Matlab’s luinc-function. As a stopping criterion (5.9) is used, i.e., the
iteration is stopped when the relative residual has been reduced by six orders
of magnitude.

Table 5.5 describes the number of matrix-vector products required by
the restarted GMRES method without and with ILU(0) preconditioning to
reach the stopping criterion (5.9). As before, operations required to apply the
preconditioner were not taken into account. Nonconvergence and stagnation
of the method is denoted by dagger (†) and double dagger (‡) –symbols,
respectively.

Now consider preconditioning the linear system (5.14) with the splitting
approach. When defined as in (5.17), the matrix H is block diagonal with
tridiagonal blocks of size n. Similarly, with (5.18) the matrix V is block tria-
diagonal with diagonal blocks. After reordering the matrix V becomes block
tridiagonal with a structure similar to that of the matrix H . Since solving
linear systems with tridiagonal matrices requires approximately O(8n) oper-
ations [55], both H and V are readily invertible. Setting L = H and R = V ,
we then have the linear system (5.4).



5.3. PRECONDITIONING FOR TSMRES 113

Table 5.6 describes the results of the numerical experiments. For each of
the test problems, we describe the number of the matrix-vector products re-
quired by the restarted GMRES(k), GMRES-S−1(k) and TSMRES(m) meth-
ods for m = 5, 10 and 15 and k = 2m+1 to reach the stopping criterion (5.9)
for different sizes of an n× n finite difference grid. As before, we denote the
nonconvergence by a dagger (†) and the stagnation by a double dagger (‡)
–symbols. A bold value again indicates the fastest convergence among the
three methods for each grid size–restart parameter pair

GMRES(k) GMRES-S−1(k) TSMRES(m)
11 21 31 11 21 31 5 10 15

Problem 1
16× 16 47 30 27 48 33 27 91 38 31
32× 32 248 124 90 248 123 89 300 185 141
64× 64 969 515 386 968 515 386 1070 607 449
128× 128 † 2002 1376 † 2002 1376 † 2222 1555
Problem 2
16× 16 267 189 143 ‡ 185 123 311 271 224
32× 32 316 273 231 ‡ ‡ 403 372 391 372
64× 64 666 567 556 ‡ ‡ ‡ 550 588 678
128× 128 ‡ ‡ 1099 ‡ † † 1184 1050 1147

Table 5.6: Number of matrix-vector products required to have (5.9) for
GMRES(k), GMRES-S−1(k) and TSMRES(m) for the linear system (2.1)
obtained after an ADI-splitting

The first test problem is symmetric and positive definite and the condition
HV = V H holds. In addition, since the matrices H and V correspond to the
discretizations of the x- and y-directions on a square finite difference grid,
there exists permutation matrix P such that H = PV P−1. Therefore H and
V have the same eigenvalues and we can expect GMRES and GMRES-S−1

to perform almost equally, as seen from the results of Table 5.6.
For the first test problem, the convergence speed of the TSMRES method

is comparable to that of the GMRES and GMRES-S−1 methods. Since the
preconditioned matrix I+S is positive definite, both version of the restarted
GMRES method and the TSMRES method can be expected to converge.
The convergence speed is slow, however.

A comparison with Table 5.5 reveals, that for the first problem the ILU
preconditioner yields the fastest convergence. Note that due to the additional
storage required by the preconditioner, when compared with the splitting
approach, the memory usage is approximately doubled.

The results for the second problem, which is nonsymmetric and indefinite,
are more interesting. When k = 11 or k = 21, for large grids both GMRES



114 CHAPTER 5. RESTARTED TSMRES

and GMRES-S−1 stagnate. As the grid size increases, for the second test
problem the restarted TSMRES method does not stagnate for any tested
values of the restart parameter m.

With the TSMRES method, the number of iterations required for con-
vergence increases as the grid size increases. When the grid size is small,
32×32 for instance, increasing the subspace size actually slows down conver-
gence. Thus we have an example of the restarted TSMRES method behaving
similarly to the restarted GMRES method, see [42].

For the second test problem, the restarted GMRES method used on the
original linear system (5.14) does not converge without a large subspace. As
the gridsize increases, a similar conclusion seems to hold also with the ILU(0)
preconditioned GMRES(k). For the largest grid tested, i.e., 128 × 128, the
TSMRES method applied to the preconditioned linear system (2.1) is the
only method that converges for m = 11 and m = 21.

5.4 Conclusions

In this chapter we have studied the convergence properties of the restarted
TSMRES method. We also considered preconditioning general linear systems
for TSMRES. To have a linear system with a structure suitable for TSMRES,
we considered splitting the original matrix into two readily invertible parts
and then preconditioning by one of the parts. This can be interpreted as
preconditioning a linear system for TSMRES.

In the numerical experiments, the restarted TSMRES method was more
robust method than the restarted GMRES method. In the numerical exam-
ples we presented cases where the restarted GMRES methods stagnated but
the restarted TSMRES method converged. In some cases the convergence
speed of restarted TSMRES was faster than that of the restarted GMRES
methods, especially for small values of the restart parameter m.

The purpose of our numerical experiments was to show that it is possible
to apply the splitting approach to linear systems arising in practice. However,
initial comparisons with ILU preconditioners were not always favourable to
the splitting approach when block triangular and k-Hessenberg splittings
were used. More extensive numerical testing is needed to conclude if the
approach presented in this section is competitive with the existing techniques
in actual large-scale computations.

Preconditioning general linear systems for TSMRES remains a challenge,
especially for highly nonsymmetric and indefinite problems. Obtaining split-
tings with invertible parts may be difficult due to issues such as having zeroes
on the diagonal. In preliminary numerical experiments not presented in this



5.4. CONCLUSIONS 115

chapter we permuted the linear system before the splitting and added correc-
tion terms to the splitted parts to ensure invertibility and numerical stability.
This did not always seem to be a viable alternative, since it destroyed the
structure of the original problem and generally slowed down the speed of
convergence. For similar conclusions in the context of the preconditioned
conjugate gradient method, see [38].

Due to its robustness, the restarted TSMRES method may be an attrac-
tive alternative to the restarted GMRES method when the linear system
either readily has or can simply be preconditioned to have the form (2.1).



116 CHAPTER 5. RESTARTED TSMRES



Chapter 6

Splittings and k-Hessenberg
systems

6.1 Introduction

In this chapter, we consider solving the linear system

Hx = b, (6.1)

where H ∈ Cn×n is an upper (or a lower) k-Hessenberg matrix with density τ
and b ∈ Cn. By an upper k-Hessenberg matrix we mean an upper triangular
matrix with k extra non-zero diagonals below the main diagonal, i.e., hi,j = 0,
i > j + k and by the density τ = τ(n) the ratio of the number of nonzero
entries and n2. When H is very sparse, τ is of the order O(C/n) with some
small constant C.

Linear systems of type (6.1) arise in modelling stochastic problems with
Markov-chains and in the application of difference equations to the computa-
tion of some special functions. With these applications in mind, alternative
methods to using the Gaussian elimination for solving block Hessenberg lin-
ear systems have been devised in [45, 50, 113].

Our interest in k-Hessenberg matrices originates from splittings for TSM-
RES as discussed in Chapter 5. Then, by first splitting a general matrix
A = L + R, where LT and R are upper k-Hessenberg matrices and then
preconditioning by L from the left, for instance, we have the structure I + S
to which TSMRES can be applied. We also present how splittings involving
k-Hessenberg matrices can be also used to extend the Gauss-Seidel iterations
in general.

We propose a direct method based on the Gaussian elimination, without
and with pivoting, for solving the linear system (6.1) and discuss the associ-
ated ILU preconditioning strategies. We then show that our method has a

117



118 CHAPTER 6. SPLITTINGS AND K-HESSENBERG SYSTEMS

computational complexity of the order O(τ(k+ 1)n2) without pivoting. The
method is also matrix-free in the sense that it does not rely on factoring the
matrix explicitly and only requires knowing the entries of H locally. Consid-
ering storage, in addition to the storage needs for H , the method consumes a
fixed amount of memory proportional to O(kn). In contrast, even for sparse
k-Hessenberg matrices the standard Gaussian elimination typically requires
at least O(n2) flops together with the fact that the storage requirements can
be prohibitive.

After analyzing the computational complexity, we consider numerical sta-
bility. The partial pivoting we propose is performed columnwise based on
choosing, at each step, an unknown corresponding to the largest coefficient
in modulus. Our analysis and numerical experiments indicate that this strat-
egy is sufficient in most cases. Also threshold pivoting is considered, leading
to significant reductions in complexity in most of the practical problems we
have encountered.

These ideas lead naturally to a new factorization analogous to the LU -
decomposition. We consider factoring a nonsingular matrix A ∈ Cn×n into
the product of a lower-triangular and a k-Hessenberg matrix. By applying
the algorithms derived, linear systems involving A can be solved with this
factorization similarly to the LU -decomposition. This is of particular interest
in view of large scale problems since, for iterative methods such as GMRES,
any factorization provides preconditioning opportunities once computed in-
completely. Since the fill-in of the factors is different from the fill-in of the
LU factors, new preconditioning opportunities of ILU -type arise. We regard
k as a new parameter to be tuned to improve the standard ILU .

Finally, we illustrate the complexity and stability of our method for solv-
ing k-Hessenberg systems by numerical examples. We also consider the
method as a preconditioner for an iterative method when used in conjunction
with an incomplete decomposition of a matrix into a lower triangular and a
k-Hessenberg matrix.

6.2 Solving sparse k-Hessenberg linear sys-

tems

In this section, we present a method for solving sparse k-Hessenberg linear
systems efficiently. Approaches both without and with pivoting are consid-
ered. In the following, we describe the idea of the method in short.

In our approach to solving (6.1) without pivoting we start from the nth
row and solve the unknown xn−k in terms of the other k unknowns. We then



6.2. SOLVING SPARSE K-HESSENBERG LINEAR SYSTEMS 119

move upwards to the (n− 1)th row and substitute the unknown just solved
and solve xn−k−1 in terms of the same unknowns as xn−k. Repeating this
until up to the (k+2)th row, the representations for the n−k−1 unknowns
are then substituted into to the first k + 1 rows resulting in a (k + 1)-by-
(k + 1) linear system. Solving this with a direct method yields the values of
the k unknowns. Using the representations computed yields the remaining
n− k − 1 unknowns and hence the solution to (6.1).

In our approach to solving (6.1) with pivoting we start from the nth
row and solve one of the appearing k + 1 unknowns in terms of the other
k unknowns. An unknown with the largest coefficient in modulus is chosen
as a pivot. We then move upwards to the (n − 1)th row and substitute the
unknown just solved. After finding the largest coefficients in modulus, a
new pivot is chosen and the respective unknown is solved in terms of the
other appearing k unknowns. Repeating this up to the (k + 2)th row, the
representations for the n−k−1 unknowns are then substituted into the first
k + 1 rows resulting in a (k + 1)-by-(k + 1) linear system. Solving this with
a direct method yields the values of the chosen k unknowns. The remaining
n− k − 1 unknowns and hence the solution to (6.1) is obtained by inserting
these values into their representations. In other words, we have devised a
generalized back substitution scheme with partial pivoting.

Consider the linear system (6.1) written componentwise as

h1,1 h1,2 · · · h1,n
...

... · · · ...
hk,1 hk,2 · · · hk,n

0 hk+1,2 · · · hk+1,n
...

. . .
. . .

...
...

0 · · · 0 hn,n−k · · · hn,n





x1
...
xk

xk+1
...
xn


=



b1
...
bk
bk+1

...
bn


(6.2)

with hi,j , xi, bi ∈ C, for 1 ≤ i, j ≤ n. We write the ith row of this system as

n∑
j=max{1,i−k}

hi,jxj = h(i) · x = bi, (6.3)

where x ∈ Cn and h(i) ∈ Cn is the ith row vector of H . Denote the jth
component of h(i) by h

(i)
j . Let

h(i)\j =
(

0 . . . 0 hi,i−k . . . hi,j−1 0 hi,j+1 . . . hi,n

)
be the row vector h(i) with its jth component replaced by zero.



120 CHAPTER 6. SPLITTINGS AND K-HESSENBERG SYSTEMS

6.2.1 A generalized back substitution scheme

Consider now solving (6.1) with a method that uses the steps of back sub-
stitution. For this, from nth row we have

h(n) · x = bn. (6.4)

Taking the row vector h(n), choose rn to be the index satisfying

rn = min{i ∈ N | h(n)
i 6= 0}, (6.5)

i.e., choose the index corresponding to the leftmost nonzero coefficient. Using
h

(n)
rn as a pivot, solve from (6.4) the unknown xrn in terms of the other

unknowns as

xrn =
1

h
(n)
rn

(bn − h(n)\rn · x). (6.6)

After perfoming the divisions we have

xrn = b̂n − ĥ(n)\rn · x, (6.7)

such that b̂n and ĥ(n)\rn are stored in the memory. Moving on to the (n−1)th
row, we substitute xrn into

h(n−1) · x = bn−1 (6.8)

and compute the resulting coefficients. After the substitution, the coefficients
in the (n− 1)th row are

h̃(n−1) = h(n−1)\rn − h(n−1)
rn

h(n)\rn .

With these, we choose rn−1 analogously to (6.5) by setting

rn−1 = min{i ∈ N | h̃(n−1)
i 6= 0}. (6.9)

Using the coefficient h̃
(n−1)
rn−1 as a pivot, solve xrn−1 in terms of the remaining

unknowns as
xrn−1 = b̂n−1 + ĥ(n−1)\rn−1 · x, (6.10)

where

b̂n−1 =
1

h̃
(n−1)
rn−1

(bn−1 − h(n−1)
rn

b̂n) and ĥ(n−1)\rn−1 =
1

h̃
(n−1)
rn−1

h̃(n−1)\rn−1

are again stored in memory. After this we move on the (n− 2)th row, where
the expressions (6.6) and (6.10) are used to solve the unknown xrn−2 in terms
of other unknowns. The index rn−2 is chosen analogously to (6.5) and (6.9).



6.2. SOLVING SPARSE K-HESSENBERG LINEAR SYSTEMS 121

Proceeding in this manner, the modified coefficient vector of the jth row
is computed by substituting the expressions for xn, xn−1, . . . , xj+1 recursively.
Denoting by h(ti) the modified row before the substitutions corresponding to
the rows i = n, . . . , j + 1, the substitution procedure may be written as

h(tn) = h(j)

h(ti−1) = h(ti)\ri − h(ti)
ri
ĥ(i)\ri , i = n, . . . , j + 1. (6.11)

After completing (6.11), we have the relation h̃(j) = h(tj) for the modified
coefficients of the jth row. The modified right-hand side is computed analo-
gously. From h̃(j) we choose the index rj as

rj = min{i ∈ N | h̃(j)
i 6= 0}, (6.12)

and construct the expression for the unknown xj as before.
Once the procedure reaches the (k+2)th row, the representations for the

unknowns are substituted into the first k + 1 rows to have a linear system

Ãx̃ = b̃ (6.13)

with a coefficient matrix Ã ∈ C(k+1)×(k+1) and b̃ ∈ Ck+1. This linear system
involves the unknowns corresponding to the indices R = {i}n

i=1 \ {rl}n
l=k+2.

Solving this small linear system using standard direct techniques yields the
components xi for i ∈ R. The other components of x are then computed
using ĥ(j)\rj and forward substitution starting from the (k + 2)th row and
moving down to the nth row. As a result this, we have Algorithm 6.1.

When constructing the representations for the unknowns xj in the sub-

stitution phase of Algorithm 6.1, there is a division by h̃
(j)
rj for each j =

k + 1, . . . , n. If this is smaller in modulus than some other components of
h̃(j), it is possible that after a number of substitutions some coefficients be-
come large, possibly leading to problems in numerical stability. If all the
pivots are dominant in the columns 1 ≤ i ≤ n − k in the following sense,
the computation of the representations for the unknowns in Algorithm 6.1 is
numerically stable.

Definition 6.1. A k-Hessenberg matrix H ∈ Cn×n is subdiagonally domi-
nant, if for each column j = 1, . . . , n− k it holds

|hj+k,j| ≥
∑

i6=j+k

|hi,j|. (6.14)

The stability of Algorithm 6.1 for subdiagonally dominant matrices is
shown in section 6.4. The section also discusses ways to improve the stability
by using threshold pivoting.



122 CHAPTER 6. SPLITTINGS AND K-HESSENBERG SYSTEMS

Algorithm 6.1 Algorithm for solving Hx = b

Require: H ∈ Cn×n is an upper k-Hessenberg matrix, k ≥ 1, b ∈ Cn

1: for i = n, . . . , (k + 2) do

2: h(tn) = Hi,
˜̃b = bi

3: for j = n, . . . , i+ 1 do

4: h(tj−1) = h(tj )\rj − h
(tj)
rj ĥ(j)\rj

5: ˜̃b = ˜̃b− h
(tj )
rj b̂j

6: end for
7: Choose index ri as in (6.5)

8: ĥ(i)\ri = h(ti)\ri/h
(ti)
ri , b̂i =

˜̃
b/h

(ti)
ri

9: end for
10: R = {l}n

l=1 \ {rl}n
l=k+2

11: for i = 1, . . . , (k + 1) do

12: h(tn) = Hi,
˜̃
b = bi

13: for j = n, . . . , i+ 1 do

14: h(tj−1) = h(tj )\rj − h
(tj)
rj ĥ(j)\rj

15: ˜̃
b =

˜̃
b− h

(tj )
rj b̂j

16: end for
17: Set ith row of Ã to nonzero components of h(ti)

18: Set ith component of b̃ to ˜̃b
19: end for
20: Solve Ãx̃ = b̃
21: for i = k + 2, . . . , n do
22: xri

= b̂i − ĥ(i)\ri · x
23: end for

Let us now describe how to partially pivot the algorithm. Starting from
the nth row, choose the index rn as

rn = {i ∈ N | |h(n)
i | ≥ |h(n)

j |, n− k ≤ j ≤ n}, (6.15)

i.e., rn is chosen such that the coefficient h
(n)
rn is largest in modulus. As in

(6.6), we solve xrn in terms of the other unknowns, giving

xrn = b̂n − ĥ(n)\rn · x, (6.16)

where b̂n and ĥ(n)\rn are of the same form as before, but possibly with a
different pivot h

(n)
rn corresponding to rn. From the construction we now have

|ĥ(n)\rn

j | ≤ 1, for n− k ≤ j ≤ n.



6.2. SOLVING SPARSE K-HESSENBERG LINEAR SYSTEMS 123

As before, we substitute xrn into (6.8) and compute the resulting coef-
ficient vector h̃(n−1). Choosing rn−1 as in (6.15) and dividing by the pivot

h̃
(n−1)
rn−1 , we obtain the representation for xrn−1 as

xrn−1 = b̂n−1 + ĥ(n−1)\rn−1 · xp, (6.17)

where b̂n−1 and ĥ(n−1)\rn−1 are similar to (6.10), but possibly with a different

divisor h̃
(n−1)
rn−1 .

We continue the substitutions recursively as before up to the (k+2)th row.
During the substitutions it is possible that coefficients which were originally
zero become nonzero and require additional substitutions compared to the
scheme without pivoting, i.e., h(ti−1) in (6.11) can contain nonzero coefficients
which were zero in the original h(j) and require substitutions. When the
substitutions have been performed, we choose on the jth row the pivot rj as

rj = {i ∈ N | |h̃(j)
i | ≥ |h̃(j)

l |, j − k ≤ l ≤ n}, (6.18)

where h̃
(j)
i = h(tj).

Once the substitutions are completed, the algorithm proceeds by solving
the respective small linear system (6.13). The other unknowns of x are then
obtained by forward substitution.

The difference between the non-pivoted and pivoted versions lies in the
choice of the indices rj. In Algorithm 6.1 this appears on line 7 which is re-
placed with (6.18) in the pivoted version. In exact arithmetic the two versions
of the algorithm produce the same solution. In finite precision arithmetic,
the pivoted version is numerically more stable, since the modified coefficients

satisfy |ĥ(j)\rj

i | ≤ 1, for (j − k) ≤ i ≤ n.

6.2.2 Interpretation by using row and column opera-

tions

Next we present Algorithm 6.1 for solving (6.1) by using elementary row
and column operations. Then Algorithm 6.1 can be viewed as a transfor-
mation of the linear system Hx = b into an equivalent form Lx̃ = b̃ with
permuted unknowns x̃ = Πx. The matrix L is diagonal except that its (k+1)
first columns are possibly nonzero. The transformed linear system is readily
solvable and once x̃ is computed we have x = ΠT x̃.

Define Πi,j to be an elementary permutation matrix that swaps the ith
and jth columns when operated from the right. For short, denote Πn = Πrn,n,
where rn is chosen as in (6.5). Operating with Πn from the right yields

HΠnx̃ = H̃x̃ = b, with x̃ = Πnx. (6.19)



124 CHAPTER 6. SPLITTINGS AND K-HESSENBERG SYSTEMS

Choose a Gauss transformation Mn = I − tne
T
n with

tn =
1

hn,rn

(h1,rn · · · hn−1,rn 0) .

Applying Mn to (6.19) from the left yields

H1x̃ = b̂, (6.20)

where b̂ = Mnb and H1 = MnH̃ . Assuming, for simplicity, rn = n − k, the
matrix H1 has the structure

H1 =



h1,1 · · · h1,n−k−1 h̃1,n · · · h̃1,n−1 0
...

...
...

...
...

hk+1,1 · · · hk+1,n h̃k+1,n · · · h̃k+1,n−1 0

0
. . .

...
...

...
... hn−1,n−k−1 h̃n−1,n · · · h̃n−1,n−1 0
0 · · · 0 hn,n · · · hn,n−1 hn,rn


, (6.21)

where only the entries h̃i,j differ from those of H̃ . We write (6.21) blockwise
as

H1 =

(
Hn−1 hn−k−1 H̃n−1 h̃n−1 0

0 0 ĥn hn,n−1 hn,n

)
, (6.22)

where Hn−1 ∈ C(n−1)×(n−k−2), H̃n−1 ∈ C(n−1)×(k−1), ĥn ∈ Ck−1, hn−k−1,
h̃n−1 ∈ Cn−1 and all-zero matrices 0 are of appropriate size.

From (6.22) we observe that the (n − k − 1)th column has remained
unmodified in the application by Mn. Operating from the right with the
permutation Πn−1 = Πrn−1,n−1 yields

H1Πn−1x̃ = H̃1x̃ = b̂, with x̃ = Πn−1Πnx, (6.23)

where H̃1, again assuming rn−1 = n− k − 1, has the structure

H̃1 =

(
Hn−1 h̃n−1 H̃n−1 hn−k−1 0

0 hn,n−1 ĥn 0 hn,n

)
. (6.24)

Now the elimination is carried out with the (n−k−1)th column by choosing
a Gauss transformation Mn−1 = I − tn−1e

T
n−1 with

tn−1 =
1

hn−1,n−k−1
(h1,n−k−1 · · · hn−1,n−k−1 0 0) .



6.3. COMPUTATIONAL COMPLEXITY 125

With this, the second elimination step yields

Mn−1H̃1x̃ = H2x̃ = Mn−1b̂ =
ˆ̂
b. (6.25)

When its last row and column have been removed, H2 can be partitioned as
H1 in (6.22).

Applying the Gauss transformations Mj, for j = n, . . . , k + 2, in this
manner, transforms the original linear system into

Lx̃ = b̃, (6.26)

where x̃ = Π1 · · ·Πn−2Πn−1Πnx = Πx and L is diagonal except for its first k
columns and a (k + 1)-by-(k + 1) block in the upper left corner. Once the
unknowns corresponding to the (k + 1)-by-(k + 1) block have been solved,
the remaining unknowns are obtained with forward substitution. The original
unknowns are found by setting x = ΠT x̃.

Let us illustrate these steps with an example.

Example 6.1 Consider a k-Hessenberg matrix with k = 1 and n = 5. Then
L has a 2-by-2 block in the upper left corner and is otherwise diagonal, except
for the first column. Denoting a nonzero entry by x and modified entry by
x̃, the elimination proceeds as presented in Figure 6.1.

0BBB@
x x x x x
x x x x x
0 x x x x
0 0 x x x
0 0 0 x x

1CCCA M5Π4Π5−−−−−→
0BBB@

x x x̃ x 0
x x x̃ x 0
0 x x̃ x 0
0 0 x̃ x 0
0 0 x 0 x

1CCCA → · · · →
0BBB@

x̃ x 0 0 0
x̃ x 0 0 0
x̃ 0 x 0 0
x̃ 0 0 x 0
x̃ 0 0 0 x

1CCCA

Figure 6.1: Elimination procedure for n× n Hessenberg matrix.

Since the pivots h
(j)
rj in Algorithm 6.1 and in this implementation are equal

for rows from n to k+2, the coefficients ĥ(j)\rj are also equal. By performing
the substitutions into the first rows, the same small (k+ 1)-by-(k+ 1) linear
system is obtained. Thus the scheme presented in this section is equivalent
to Algorithm 6.1.

6.3 Computational complexity

Algorithm 6.1 consists of three distinct phases. First the representations
are built for n − k − 1 different unknowns, after which the small (k + 1)-
by-(k + 1) linear system is constructed. In the final phase the small linear



126 CHAPTER 6. SPLITTINGS AND K-HESSENBERG SYSTEMS

system is solved and the solution of the original linear system is formed with
forward substitutions. By analyzing and combining the complexities of these
phases, we get the following proposition.

Proposition 6.2. The computational complexity of Algorithm 6.1 with the
pivot choice (6.12) for the linear system (6.1) involving an invertible k-
Hessenberg matrix with density τ is of the order

O(τ(k + 1)n2). (6.27)

In addition to storing the matrix, the storage required by the Algorithm 6.1
is

O(kn) (6.28)

floating point numbers.

Proof. In the first phase, on lines from 1 to 9 of Algorithm 6.1, a loop runs
over all the rows from n to k + 2. For each row i, on lines from 3 to 6,
a substitution is performed for those unknowns of the previous rows j, for
j = i+ 1, . . . , n, which have nonzero coefficients in h(tj ). One multiplication
and addition with a vector with k nonzeroes at most is required to modify

h(tj) in a single substitution. In addition, the modification of
˜̃
b requires 2

operations per substitution.
On line 7, the index ri can be computed in O(1) time, if the indices of

the nonzero components of the sparse vector h̃(j) are ordered. At this point,
h̃(j) has only k+1 nonzero components. Forming of the new unknowns h(i)\ri

and b̂i on the line 8 requires k + 1 operations. Combining the complexities,
we get the total number of operations for the first phase as

2k +
n−1∑

i=k+2

(
1 + (k + 1) + τ

n∑
j=i+1

2(k + 1)

)
(6.29)

= O(τ(k + 1)n2),

since
∑n−1

i=k+2

∑n
j=i+1 1 = n(n− k − 2)− (1

2
n2 − 1

2
n− 1

2
k2 − 3

2
k − 1).

The second phase consists of lines 10−19. The construction of the set R
requires n operations. The generation of the small (k + 1)-by-(k + 1) linear
system (6.13) requires a substitution of the unknowns generated in the first
phase to the first k+1 rows. The substitution on lines 13−16 is of same form
as in the first phase of the algorithm. The operation count for the second
phase thus is

n + τ

k+1∑
i=1

n∑
j=k+2

2(k + 1) = 2τ(k + 1)2(n− k − 1) + n (6.30)

= O(τ(k + 1)2n + n).



6.3. COMPUTATIONAL COMPLEXITY 127

The third phase on lines 20 − 23 begins with the solution of the full
linear system (6.13). By using standard techniques, this system requires in
the order of O(k3) operations to solve. Using the solved unknowns xi, with
i ∈ R and their representations ĥ(i)\ri , for i = k + 2, . . . , n, the algorithm
yields the solution to (6.1). Line 22 performs one inner product of a sparse
vector of length n with k + 1 nonzero entries and an addition with scalar.
The combined complexity for these operations is

n∑
i=k+2

(2k + 1) +O(k3) = (2k + 1)(n− k − 1) +O(k3) (6.31)

= O((2k + 1)n) +O(k3)

The complexity of the algorithm then follows after summing (6.29), (6.30)
and (6.31).

To obtain the memory requirement, we combine the size of the coefficient
matrix ĥ(i)\ri , the modified right-hand side b̂ and the reduced equation with
matrix Ã and vector b̃. Floating point storage requirement hence becomes

kn+ n + k2 + k = O(kn). (6.32)

When the matrix H is sparse and subdiagonally dominant, Algorithm 6.1
is computationally very efficient both in terms of memory and the number
of floating point operations consumed. Note that in the applications we
have in mind, τ = C/n with a small constant C. Then (6.27) reduces to
O(C(k + 1)n).

Example 6.2 For a familiar example, consider the linear system

Bx = b, (6.33)

where B ∈ Cn×n is a sparse band matrix with lower and upper bandwidths
kl and ku. Without loss of generality we may assume that ku ≥ kl. As we
have at most ku nonzeroes above the diagonal at each column, the density
of the system can be written as τ = ku/n. Then Proposition 6.2 gives the
complexity of Algorithm 6.1 for banded systems as O((kl + 1)kun).

Proposition 6.2 is concerned with the unpivoted version of Algorithm 6.1.
In the first phase of the partially pivoted version of Algorithm 6.1, the sub-
stitutions are made after inspecting the modulus of the nonzero components
of the vector h(tj) in the formula (6.11). Then the computational complex-
ity (6.29) does not depend on the sparsity structure of the original matrix



128 CHAPTER 6. SPLITTINGS AND K-HESSENBERG SYSTEMS

directly. In the worst case the complexity can amount to be of the same
order as that of solving a full k-Hessenberg system, which is O((k + 1)n2).
The same relation holds for the complexity of the second phase, which in the
worst case is of the order O((k + 1)2n + n). Combining this with (6.31), we
get the worst case complexity of the partially pivoted version of Algorithm
6.1 to be

O((k + 1)n2) (6.34)

which is the complexity of the Gaussian elimination with partial pivoting
for k-Hessenberg systems. Threshold pivoting considered in the next section
provides a way to decrease this.

6.4 Numerical stability and threshold pivot-

ing

It is well known that when the standard Gaussian elimination is applied with-
out pivoting, the elements of the transformed system can grow during the
elimination procedure. Analogously, when Algorithm 6.1 is applied without
pivoting, the choice of pivots may result in growth of the elements in the
representations for the unknowns ĥ(j)\rj . In both cases, the growth can lead
to a loss of precision in the computed solution. Note that for an upper Hes-
senberg matrix with k = 1, the standard Gaussian elimination is numerically
backward stable, see [61, Theorem 9.10, pp. 172].

We now derive error bounds and give sufficient conditions for stability
for Algorithm 6.1. As described in section 6.2.2, Algorithm 6.1 can be im-
plemented in terms of standard row and column operations. This relation
makes the error analysis quite similar to the error analysis of the standard
Gaussian elimination. We only need to observe that Algorithm 6.1 actually
solves a row and column permuted linear system

H̃x̃ = ΠrHΠcx̃ = Πrb = b̃, x̃ = Πcx, (6.35)

where

H̃ =



hn,n−k 0 . . . hn,n . . . hn,n−k+1

hn−1,n−k hn−1,n−k−1 0 . . . hn−1,n . . . hn−1,n−k+1
...

. . .
. . .

...
...

hk+1,n−k . . . hk+1,1 hk+1,n . . . hk+1,n−k+1
...

...
...

...
h1,n−k . . . h1,1 h1,n . . . h1,n−k+1


(6.36)



6.4. NUMERICAL STABILITY AND THRESHOLD PIVOTING 129

and Πr and Πc are suitably chosen permutations. By eliminating the strictly
lower triangular part of the first n − k columns, the linear system H̃x̃ = b̃

is transformed into Ux̃ =
˜̃
b, with U diagonal except for the last k columns

and a (k+ 1)-by-(k+ 1) block in the lower right corner. In exact arithmetic,
the transformation to the upper triangular form is equivalent to forming a
factorized linear system LUx̃ = b̃, with LU = H̃ , where L is lower triangular
except for the last (k + 1) columns.

In finite precision arithmetic a slightly perturbed system L̂Û x̃ = b̃ is
solved instead. Higham [61] presents the error for the computed LU factors
as

L̂Û = H̃ + ∆H̃, |∆H̃| ≤ γn|L̂||Û |,
where γn = nu

1−nu
, u is the unit roundoff and the inequalities between ma-

trices are assumed to hold componentwise. Backward error of the Gaussian
elimination for the computed solution x̂ of H̃x̃ = b̃ is then

(H̃ + ∆H̃)x̂ = b̃, |∆H̃| ≤ γ3n|L̂||Û |. (6.37)

The ratio of the factors and the original matrix is not bounded without
pivoting and we may have |||L̂||Û |||/||H̃|| arbitrarily large. By inspecting
our elimination procedure, we observe that the partially pivoted version of
Algorithm 6.1 corresponds to the Gaussian elimination with column pivoting
involving the matrix (6.36). From van Veldhuizen [124] we have

(H̃ + ∆H̃)x̂ = b̃, ||H̃|| ≤ n2γ3nρn||H̃||, (6.38)

where ρn is the growth factor defined as

ρn =
maxi,j,l |h(l)

i,j |
maxi,j |hi,j| , (6.39)

where h
(l)
i,j , for l = 1, . . . , n, are the elements that occur at the lth elimination

step on the (n− l)th row.
If H is subdiagonally dominant, Algorithm 6.1 is numerically stable with-

out pivoting as follows.

Proposition 6.3. For a subdiagonally dominant k-Hessenberg matrix H,
Algorithm 6.1 is numerically stable.

Proof. By the subdiagonal dominance, for the permuted system (6.36) we
have

|hj,j| ≥
∑
i6=j

|hi,j|, for j = 1, . . . , n− k, (6.40)



130 CHAPTER 6. SPLITTINGS AND K-HESSENBERG SYSTEMS

i.e., the first n−k columns in the permuted system are diagonally dominant.
The first step of elimination can be written as(

α β
γ H1

)
=

(
1 0

α−1γ I

)(
α β
0 H(1)

)
,

where α ∈ R, β, γ ∈ Cn−1 and H(1) = H1 − α−1γβ ∈ C(n−1)×(n−1). The
subdiagonal dominance is preserved, if it is preserved in a single step of
elimination. Following Higham [61, Theorem 13.7 and 13.8], for columns j
from 1 to n− k, we have after a single step∑

i=2,i6=j

|h(1)
i,j | =

∑
i=2,i6=j

|hi,j − γiβj

α
|

≤
∑

i=2,i6=j

|hi,j|+ |βj|
α

(|h1,1| − |γj|) by (6.40)

≤ |hj,j| − |γj| |βj|
α

by (6.40)

= |h(1)
j,j |,

which implies the subdiagonal dominance of the matrix H(1).
From the subdiagonal dominance, it follows |li,j| ≤ 1. For the intermedi-

ate steps H(l), we have for columns j from 1 to n− k

n∑
i=l

|h(l)
i,j | =

n∑
i=l

|h(l−1)
i,j −

h
(l−1)
i,(l−1)h

(l−1)
(l−1),j

h
(l−1)
(l−1),(l−1)

| ≤
n∑

i=l−1

|h(l−1)
i,j |

≤ · · · ≤
n∑

i=1

|hi,j|,

by using the subdiagonal dominance. Now for the elements of U we have

max
l≤i,j≤n

|h(l)
i,j | ≤ max

l≤j≤n

n∑
i=l

|h(l)
i,j| ≤ max

l≤j≤n

n∑
i=1

|hi,j|

≤ 2 max
1≤j≤n

|hj,j|.

Using this and (6.39), the growth factor for the representations of the un-
knowns in Algorithm 6.1 without pivoting to equal ρ = 2. This implies the
numerical stability of Algorithm 6.1 for subdiagonally dominant matrices, as
long as the small (k + 1)-by-(k + 1) linear system is solved with the fully
pivoted Gaussian elimination.



6.4. NUMERICAL STABILITY AND THRESHOLD PIVOTING 131

For matrices which are not subdiagonally dominant, sparsity can be taken
advantage of and satisfactory numerical accuracy is often obtained by using
threshold pivoting. The purpose of threshold pivoting is to decrease the com-
putational complexity at the cost of a minor decrease in numerical stability;
see [36] for details. Choosing a threshold α = (0, 1], we select the pivot
element at the lth elimination step among the set of elements satisfying

|h(l)
i,j | ≥ αmax

m
|h(l)

i,m|. (6.41)

For Algorithm 6.1 with threshold pivoting, the growth of the elements is
bounded during the elimination as follows.

Proposition 6.4. For one elimination step we have

max
j
|h(l+1)

i,j | ≤ (1 + α−1) max
j
|h(l)

i,j |.

The growth of the elements in the whole elimination procedure is bounded as

max
j
|h(l+1)

i,j | ≤ (1 + α−1)pj max
j
|h(l)

i,j |,

where pj is the number of off-diagonal entries in the jth column of U .

Proof. In the elimination procedure, the intermediate steps l and l + 1 are
related by the equation

h
(l+1)
i,j = h

(l)
i,j −

(h(l)
i,l

h
(l)
l,l

)
h

(l)
l,j , i, j > l,

from which we have

|h(l+1)
i,j | ≤ max{|h(l)

i,j|, |h(l)
i,l |}

(
1 +

|h(l)
l,j |

|h(l)
l,l |
)
,

from which the bound for one step of elimination follows by taking the max-
imum over the columns j and using (6.41). Then we have

max
j
|h(l+1)

i,j | ≤ max
j
|h(l)

i,j |
(
1 +

maxj |h(l)
l,j |

|h(l)
l,l |

) ≤ (1 +
1

α

)
max

j
|h(l)

i,j |.

The bound for the whole elimination follows, since the jth column of U is
changed at most pj times during the elimination.

This gives us the following bound on the growth factor.



132 CHAPTER 6. SPLITTINGS AND K-HESSENBERG SYSTEMS

Proposition 6.5. The growth factor for Algorithm 6.1 with threshold pivot-
ing is

ρ ≤ (1 + α−1)pj .

Proof. The proof follows directly by using the Proposition 6.4 and the defi-
nition of the growth factor (6.39).

Our numerical experiments indicate that the bound obtained in Propo-
sition 6.5 for threshold pivoted Algorithm 6.1 is somewhat pessimistic. In
many cases it appears to suffice to choose a very small threshold α for a rea-
sonable accuracy. This may well be due to the fact that the numerical fill-in
of the system remains reasonably small since the leftmost nonzero coefficients
in the modified rows are typically chosen as pivots.

6.5 Triangular-Hessenberg decompositions

In what follows, a factorization of a matrix A ∈ Cn×n into the product of a
triangular matrix and a k-Hessenberg matrix is derived. Since the complexity
of Algorithm 6.1 is of the order O(τ(k + 1)n2) for k-Hessenberg systems, a
decomposition

ΠA = LH, (6.42)

can be used to solve linear systems involving A analogously to the LU -
decomposition. Here H is an upper k-Hessenberg, L is a lower triangular
and Π a permutation matrix resulting from partial pivoting.

Another application of this decomposition lies in preconditioning sparse
linear systems. In an incomplete LH-decomposition we compute A ≈ L̂Ĥ in
such a way that L̂ and Ĥ remain sparse. Since the complexity of Algorithm
6.1 for solving sparse linear systems with density τ = C/n is O(C(k + 1)n),
this approximate factorization of A can be used as a preconditioner for an
iterative method analogously to the ILU preconditioning approach [103, 105,
85, 129].

To compute the decomposition (6.42), start from the (k+1)th row of the
matrix A by finding an element al,1 satisfying

|al,1| = max
k+1≤j≤n

{|aj,1|} , (6.43)

i.e., al,1 is the largest element in modulus in the first column of A below the
kth entry. Let Π1 be a permutation matrix which swaps the (k + 1)th and
the lth row when operated from the left. Choose a Gauss transformation



6.5. TRIANGULAR-HESSENBERG DECOMPOSITIONS 133

M1 = I − t1e
T
1 with t1 =

(
0 . . . 0

ak+2,1

al,1
. . .

an,1

al,1

)
to have M1Π1A = A1,

where

A1 =



a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...
al,1 al,2 · · · al,n

0
... Ã
0


. (6.44)

Continuing the process recursively with the submatrix Ã yields

Mn−k−1Πn−k−1 · · ·M1Π1A = H, (6.45)

with a k-Hessenberg matrix H . Since eT
l Πj = eT

l for j > l, we have

ΠjMl = Πj − Πjt
T
l e

T
l Πj = (I −Πjt

T
l el)Πj . (6.46)

By denoting t̃l = Πn−k−1 · · ·Πl+1tl and M̃l = I − t̃Tl el yields

H = Mn−k−1Πn−k−1Mn−k−2Πn−k−2 · · ·M1Π1A

= M̃n−k−1M̃n−k−2Πn−k−1Πn−k−2 · · ·M1Π1A

= M̃n−k−1M̃n−k−2M̃n−k−3Πn−k−1Πn−k−2Πn−k−3Mn−k−4 · · ·M1Π1A

=
...

= M̃n−k−1M̃n−k−2 · · · M̃1Πn−k−1 · · ·Π1A.

It remains to recover the lower triangular part of the LH-decomposition from
L = (M̃n−k−1 · · · M̃2M̃1)

−1. Since M̃−1
j = I + t̃je

T
j and eT

j t̃l = 0 for j ≤ l, we
have

L = M̃−1
1 · · · M̃−1

n−k−1 = I +
n−k−1∑

j=1

t̃je
T
j (6.47)

and a permutation Π = Πn−k−1 · · ·Π1. This completes the computation of
the decomposition (6.42). Note that the first k columns of L, except for the
ones on the diagonal, are zeros.

When the kth subdiagonal of A is dominant, i.e., |aj+k,j| ≥
∑

i6=j+k |ai,j|
holds for j = 1, . . . , n− k, in the resulting decomposition H is subdiagonally
dominant. We then have the following proposition.

Proposition 6.6. Suppose the kth subdiagonal of A ∈ Cn×n is dominant.
Then the elimination produces a decomposition ΠA = LH such that |li,j| ≤ 1
and H is subdiagonally dominant k-Hessenberg matrix.



134 CHAPTER 6. SPLITTINGS AND K-HESSENBERG SYSTEMS

Proof. From the structure of A it is clear that |li,j| ≤ 1 results. By a similar
argument as in the proof of Proposition 6.3, the subdiagonal dominance is
preserved in the submatrix Ã. The claim then follows by induction.

Algorithm 6.1 is reliable when H is subdiagonally dominant. Hence when
the kth subdiagonal of A is dominant, the LH-decomposition has many of
the same qualities as the LU -decomposition by the fact that solving with the
k-Hessenberg factor does not require partial pivoting. Observe that for a di-
agonally dominant A the dominance of the kth subdiagonal can be organized
by permuting the main diagonal down by k diagonals by operating from the
left with the permutation

Q =

(
0 Ik

In−k 0

)
, (6.48)

where Ij is an j-by-j identity matrix of and 0 denotes a zero matrix of
appropriate size. Therefore the factorization can be used in many relevant
applications.

Since the first k rows of A remain unmodified in the decomposition pro-
cess, possibilities for minimizing the fill-in and the computational cost of the
LH-decomposition arise. For example, we may choose an initial permutation
Q in such a way that those k rows of A which contain the most entries are
shifted to be the first k rows of QA.

When an LH-decomposition is constructed in an incomplete fashion, the
usual techniques for dropping small coefficients in Ã can be used to enforce
sparsity of the factors. By using a suitable downward shift (6.48), we can
guarantee the existence of LH decomposition for diagonally dominant ma-
trices A.

Denoting by ai, li and hi the ith row and by ai,j , li,j and hi,j element
(i, j) of matrices A, L and H , we have Algorithm 6.2 for incomplete LH-
decomposition. Algorithm 6.2 is based on the IKJ ordering of the Gaussian
elimination. On lines 7 and 12, a suitable dropping stategy must be cho-
sen to maintain the sparsity in the computed factors. The dropping can
be based on the numerical properties of w or the sparsity structure of the
original matrix. Unfortunately the subject of choosing a suitable dropping
strategy is too broad to be discussed here extensively. For different types
of incomplete factorization based preconditioning techniques and numerical
dropping strategies, see for example [7, 105] and references therein.



6.6. NUMERICAL EXPERIMENTS 135

Algorithm 6.2 Incomplete LH-decomposition A ≈ LH

1: Set hi = ai and li = eT
i , i = 1, . . . , k

2: for i = k + 1, . . . , n do
3: w = ai

4: for l = k + 1, . . . , i− 1 do
5: c = l − k
6: wc = wc/hl,c

7: Apply numerical dropping to w
8: if wc 6= 0 then
9: w = w − wchl

10: end if
11: end for
12: Apply dropping to w
13: li,j = wj, j = 1, . . . , i− k − 1, li,i = 1
14: hi,j = wj, j = i− k, . . . , n
15: end for

6.6 Numerical experiments

Next we present numerical experiments to illustrate the properties of Algo-
rithm 6.1 in practice. All the tests were performed by using Matlab [84],
whose syntax we use.

In the first numerical example, we illustrate the computational complexity
and the effect of threshold pivoting versus the dimension of the problem.

Example 6.3 We generate a sparse matrix A ∈ Rn×n with normally dis-
tributed entries and an average density τ = 0.1 by using the sprandn-function
and then extracting its upper k-Hessenberg part with the triu-function, i.e.,
we set

A = triu(sprandn(n, n, τ),−k). (6.49)

In addition, we generate a band matrix B with bandwidth k by setting

B = kD0 +

k∑
j=k−2

j(Dj +DT
j ), (6.50)

where Dj =spdiags(ones(n, 1), j, n, n), j ≥ 0. With these, the upper k-
Hessenberg matrix is defined by

H = A+B. (6.51)



136 CHAPTER 6. SPLITTINGS AND K-HESSENBERG SYSTEMS

Set k = 10 and n = 100j, j = 1, . . . , 10 and solve Hx = b with a randomly
generated b by using Algorithm 6.1 with three different pivoting thresholds.
The results of computations are depicted in Figure 6.2 illustrating the number
of floating point operations and the norms of the residuals ||b−Hx||2 of the
solution x versus the problem dimension n. The pivoting thresholds were
α = 0, 0.1 and 1.

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8
x 10

6

Problem size n

N
um

be
r 

of
 fl

oa
tin

g 
po

in
t o

pe
ra

tio
ns

 

 
α=0
α=0.1
α=1

(a) Floating point operations

100 200 300 400 500 600 700 800 900 1000
10

−20

10
−10

10
0

10
10

10
20

10
30

10
40

Problem size n

||b
−

A
*x

|| 2

 

 
α=0
α=0.1
α=1

(b) The norm ||b−Hx||2

Figure 6.2: Results of Example 6.3 versus the dimension n

When no pivoting is used, the O(C(k+1)n) complexity of Algorithm 6.1
can be observed in Figure 6.2. As predicted by the bound (6.38), in Figure
6.2(b) we observe that the error of the computation is not bounded without
pivoting as the dimension grows. However, a very modest use of threshold
pivoting is enough to ensure satisfactory numerical stability and a nearly
linear operation count.

We now give a more realistic example.

Example 6.4 We take A to be the matrix pde900 from the Matrix Mar-
ket collection [92]. It arises from a finite difference discretization of a two-
dimensional variable-coefficient linear elliptic equation. The matrix is real,
banded and unsymmetric with n = 900 having 4380 nonzero entries and a
lower bandwidth k = 29. The condition number estimate for A is 2.9E+ 02.

We again count the number of floating point operations and compute the
residuals for solving Ax = b with a right-hand side b = b̂/||b̂||2 where b̂ has
normally distributed, randomly generated entries. The results obtained with
Algorithm 6.1 with k = 29 by using various thresholds α are presented in
Table 6.1.

The results are much like those of Example 6.3. We can clearly see how
already a tiny threshold improved the numerical stability of Algorithm 6.1



6.6. NUMERICAL EXPERIMENTS 137

α #flops ||b− Ax||2/||b||2
0 254633 4.3711e+ 03

1e− 4 527890 2.0897e− 12
0.1 1092674 3.9854e− 15
1 1713167 7.9861e− 16

Table 6.1: Numerical results for problem pde900

drastically, while the number of floating point operations increases very mod-
estly. Observe that α = 1 corresponds to using the standard Gaussian elim-
ination with partial pivoting.

The following example illustrates how Algorithm 6.1 leads to remarkable
increase in the flexibility of the Gauss-Seidel–type of iterations. With fast
solvers for k-Hessenberg linear systems we are no more constrained to split
the matrix into a lower and an upper triangular part.

Example 6.5 We take A to be the matrix Sherman1 from the Matrix Mar-
ket collection. Decompose the matrix as

A = D −E − F, (6.52)

with D being the band matrix with upper and lower bandwidths k having
the entries of A in this band. Moreover, −E is the strictly k-lower part, i.e.,
ei,j = 0, when j > i − k − 1 holds and −F = A − D + E is the remaining
strictly k-upper part of A.

As is usual in analyzing the Gauss-Seidel iterations, we study G = I −
(D − E)−1A and plot the spectrum of G with k = 0, 1 and 10. The results
are shown in Figure 6.3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

Figure 6.3: The spectrum of G with k = 0 (left), k = 1 (middle) and k = 10
(right) from Example 6.5

This generalization of the Gauss-Seidel splitting has the effect of decreas-
ing the spectral radius ρ(G) and pushing the eigenvalues of G towards the



138 CHAPTER 6. SPLITTINGS AND K-HESSENBERG SYSTEMS

origin. As a rule of thumb, for a Krylov-method this clustering of eigenvalues
can be expected to speed up the convergence significantly [105].

In the following example, we consider the incomplete LH-decomposition
as a preconditioner for an iterative method.

Example 6.6 We take A to be the matrix Sherman4 from the Matrix
Market-collection having the size n = 1104 with nz(A) = 3786 nonzero
entries. We consider solving the right-preconditioned linear system (1.22),
i.e.,

APy = b, x = Py,

with the restarted GMRES method, restarted after the size of the subspace
has reached 11. As a right-hand side we use b = b̂/||b̂||2, where b̂ = 1 =
(1, 1, . . . , 1) denotes a vector of all ones. We use the stopping criterion (5.9),
i.e.,

||b− Ax||2
||b||2 ≤ 1E − 6,

i.e., the iteration is terminated once the relative residual norm of the original
linear system (1.1) has been reduced by six orders of magnitude.

As a preconditioner, we use an incomplete LH-decomposition of the
downward shifted matrix QA, computed with Algorithm 6.2. Then we have

QA ≈ LH,

where the permutation Q is chosen as in (6.48) and H is an upper k-
Hessenberg matrix with a lower bandwidth k = 0, 25 and 50. Similarly
to the ILUT preconditioner [103], we use numerical dropping by threshold
τ and count p, i.e., we store at most the p largest elements of each row of L
and H , respectively. The last k columns of the matrix H are not subject to
any numerical dropping. We choose τ = 1E−1 and p = 5 as the parameters
of the numerical dropping. Algorithm 6.1 is used to solve linear systems
with the computed incomplete factor H without pivoting, i.e., the pivoting
threshold is chosen as α = 0.

Denote by nz(X) the number of nonzero entries in a matrix X. Table 6.2
describes the number of nonzero entries in the computed incomplete factors L
and H and the number of matrix-vector products required by the restarted
GMRES method with ILH preconditioner to reach the stopping criterion
(5.9) for different values of k.

By the results of Table 6.2, we observe that increasing the parameter k
improves convergence for the Sherman4 test problem. Even though the
computed factors are very sparse, computational and memory cost of the



6.7. CONCLUSIONS 139

Problem k nz(L)+nz(H) Iters
Sherman4 0 5963 274

25 5972 258
50 6004 243

Table 6.2: Number of matrix-vector products required to have (5.9) for
GMRES(11) with ILH(1E−1, 5) preconditioning for the linear system (1.1)

solution of the linear systems involving the factor H increases linearly in k
as the parameter k is increased. Therefore, for actual practical computations
the values used in this example for k may be too large.

6.7 Conclusions

In this chapter we have presented a fast algorithm for solving sparse k-
Hessenberg linear systems. The algorithm has a floating point complexity
O(C(k+ 1)n). The memory consumption is fixed of the order O(kn). In the
ideal case for sparse systems, the algorithm is able to circumvent the growth
of the number of floating point operations due to fill-in of the standard Gaus-
sian elimination.

The method is matrix-free in the sense that it only requires knowing the
entries of H locally. Therefore it does not require the matrix H to be stored
in memory.

Because the algorithm is very fast for solving linear systems involving
sparse k-Hessenberg matrices, preconditioning general linear systems with
k-Hessenberg matrices or by using respective incomplete decompositions is a
relevant option. Also k-Hessenberg splittings lead to immediate generaliza-
tions of the Gauss-Seidel type of iterations with more flexibility.



140 CHAPTER 6. SPLITTINGS AND K-HESSENBERG SYSTEMS



Chapter 7

Approximate factoring of the
inverse

In this chapter, we consider a right-preconditioned linear system (1.22), writ-
ten as

APy = b, x = Py,

where A ∈ Cn×n, b ∈ Cn and P is a preconditioner of an approximate inverse-
type.

Define a matrix subspace to be sparse if all its elements are sparse with
a common sparsity pattern. Let W and V1 to be sparse matrix subspaces of
Cn×n containing invertible elements. In addition let the nonsingular elements
of V1 be readily invertible. As in Chapter 2, we deem a matrix to be readily
invertible if solving a linear system with it is inexpensive in terms of floating
point operations. We present an algorithm for computing preconditioners of
the form

P = WV −1
1 , (7.1)

where W ∈ W and V1 ∈ V1.
To obtain a preconditioner P , we approximately factor the inverse of a

matrix A into the product WV −1
1 . To this end, we consider the problem

AW ≈ V1, (7.2)

where both W and V1 are regarded as variables. In terms of matrix subspaces
W and V1, we formulate the factorization problem by inspecting the nullspace
of the linear map L : W 7−→ Cn×n, defined as

W 7−→ LW = (I − P1)AW, with W ∈ W, (7.3)

where P1 denotes an orthogonal projection onto V1 [68].

141



142 CHAPTER 7. APPROXIMATE FACTORING OF THE INVERSE

For a connection between (7.3) and the factorization problem (7.2), as-
sume there exists an exact factorization

AWV −1
1 = I,

with V1 = P1AW . Then, we have

AW = V1 = P1AW ⇐⇒ (I − P1)AW = 0,

where 0 denotes a matrix of all-zeroes. Thus a factorization exists if and
only if there are invertible elements W in the nullspace. Therefore, to have
approximate factorization of the form WV −1

1 , we consider approximate solu-
tions to

inf
W∈W , V1∈V1

||AWV −1
1 − I||, (7.4)

in some suitable norm. Here, since the minimum does not need to exist, the
infimum is used.

For preconditioning a linear system (1.1) the exact factorization A =
WV −1

1 is not needed and in practice it would often not be even feasible to
compute. In contrast to (7.4), for approximate factorization (7.2) we have
AW ≈ V1 = P1AW , if and only if (I−P1)AW ≈ 0. This yields a computable
minimization problem

min
W∈W ,||W ||F=1

||(I − P1)AW ||F (7.5)

for generating factors W and V1 in terms of the singular values of the linear
map (7.3). In the following sections, we first transform the minimization
problem (7.5) into an extremal eigenvalue problem and then present an al-
gorithm based on the power method for computing the factors W and V1.
Assuming W and V1 are sparse, by using the power method with sparse-
sparse operations we aim to achieve a computational complexity of order
O(nz(A)) which is completely free of inner products.

Our factored minimization approach differs from standard approaches
to approximate inverses. For a connection between the minimization prob-
lem (7.5) and minimization problems usually taken in approximate inverse
techniques, consider setting V1 = CI. We then have the standard sparse
approximate inverse minimization problem, written as

min
W∈W

||I − AW ||F . (7.6)

The factored approximate inverse minimization problem (7.5) can therefore
be considered as a generalization of the standard approximate inverse mini-
mization problem (7.6). We note that the minimization problem (7.6) is used
quite universally, for instance, in [25] and many others.



7.1. COMPUTING APPROXIMATE FACTORS 143

In general, the inverse of a sparse matrix can be full. Thus, solving (7.6)
with reasonable accuracy may require the dimension of W to be too large
for practical computations. On the other hand, for (7.5), even though the
factors are sparse, a factored approximate inverse WV −1

1 can be nearly full.
For instance, even a simple choice such as taking V1 to be the subspace of
block diagonal matrices with a block size k, we have

nz(WV −1
1 ) ≈ knz(W ),

where nz(W ) denotes the number of nonzero elements in matrix W . We note
that in the context of approximate inverses, a block diagonal approach has
been used in [75], for instance.

For a relation between (7.4) and (7.5), we have

||AW − V1||2 = ||(AWV −1
1 − I)V1||2

≤ ||(AWV −1
1 − I)||2||V1||2,

and

||AW − V1||2 = ||AW − V1||2 ||V
−1
1 ||2

||V −1
1 ||2

≥ ||(AWV −1
1 − I)V1V

−1
1 ||2

||V −1
1 ||2

=
||AWV −1

1 − I||2
||V −1

1 ||2
.

From these we have, after multiplication by ||V −1
1 ||2,

||AWV −1
1 − I||2 ≤ ||AW − V1||2||V −1

1 ||2 ≤ ||(AWV −1
1 − I)||2κ(V1), (7.7)

where κ(V1) = ||V1||2||V −1
1 ||2 denotes the condition number of V1. Thus, the

two approximation problems are related by the conditioning of V1.
In the next section, an algorithm for computing approximate factors W

and V1 based on the power method is presented. After presenting the al-
gorithm, we address the critical choice of subspaces W and V1. Finally, we
consider implementation of the method and present numerical experiments
where we assess the quality of the computed preconditioners.

7.1 An algorithm for computing approximate

factors

To compute the factors W and V1, a numerical solution of the minimization
problem (7.5) is needed. For solving the standard minimization problem



144 CHAPTER 7. APPROXIMATE FACTORING OF THE INVERSE

(7.6) in the case where A is nonsymmetric, several algorithms have been
proposed. These are based on Minimal Residual (MR) algorithm on the
operator W 7−→ I−AW [25], MR algorithm on the linear systems Awj = ej,
j = 1, . . . , n, W = [w1 w2 · · · wn] [25], optimal techniques for the selection
of the nonzero entries of W [58, 66], biorthogonalization techniques [10] and
many others, see [105, Chapter 10] and references therein.

Our approach to solving the minimization problem (7.5) is to numerically
approximate the smallest singular values of the linear operator (7.3). The
singular values of the linear map

X 7−→ AX

are determined by A and can be recovered with the help of the Kronecker
product A⊗ I. Note that with the minimization problem (7.5) we are using
a restriction on W followed by a projection to the orthogonal complement
of V1. A viable alternative for the numerical approximation is the power
method, since it is completely free of inner products and requires only a
modest amount of additional storage.

For the power method, adjoint of the linear operator L is needed. Denote
by V any matrix subspace V of Cn×n over C. We use the trace inner product

(M,N) = tr(N∗M),

where M,N ∈ V. We have the following proposition.

Proposition 7.1. Adjoint operator of the linear operator L, defined as in
(7.3), L∗ : Cn×n 7−→ W, is

L∗ = PWA∗(I − P1) : Cn×n →W,

where PW denotes orthogonal projection on Cn×n onto W.

Proof. First consider linear map W 7−→ AW . For W ∈ W, X ∈ Cn×n we
have

(AW,X) = tr(X∗AW ) = tr((A∗X)∗W ) = tr(W,PWA∗X),

thus the adjoint is X 7−→ PWA∗X. For the other part, i.e., linear map
W 7−→ P1AW , we have

(P1AW,X) = tr(X∗P1AW )

= tr((P1X)∗AW )

= tr((A∗P1X)∗W ) = (W,PWA∗P1X),

and the adjoint is thus X 7−→ PWA∗P1X. By combining the adjoints of the
linear maps W 7−→ AW and W 7−→ P1AW , the claim then immediately
follows.



7.1. COMPUTING APPROXIMATE FACTORS 145

To compute the singular values, we numerically approximate the smallest
eigenpairs of the linear map

W 7−→ L∗LW = PWA∗(I − P1)AW, (7.8)

on the matrix subspace W. Our interest lies in the smallest eigenvalues of
(7.8). To approximate the smallest eigenvalues, we consider

αI − L∗L,

with α ∈ R+ chosen in such a way that it makes the smallest eigenvalue
of (7.8) dominant. Setting α = r||A||2 with 1/2 < r ≤ 3/4 seems to be
a reasonable choice. It is sufficient to have only a rough estimate of ||A||2,
which is achievable by using a few steps of the power method, for instance.
With these, we then have Algorithm 7.1.

Algorithm 7.1 Power method for solving (7.5)

1: Set α ∈ R+ and choose an initial factor W ∈ W
2: repeat
3: M = (I − P1)AW
4: N = PWA∗M
5: W := αW −N
6: W := W/||W ||F
7: until stopped

Once Algorithm 7.1 is stopped, we compute V1 = P1AW to have the
approximate factorization of A as WV −1

1 .
We note that the linear map (7.8) is a positive semidefinite operator,

so other algorithms than the power method can be used. Many of these,
conjugate gradient approaches for instance, will most likely obtain better
convergence, but in turn also require more memory. Also, since the resulting
W and V1 will be used for preconditioning, it is not necessary to compute
the smallest eigenpair exactly. Being sufficiently close to a cluster is enough
for obtaining reasonable convergence rate for a Krylov subspace method,
such as GMRES, applied to the preconditioned system. In addition, the
power method has the benefit of requiring no inner products, thus being
very efficient when parallelized.

We have not yet considered how subspaces W and V1 should be chosen.
As with the standard approximate inverse techniques, the quality of the
preconditioner depends on the structure of the subspaces and how they have
been chosen. In the next section, we address the choice of W and V1 and
present an adaptive way of constructing them via numerical dropping.



146 CHAPTER 7. APPROXIMATE FACTORING OF THE INVERSE

7.2 Choice of subspaces W and V1

Algorithm 7.1 attempts to solve minimization problem (7.5) in subspaces W
and V1. Thus the achievable minimum and the quality of the computed pre-
conditioner depends considerably on the structure of these subspaces. Analo-
gously, in traditional techniques dealing with the minimization problem (7.6),
the structure ofW has a significant effect on the quality of the preconditioner
[24].

We define a matrix subspace V1 of Cn×n to be nonsingular if it contains in-
vertible elements. The set of inverses of invertible elements of V1 is described
by

Inv(V1) = {V −1
1 | V1 ∈ V1 ∩GL(n,C)},

where GL(n,C) denotes the group of invertible matrices in Cn×n [69]. Recall
that we deem elements of Inv(V1) to be readily invertible if operations on
the inverses of V1 to a vector are inexpensive to compute in terms of floating
point operations.

Let A ∈ Cn×n be nonsingular. With the approximation problem (7.4) for
computing approximate factors, we consider the set

AWInv(V1) = {AWV −1
1 | W ∈ W, V1 ∈ V1 ∩GL(n,C)},

which does not need to be closed. We have the following example regarding
the infimum.

Example 7.1 Let A =

[
0 1
1 0

]
. We choose W and V1 to be the spaces of

lower and upper triangular matrices in C2×2, respectively.

By setting W =

[
1 0

1/ǫ 1

]
and V −1

1 =

[
ǫ 1
0 (ǫ2 − 1)/ǫ

]
we observe that

although non-attainable, for the approximation problem (7.4) the infimum
is zero when ǫ 7→ 0. On the other hand, I /∈ AWInv(V1).

In the following section we define standard subspaces, which are probably
the most common type of subspaces.

7.2.1 Standard subspaces

We have not yet defined how subspaces W and V1 are selected when the
minimization problem (7.5) is solved. In standard techniques concerned with
the minimization problem (7.6), it is common to set subspace W only to
contain entries at certain positions of a matrix. Similar formulation can also
be used with factored approximate inverses.



7.2. CHOICE OF SUBSPACES W AND V1 147

Definition 7.2. Standard basis matrix of Cn×n is a matrix containing 1 in
exactly one position, and zero otherwise.

Standard basis matrices can also be considered vectors in Cn2
. Assuming

columnwise indexing, there exists a bijection f which maps the index (i, j)
of an n-by-n array to an index of a vector of size n2. Denote by In = {j | 1 ≤
j ≤ n} the set of indices between 1 and n. For the bijection f , we then have

f : In × In 7−→ In2 , f(i, j) = (j − 1)n + i,

with the inverse

f−1 : In2 7−→ In × In, f
−1(k) = (k − n(⌈k/n⌉ − 1), ⌈k/n⌉) .

With standard basis matrices we now define standard matrix subspaces.

Definition 7.3. A subspace V of Cn×n is called standard if it has a basis
consisting of standard basis matrices.

An equivalent definition of defining a standard subspace is to let the
sparsity pattern of V to determine its dimension.

Using standard subspaces has the benefit of making Algorithm 7.1 readily
parallelizable. In addition, with standard subspaces, projection operators P1

and PW become straightforward to implement.

Lemma 7.4. Denote by P the orthogonal projection of matrix on Cn×n onto a
standard subspace V. The projection P is equivalent to selecting the elements
in the sparsity pattern of V. Equivalently, for the orthogonal projection PX =
Y ∈ V we then have

PX = Y, Yi,j = Xi,j, if Vi,j 6= 0,

where Vi,j ∈ V denotes a non-zero entry at position (i, j) in the sparsity
pattern of V.

Proof. Consider the orthogonal splitting of X by its sparsity pattern, X =
XV +XV⊥, where XV ∈ V belongs to the sparsity pattern and XV⊥⊥V into
its orthogonal complement. By the definition of an orthogonal projection,
we have

||X − PX||2F = min
Y ∈V

||X − Y ||2F
= min

Y ∈V
||XV +XV⊥ − Y ||2F

= min
Y ∈V

||XV − Y ||2F + ||XV⊥||2F ,

which is clearly minimized when XV = Y , i.e., the elements which belong to
the sparsity pattern of V and are nonzero in Y are equal to those in X.



148 CHAPTER 7. APPROXIMATE FACTORING OF THE INVERSE

Thus the implementation of orthogonal projections with standard sub-
spaces is extremely simple. To compute orthogonal projection of X ∈ Cn×n

onto V, we select exactly those elements of X which are in the sparsity pat-
tern of V.

With standard subspaces, in addition to being simple to implement, pro-
jectors P1 and PW decouple into operations over the columns (or rows) of
Cn×n. Denote by wj the jth column of W . Also, denote by P1,j, (I − P1)j

and PW ,j those parts of the orthogonal projection operators P1, (I −P1) and
PW which affect the jth column. Then, the minimization problem (7.5) can
be written as

min
W∈W ,||W ||F=1

||(I − P1)AW ||F = min
wj∈Wj ,||W ||F=1

n∑
j=1

||(I − P1)jAwj ||2, (7.9)

where Wj denotes jth column of W. Using equation (7.9), Algorithm 7.1 be-
comes readily parallelizable. We then have the parallel version of Algorithm
7.1 as Algorithm 7.2 below.

Algorithm 7.2 Parallel power method for computing approximate factors

1: Let α ∈ R+ and W = [w1, . . . , wn] ∈ W
2: repeat
3: for all columns j = 1, . . . , n in parallel do
4: mj = (I − P1)jAwj

5: nj := PW ,jA
∗mj

6: wj := αwj − nj

7: end for
8: W := W/||W ||F
9: until stopped

10: Compute V1 = P1AW

Regarding projections and standard subspaces, consider computing mj =
(I−P1)jAwj . To have mj , only those elements in the orthogonal complement
of the jth column of V1 have to be computed. Thus mj can be regarded as
sparsification of Awj. Similarly, to have nj := PW ,jA

∗mj , only elements of
the jth column of W have to be computed. This can produce significant
computational savings, especially if the products Awj and A∗mj are much
less sparse than A and W.

In the next two sections, we present some ways of choosing sparsity struc-
tures for W and V1 when standard subspaces are used.



7.2. CHOICE OF SUBSPACES W AND V1 149

7.2.2 Standard subspaces from matrix Krylov subspa-

ces

Sparsity patterns for standard subspaces can be constructed from matrix
Krylov subspaces of Cn×n, defined as

Kj(A; I) = {I, A,A2, . . . , Aj−1}

for j ≤ deg(A), where deg(A) denotes the degree of A. With j = deg(A) this
contains the inverse of A. Even though Kj(A; I) is not a standard matrix
subspace as such, its sparsity pattern can be used to define sparsity structures
for W. By imposing an additional constraint that the elements must be
readily invertible, we can use Kj+1(A; I) to obtain a sparsity pattern for V1.

While constructing the sparsity patterns, we can use sparsification, i.e.,
numerical dropping of small elements, when the powers of A are computed.
A similar technique has been used by Chow in [24] to obtain sparsity patterns
for standard approximate inverses.

In this subsection we have considered the construction of sparsity patterns
for standard subspaces W and V1 a-priori. Another option is to let Algorithm
7.1 construct sparsity structures adaptively.

7.2.3 Standard subspaces via numerical dropping

If there are no sparsity structures for standard subspaces W and V1 to use,
an option is to construct the structures numerically during the execution
of Algorithm 7.1. In each round of the iteration, we then aim to maintain
sparsity of W and V1 by replacing with zeroes those elements which satisfy
certain predefined conditions. With this kind of adaptive construction, the
sparsity structures of W and V1 evolve during the iteration which can lead
to structures that greatly differ from the sparsity structures such as those of
A, A∗ and A∗A.

Using adaptive numerical techniques for maintaining sparsity of the pre-
conditioner is by no means new. Similar ideas are widely used with standard
approximate inverse techniques in selecting sparsity structures for W, see for
example [10, 25, 58].

For maintaining sparsity, we adopt the technique of numerical dropping,
i.e., replacing with zeroes those entries that meet predefined conditions. De-
note by v ∈ Cn a vector with entries vj . To select the relatively large entries
of v numerically, we drop entries by relative tolerance τ and by count p. The
dropping rules are as follows.

1. Entry vj is dropped if |vj | ≤ τj = τ ||v||2 holds.



150 CHAPTER 7. APPROXIMATE FACTORING OF THE INVERSE

2. Entry vj is dropped if #vL > p, where #vL denotes the number of
entries vl, l = 1, . . . , n, l 6= j for which |vl| > |vj| holds.

The first rule states that we only store those entries of v that are relatively
large. The second rule states that we only store p largest entries of v at
most. Note that for finding the relatively small entries of v the direction of
the inequality in the first rule and the direction of the second inequality in
the second rule are reversed.

We now describe a strategy for adaptively constructing W and V1 by
using numerical dropping. We set W = I and W = I initially. Consider
first the line 3 of Algorithm 7.1 and computing M = (I−P1)AW . We define
subspace V1 and projection P1 by choosing V1 to contain those entries of AW
which are within some predefined readily invertible sparsity pattern and are
numerically large. Then, with subspace V1 and projection P1 defined, M is
acquired simply by dropping those entries of AW which are in P1.

Similarly, on line 4 for computing N = PWA∗M , we need a sparsity
structure for subspace W. To have W and PW , we locate those entries of
A∗M which are numerically large and augment (or redefine) W to contain
the locations of those entries. Then N = PWA∗M is acquired by dropping
those elements of A∗M that are not in PW .

If the subspace W is fully redefined on line 4, the computed matrix N is
likely to be from a different subspace than the original W . Therefore, on line
5, we apply numerical dropping to the computed W = αW −N and update
the subspace W accordingly. With numerical dropping, we have Algorithm
7.3.

Algorithm 7.3 Parallel power method with numerical dropping

1: Let α ∈ R+ and W = [w1, . . . , wn] ∈ W
2: repeat
3: for all columns j = 1, . . . , n in parallel do
4: Find large entries of Awj, update readily invertible V1

5: mj = (I − P1)jAwj

6: Find large entries of (I − PW)jA
∗mj , update W

7: nj := PW ,jA
∗mj

8: wj := αwj − nj

9: Apply numerical dropping to wj and update W
10: end for
11: W := W/||W ||F
12: until stopped
13: Compute V1 = P1AW and apply numerical dropping to V1



7.3. IMPLEMENTATION AND COMPLEXITY 151

When numerical dropping is used, the sparsity patterns of W and V1

evolve during the course of the iteration. Even though the construction of V1

is confined to readily invertible matrices, we have the additional restriction
that V1 ∈ V1 must be invertible. For arbitrary subspaces V1, this can be
difficult to ensure in practice. For certain subspaces, such as subspaces of
block diagonal matrices, invertibility of the elements is easier to verify.

Another difficulty in the construction ofW and V1 is the added complexity
in terms of floating point operations. To be able to update W and V1,
additional elements from bothAW andA∗M must be computed. This creates
an additional cost both in memory and in floating point operations.

In the next section, we focus more on the implementation and complexity
of Algorithm 7.1.

7.3 Implementation and complexity

For Algorithm 7.1 to be feasible in terms of computational complexity in
practice, matrix-matrix products with two sparse matrices need to be com-
puted efficiently.

Consider the product

Z = XY,

where X ∈ Cn×k, Y ∈ Ck×m and Z ∈ Cn×m are sparse matrices. We have

zij =

k∑
l=1

xilylj,

where xij , yij and zij denote the elements at the ith row and jth column of
X,Y and Z. Because X and Y are sparse, most of the products xilylj have
either one or both of the factors equal to zero. The computation of Z would
then require approximately O(kmn) operations, amount which is too great
for any practical computations with large matrices. Testing if either of the
factors equal zero explicitly does not suffice, since the operation count would
essentially remain the same.

To reduce complexity, matrix-matrix products must be performed in
sparse-sparse-mode [36, 59, 105], which will be introduced in what follows.
Denote by xj , yj and zj the jth columns of X, Y and Z, respectively. By
formulating the matrix-matrix product as

zj =

k∑
l=1

xlylj, (7.10)



152 CHAPTER 7. APPROXIMATE FACTORING OF THE INVERSE

computations only involve operations on sparse column vectors xj with el-
ements of sparse columns yj. When formula (7.10) is used, vectors zj are
accumulated as the sum of columns of X multiplied by elements of a single
sparse column vector of Y . Therefore this formulation is natural when both
X and Y are stored by columns.

For the operation count of (7.10), let k1, k2 ≪ n and denote by nz(X) =
O(k1k) and nz(Y ) = O(k2m) the number of nonzero elements in matrices X
and Y , respectively. The columns yj of matrix Y are sparse vectors with k2

nonzero elements on an average. Due to the sparsity of yj, only k2 out of the
k products in total are required to compute zj , which yields only O(k1k2)
operations due to the sparsity of X. Thus, the computation of matrix Z
requires

m∑
j=1

k∑
l=1

xlylj = O(k1k2m),

operations in total.
Note that Algorithm 7.1 requires computation of products with A and

A∗. Assuming that A and W have been stored columnwise, computation
of the product AW is efficient in terms of floating point operations by us-
ing formulation of (7.10). On the other hand, since A∗ is available only by
rows, the efficient computation would A∗M require M to be stored rowwise,
which contradicts previous assumptions. In the computation of A∗M , for-
mula (7.10) may be fully benefited from by storing a columnwise copy of A∗.
Then the cost is increased memory usage of the algorithm. Note that it is
not absolutely necessary to store A∗ explicitly, since computing the product
PWA∗M only requires computing those elements of A∗M which are in the
sparsity pattern of the subspace W.

When standard subspaces are used, an operation count for a single iter-
ation of Algorithm 7.1 follows with little discomfort. With standard sub-
spaces, the operation count is determined by the sparsity of A, W and
V1. For the analysis, we assume the number of nonzero elements to equal
nz(A) = O(k1n), nz(W) = O(k2n) and nz(V1) = O(k3n), with k1, k2, k3 ≪ n.

We first consider line 3 and computing M = (I − P1)AW . The range of
projection (I − P1) is the orthogonal complement of sparse subspace V1 and
is nearly full. The projection operator (I −P1) results in no significant com-
putational savings. Hence the computational cost for line 3 is approximately

O((I − P1)AW ) = O(k1k2n)

operations, which is essentially the cost of computing the product AW in
sparse-sparse mode.



7.3. IMPLEMENTATION AND COMPLEXITY 153

On line 4, to have N = PWA∗M , only the elements in the sparse sub-
space W have to be computed. Then, the sparsity of A∗ ensures that the
computational cost for line 4 is

O(PWAM) = O(k1k2n)

operations even when M is full. For line 5

O(αW −N) = O(2k2n)

operations and for line 6

O(W/||W ||F) = O(3k2n)

operations are needed. Combining the complexities, we have the total cost
for one iteration round of Algorithm 7.1 as O((2k1k2 + 5k2)n).

Memory consumption of Algorithm 7.1 seems at first glance quite large,
since at least theoretically intermediate product matrix M can be full. Due
to the fact that columns mj may be computed and then discarded after
use, the algorithm is feasible for practical computations with large matrices.
Thus, during the iteration it is sufficient to store W ∈ W, A∗ and a single
vector for storing mj and nj , which yields a minimum memory consumption
of O((k1 + k2 + 1)n) when iteration is done columnwise. Note that W ∈ W
does not become denser each iteration step, a problem which is a common
for standard approximate inverse techniques [105, Chapter 10.5].

We note that the complexity of Algorithm 7.3 is somewhat harder to esti-
mate accurately, since the sparsity structure of W is not known beforehand.
If no heuristics are used, adaptive construction ofW and V1 requires comput-
ing all elements of AW and A∗M , which somewhat increases the complexity
of the algorithm. To avoid O(n2) complexity, the computations must be per-
formed in sparse-sparse mode, which means that A∗ must be explicitly stored
columnwise.

In the next section, we briefly discuss the prospects of using Algorithm
7.1 in improving a preconditioner.

7.3.1 Improving a preconditioner

Typically, the quality of the preconditioner computed with Algorithm 7.1
depends on the number of iterations that have been taken. Now consider
the case that a preconditioner W ∈ W has been computed with standard
approximate inverse techniques, i.e., by solving the minimization problem
(7.6). If the preconditioning performance of W is poor, Algorithm 7.1 can



154 CHAPTER 7. APPROXIMATE FACTORING OF THE INVERSE

be used to improve W ∈ W by using the existing preconditioner as an initial
guess for W and by setting the sparsity structure of W to equal the sparsity
structure of W .

Using Algorithm 7.1 also offers an option to compute a factor V1 ∈ V1

with V1 something else than the subspace of identity matrices. We then have
an approximate factorization of the form

AW ≈ V1,

with W ∈ W and V1 ∈ V1. The idea of improving a preconditioner is
similar to idea given by Saad in [105, Chapter 10.5.8]. The main difference
is that with Algorithm 7.1 both W ∈ W and V1 ∈ V1 are being refined
simultaneously. For another approach to improve an existing preconditioner,
see [66, 67].

Choosing a good structure for the subspace V1 is a difficult task when an
existing preconditioner is improved. In terms of the minimization problem
(7.5), a greedy approach is to initially define V1 to contain the largest entries
of AW within some readily invertible pattern. Then Algorithm 7.1 and
numerical dropping are used to evolve sparsity structure of V1 as iteration
proceeds.

The main concern with every preconditioner is how it performs in prac-
tice. In the following section, we present some results on the performance of
factored approximate inverses, computed with Algorithms 7.1 and 7.3.

7.4 Numerical experiments

The contents of this section closely follow the contents of [20, Section 5.2]. We
illustrate the behaviour of Algorithms 7.1 and 7.3 with numerical experiments
performed with Matlab, version 7.9.0.529 (R2009b). We are concerned with
right-preconditioned linear system (1.22) as

AMy = b, x = My,

with A ∈ Rn×n. For comparison, the preconditioner M is generated with
SPAI-algorithm [58] and with Algorithm 7.3. As SPAI-implementation, we
used the generic implementation available online1 used via Matlab’s mex-
interface. As a linear solver we use our own implementation of GMRES(k),
GMRES restarted after every k steps. The right-hand side is always b =
b̂/||b̂||2, where b̂ = (1, 1, . . . , 1) is the vector of all ones. As a stopping criterion

||b−Ax||2
||b||2 ≤ 1E − 6

1http://www.computational.unibas.ch/software/spai/



7.4. NUMERICAL EXPERIMENTS 155

A n nz(A) κest(A)
jpwh911 991 6027 7.3E+2
orsreg1 2205 14133 1E+2
sherman1 1000 3750 2.3E+4

Table 7.1: For Example 7.2, n is the order, nz(A) the number of nonzero

elements and κest(A) the condition number estimate of A.

is used, i.e., the iteration is terminated once the relative residual is reduced
by six orders of magnitude.

Excluding Example 7.3, all the matrices A in our experiments are taken
from Matrix Market collection [92].

In our numerical examples, we first examine how quickly Algorithm 7.1
produces a good preconditioner and how the quality of the computed precon-
ditioner scales on a simple model problem. We then show how the sparsity
structure of W evolves when it is automatically determined by using numeri-
cal dropping in Algorithm 7.3. Finally, we present a few numerical examples
about the convergence behaviour of the restarted GMRES when precondi-
tioned with Algorithm 7.3 for matrices known to be difficult to successfully
precondition with approximate inverse techniques.

In the following numerical example, we consider how the number of re-
finements with Algorithm 7.1 affects the quality of the preconditioner. This
can also be considered as improving a preconditioner M = I with V1 chosen
as the set of diagonal matrices.

Example 7.2 Here the purpose is to illustrate how many iterates are typi-
cally needed with Algorithm 7.1 to produce reasonable approximate factors.

We experiment with three matrices A by solving the preconditioned linear
system (1.22) with GMRES(20). The matrices sherman1 and orsreg1 arise
in oil reservoir simulation and jpwh991 in circuit simulation. Some of their
properties are listed in Table 7.1.

We denote by Wk and V1 the factors obtained after performing k iterates
with Algorithm 7.1 to improve an initial guessW0. We use somewhat artificial
choices for matrix subspaces. To have a symmetric sparsity pattern for AW ,
we take W to be the standard subspaces having the nonzero pattern of A∗,
while V1 is the set of diagonal matrices. For simplicity, we take W0 = I as
an initial guess.

From Table 7.2 we observe that for the selected problems, the quality of
the preconditioner does not improve much after 10 iterations. This indicates



156 CHAPTER 7. APPROXIMATE FACTORING OF THE INVERSE

Matrix / M I W5V
−1
1 W10V

−1
1 W15V

−1
1 W20V

−1
1 W40V

−1
1

jpwh991 53 26 24 23 23 22
sherman1 > 1000 720 470 292 176 129
orsreg1 303 198 174 179 178 175

Table 7.2: The number of steps GMRES(20) required for jpwh911, sherman1
and orsreg1: unpreconditioned (I) and preconditioned using different number
of iterations with Algorithm 7.1.

that the power iteration to obtain the preconditioner has converged to a
cluster of eigenvalues in the left end of the spectrum of the linear map (7.3).
In other numerical experiments we have observed similar behaviour, with
some dependence on the initial guess W0 and the sparsity structure of W.
The sherman1 matrix was an exception in the sense that preconditioner kept
improving. This was most likely caused by an unfavourable structure of the
spectrum of (7.8) causing Wk to converge relatively slowly.

In the following example, we consider the quality of the preconditioner
computed with Algorithm 7.1 in relation to the size of a simple model prob-
lem.

Example 7.3 We consider an elliptic model problem in three dimensions,
i.e., the three dimensional Poisson problem,{ −∆u = f, in Ω

u = 0, on ∂Ω
, (7.11)

on a unit cube Ω = (0, 1)3 with f = 1. We discretize the problem (7.11) with
the standard second order seven point finite difference stencil by using (N+1)
grid points in each direction. We then have the grid size as h = 1/N . The
discretization yields a linear system (1.1) with a Hermitian positive definite
matrix A ∈ Rn×n with n = N3. The matrix A has a block tridiagonal
structure with N blocks of the size N2-by-N2 in each direction. Denote by
Ik a k-by-k identity matrix. We then have

A =
1

h2



Y −IN2

−IN2 Y −IN2

−I . . .
. . .

. . .
. . .

. . .
. . .

. . . −IN2

−IN2 Y −IN2

−IN2 Y


,



7.4. NUMERICAL EXPERIMENTS 157

where the N2-by-N2 matrix Y is a block tridiagonal matrix with N -by-N
blocks. We have

Y =



T −IN
−IN T −IN

−IN . . .
. . .

. . .
. . .

. . .
. . .

. . . −IN
−IN T −IN

−IN T


,

where the N -by-N matrix T is tridiagonal with the diagonal entries all equal
to 6 and the entries in the first sub- and superdiagonals all equal to −1.

We takeW to be a standard subspace having the nonzero pattern ofA and
set W0 = I as an initial guess. The sparsity pattern of the standard subspace
V1 was chosen to be the set of block diagonal matrices with tridiagonal blocks
with a blocksize of N2, i.e., V1 contains N tridiagonal blocks in total. To
construct a preconditioner, we take 15 iterations with Algorithm 7.1.

Table 7.3 describes the number of matrix-vector products required by the
restarted GMRES method without and with factored approximate inverse
preconditioning. Nonconvergence before the limit of 2000 iterations is de-
noted by dagger (†). For each grid size h, we also describe the number of
nonzero entries in the matrix A and in the computed approximate factors
W and V1. Note that since V1 is tridiagonal, the computational cost of an
LU -decomposition is approximately O(8N2) operations for each block, i.e.,
O(8n) operations in total. In addition, the LU -decomposition of V1 can be
computed in place, i.e., no additional storage is required by the computed
factors [55].

h n nz(A) nz(W )+nz(V1) Iters Iters prec.
1/8 512 3200 4608 24 13
1/16 4096 27136 38912 92 26
1/32 32768 223232 319488 325 87
1/64 262144 1810432 2588672 1184 267
1/128 2097152 14581760 20840448 † 951

Table 7.3: Number of iterations required for convergence with GMRES(10)
with and without factored approximate inverse preconditioning

From the results of Table 7.3 we observe that the number of iterations
required by GMRES(10) to reduce the initial residual by six orders of magni-



158 CHAPTER 7. APPROXIMATE FACTORING OF THE INVERSE

tude increases as the grid size decreases. However, since halving the grid size
increases the size of the problem by 8, the number of iterations required by
GMRES(10) preconditioned with a factorized approximate inverse computed
with Algorithm 7.1 is approximately ∼ 3log2(N)−1.

We note that as the size of the problem was increased, the quality of the
preconditioner became more sensitive to the number of iterations used in
Algorithm 7.1. For instance, for the case h = 1/16 the number of iterations
required by GMRES(10) iterations did not reduce even if the preconditioner
was constructed by using 50 iterations of Algorithm 7.1. On the other hand,
for the case h = 1/64 the number of the required GMRES(10) iterations
was reduced to 255 when the preconditioner was constructed by using 50
iterations of Algorithm 7.1.

This behaviour may be due to the distribution of the singular values of
the linear map (7.3), which are determined by the eigenvalues of the matrix
A. It is well known, see for instance [81], that the eigenvalues of the matrix
A are of the form λk,l,m = (k2 + l2 + m2)π2, where k, l,m = 1, . . . , N , i.e.,
we have λN,N,N → ∞ as N → ∞. Then the size of the cluster containing
the smallest eigenvalues can be experted to grow as the grid size increases,
which may slightly reduce the quality of the computed preconditioner if the
number of iteration steps in Algorithm 7.1 is kept constant.

In the remaining experiments we employ Algorithm 7.3. Then it is not
necessary to fix the sparsity patterns of W and V1 beforehand as they evolve
during the iteration. This is certainly a more flexible and user-friendly black
box alternative. More importantly, it provides high quality preconditioners
that seem to be computable in a small number of iterations, such as five.

Example 7.4 We take the sherman1 matrix and examine the evolution of the
sparsity pattern of W after k = 1, 10, 20, 30 and 40 iterations with Algorithm
7.3. To keep the initial sparsity pattern as simple as possible, we use W0 = I
as an initial guess. The matrix subspace V1 is the set of diagonal matrices.

We set τ = 1E − 05 and p = 30 as parameters for numerical dropping.
With these, the evolution of the sparsity pattern of W is depicted in Figure
7.1.

SinceW0 = I, after one iteration the structure ofW resembles the nonzero
structure of A∗A. As the iteration progresses, the nonzero structure of W
becomes more unpredictable and begins to differ from the sparsity patterns
of A∗, A or A∗A. This indicates that an artificially defined sparsity pattern
for W (and V1) may not be sufficient in capturing significant entries of A−1.
See [58] for similar conclusions made with the SPAI algorithm.

In practice we do not take V1 to be the set of diagonal matrices, it would



7.4. NUMERICAL EXPERIMENTS 159

nz = 7067

Iter:1

nz = 14172

Iter:10

nz = 15042

Iter:20

nz = 15434

Iter:30

nz = 15656

Iter:40

Figure 7.1: For Example 7.4, the evolution of the sparsity pattern of W for
the sherman1 matrix after k = 1, 10, 20, 30 and 40 iterations with Algorithm
7.3.

nz = 9196

Iter:1

nz = 9204

Iter:5

nz = 9214

Iter:10

nz = 9228

Iter:15

nz = 9240

Iter:20

Figure 7.2: For Example 7.5, the evolution of the sparsity pattern of W for
the sherman2 matrix after k = 1, 5, 10, 15 and 20 iterations with Algorithm
7.3.

be too restrictive. We want to benefit more from the freedom of choosing a
suitable matrix subspace containing readily invertible elements. Even simple
alternatives, like choosing subspace V1 as the space of block diagonal matrices
can be surprisingly effective in solving challenging problems.

Example 7.5 We take A to be the sherman2 matrix which is known to be
difficult to solve with iterative methods without preconditioning and proper
scaling, especially with approximate inverse techniques [8]. Then n = 1080

with nz(A)= 23094 and a condition number estimate κest(A) = 1.4E + 12.

With Algorithm 7.3, the sparsity pattern of W was determined by nu-
merical dropping with the parameters τ = 1E − 10 and p = 10. An initial
guess W0 = I was used. The matrix subspace V1 was chosen to be the set of
block diagonal matrices with a block size 72. Numerical dropping with the
parameters τ = 1E − 10 and p = 15 was used to keep V1 sparse.

The evolution of the sparsity pattern of W after 1, 5, 10, 15 and 20 itera-
tions with Algorithm 7.3 is depicted in Figure 7.2.



160 CHAPTER 7. APPROXIMATE FACTORING OF THE INVERSE

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

(a) W

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

(b) V1

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

(c) WV −1
1

Figure 7.3: For Example 7.5, the sparsity patterns of the factors W and V1

and the preconditioner WV −1
1 .

0 50 100 150 200 250 300
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

(b)

Figure 7.4: (a) Convergence of GMRES(30) with SPAI(0.3) (dashed line) and
Algorithm 7.3 (solid line). (b) The spectrum of the preconditioned matrix
AWV −1

1 .

Figure 7.3 shows the sparsity patterns of W , V1 and the respective pre-
conditioner WV −1

1 after just 5 iterations. The number of nonzero elements
were nz(W )= 9204, nz(V1)= 12190 and nz(WV −1

1 )= 198837. (Of course,
WV −1

1 was computed only to obtain its sparsity structure and the number
of nonzero elements.) Using this, we solve the preconditioned linear system
(1.22) with GMRES(30). For comparison, we also constructed a precondi-
tioner M with SPAI with nz(M) = 21336. The convergence results are shown
in Figure 7.4(a). Observe that with the preconditioner of Algorithm 7.3, we
are able to solve the problem in about 50 iterations.

As shown in Figure 7.4(b), the spectrum of the preconditioned operator
is well clustered around 1.



7.4. NUMERICAL EXPERIMENTS 161

0 500 1000 1500 2000 2500 3000 3500

0

500

1000

1500

2000

2500

3000

3500

(a) W

0 500 1000 1500 2000 2500 3000 3500

0

500

1000

1500

2000

2500

3000

3500

(b) V1

0 500 1000 1500 2000 2500 3000 3500

0

500

1000

1500

2000

2500

3000

3500

(c) WV −1
1

Figure 7.5: For Example 7.6, the sparsity patterns of the factors W and V1

and the preconditioner WV −1
1 .

Example 7.6 We take A to be the saylor4 matrix arising in petroleum en-
gineering simulation. Then n = 3564 with nz(A)= 22316 and a condition
number estimate κ(A) = 1E + 2. In [58] it was reported that when SPAI
is used to precondition the problem, GMRES(20) does not converge within
1000 iterations.

The sparsity pattern of W was determined by Algorithm 7.3 with the
numerical dropping parameters τ = 1E − 5 and p = 10. An initial guess
W0 = I was used. The matrix subspace V1 was chosen to be the set of
block diagonal matrices with a block size 198. Numerical dropping with the
parameters τ = 1E − 5 and p = 20 was used to keep V1 sparse.

To construct a preconditioner, we take 5 iterations with Algorithm 7.3.
The sparsity patterns for W , V1 and WV −1

1 are depicted in Figure 7.5.
The number of nonzero elements were nz(W )=26482, nz(V1)=15626 and
nz(WV −1

1 )=2009304. Using this, we solve the preconditioned linear system
(1.22) with GMRES(20). For comparison, we also constructed a precon-
ditioner M with SPAI with nz(M)= 202343. The convergence results are
shown in Figure 7.6(a). With Algorithm 7.3, we managed to solve the prob-
lem in 39 iterations. We were not able to solve the problem with the SPAI
preconditioner in spite of using considerably more fill-in.

As shown in Figure 7.6(b), the spectrum of the preconditioned operator
is well clustered around 1.

Let us mention that in Examples 7.5 and 7.6 Algorithm 7.3 was somewhat
sensitive to the block size of V1. This dependence is apparently related
with the way the problems have been discretized. Unless this information is
available, it might be a good idea to use band matrices instead.

In the following examples, it is shown that Algorithm 7.3 can be used in
preconditioning Hermitian problems as well.



162 CHAPTER 7. APPROXIMATE FACTORING OF THE INVERSE

0 50 100 150 200 250 300
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−3

(b)

Figure 7.6: (a) Convergence of GMRES(20) with SPAI(0.1) using 10 refine-
ments and 10 new non-zeroes per refinement (dashed line) and Algorithm 7.3
(solid line). (b) The spectrum of the preconditioned matrix AWV −1

1 .

Example 7.7 We take A the bcsstk14 matrix which is Hermitian and positive
definite. Then n = 1806 with nz(A)= 32630 and a condition number estimate
of κ(A) = 1.3E + 10.

The sparsity pattern of W was determined by Algorithm 7.3 with the
numerical dropping parameters τ = 1E − 4 and p = 20. An initial guess
W0 = I was used. The matrix subspace V1 was chosen to be the set of
block diagonal matrices with a block size 86. Numerical dropping with the
parameters τ = 1E − 10 and p = 20 was used to keep V1 sparse

To construct a preconditioner, we take 5 iterations with Algorithm 7.3.
The sparsity patterns for W , V1 and WV −1

1 are depicted in Figure 7.7.
The number of nonzero elements were nz(W )=10052, nz(V1)=29460 and
nz(WV −1

1 )=307560. Using this, we solve the preconditioned linear system
(1.22) with GMRES(30). For comparison, we also constructed a precondi-
tioner M with SPAI with nz(M)=93823. The convergence results are shown
in Figure 7.8(a). With Algorithm 7.3, we managed to solve the problem in
245 iterations. With SPAI, we were not able to solve the problem within
1000 iterations.

The spectrum of AWV −1
1 is clustered around the point 1. This clustering

of the eigenvalues seems to yield satisfactory speed of convergence allowing us
to solve the problem with GMRES(30) in a reasonable number of iterations.

Let us emphasize that in Examples 7.3 and 7.7 we did not use the fact that
the matrix was Hermitian positive definite. As a rule, in preconditioning, the
structure should be benefited from for faster convergence. Also, since usually
one wants to have a symmetric linear system also after the preconditioner



7.5. CONCLUSIONS 163

0 500 1000 1500

0

200

400

600

800

1000

1200

1400

1600

1800

(a) W

0 500 1000 1500

0

200

400

600

800

1000

1200

1400

1600

1800

(b) V1

0 500 1000 1500

0

200

400

600

800

1000

1200

1400

1600

1800

(c) WV −1
1

Figure 7.7: For Example 7.7, the sparsity patterns of the factors W and V1

and the preconditioner WV −1
1 .

0 50 100 150 200 250 300
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(a)

0 0.5 1 1.5 2 2.5
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

(b)

Figure 7.8: (a) Convergence of GMRES(30) with SPAI(0.1) using 10 refine-
ments and 10 new non-zeroes per refinement (dashed line) and Algorithm 7.3
(solid line). (b) The spectrum of the preconditioned matrix AWV −1

1 .

has been applied, subspaces W and V1 as well as Algorithm 7.1 should be
modified accordingly.

7.5 Conclusions

In this chapter, we have proposed a new method for computing approximate
factors for the inverse of a large and sparse matrix. The method is based
on converting a minimization problem into a hermitian eigenproblem, which
is approximately solved with the power method with a reasonable number
of iterations. Computation of the approximate factorization is executed in
sparse-sparse mode for complexity and storage reasons.



164 CHAPTER 7. APPROXIMATE FACTORING OF THE INVERSE

In [9], a comparison between SPAI and the approximate factorization
AINV of [10] is presented, with the conclusion that the performance of the al-
gorithms is largely similar. The preliminary numerical results of this chapter
show that with Algorithm 7.3, the performance of SPAI may be significantly
improved.

Currently the main problem with Algorithm 7.1 is the choice of subspaces
W and V1. Some possibilities for choosing W and V1 were given, but in
general the choice of subspaces remains largely an open problem. When
the choice of subspaces becomes more clear, a thorough comparison between
Algorithm 7.3 with SPAI and other approximate inverse algorithms should
be conducted.



Bibliography

[1] E. Agullo, A. Guermouche, and J.-Y. L’Excellent, A parallel
out-of-core multifrontal method: storage of factors on disk and analy-
sis of models for an out-of-core active memory, Parallel Comput., 34
(2008), pp. 296–317.

[2] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster,
A fully asynchronous multifrontal solver using distributed dynamic
scheduling, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 15–41 (elec-
tronic).

[3] W. E. Arnoldi, The principle of minimized iteration in the solution
of the matrix eigenvalue problem, Quart. Appl. Math., 9 (1951), pp. 17–
29.

[4] Z. Bai and Y. Su, SOAR: a second-order Arnoldi method for the
solution of the quadratic eigenvalue problem, SIAM J. Matrix Anal.
Appl., 26 (2005), pp. 640–659 (electronic).

[5] B. Beckermann and L. Reichel, Error estimates and evaluation
of matrix functions via the Faber transform, SIAM J. Numer. Anal.,
47 (2009), pp. 3849–3883.

[6] M. Bellalij, Y. Saad, and H. Sadok, Further analysis of the
Arnoldi process for eigenvalue problems, SIAM J. Numer. Anal., 48
(2010), pp. 393–407.

[7] M. Benzi, Preconditioning techniques for large linear systems: a sur-
vey, J. Comput. Phys., 182 (2002), pp. 418–477.

[8] M. Benzi, J. C. Haws, and M. Tůma, Preconditioning highly in-
definite and nonsymmetric matrices, SIAM J. Sci. Comput., 22 (2000),
pp. 1333–1353 (electronic).

[9] M. Benzi and M. Tůma, Numerical experiments with two approxi-
mate inverse preconditioners, BIT, 38 (1998), pp. 234–241.

165



166 BIBLIOGRAPHY

[10] , A sparse approximate inverse preconditioner for nonsymmetric
linear systems, SIAM J. Sci. Comput., 19 (1998), pp. 968–994 (elec-
tronic).

[11] , A parallel solver for large-scale Markov chains, Appl. Numer.
Math., 41 (2002), pp. 135–153. Developments and trends in iterative
methods for large systems of equations—in memoriam Rüdiger Weiss
(Lausanne, 2000).

[12] D. Bindel, J. Demmel, W. Kahan, and O. Marques, On com-
puting Givens rotations reliably and efficiently, ACM Trans. Math.
Software, 28 (2002), pp. 206–238.

[13] D. S. Bindel, J. W. Demmel, W. Kahan, and O. A. Marques,
On computing givens rotations reliably and efficiently, Tech. Rep. 148,
LAPACK Working Note, Oct. 2000.

[14] Ȧ. Björck, Solving linear least squares problems by Gram-Schmidt
orthogonalization, Nordisk Tidskr. Informations-Behandling, 7 (1967),
pp. 1–21.

[15] , Numerics of Gram-Schmidt orthogonalization, Linear Algebra
Appl., 197/198 (1994), pp. 297–316. Second Conference of the In-
ternational Linear Algebra Society (ILAS) (Lisbon, 1992).

[16] M. Bollhöfer, A robust and efficient ILU that incorporates the
growth of the inverse triangular factors, SIAM J. Sci. Comput., 25
(2003), pp. 86–103 (electronic).

[17] M. Bollhöfer and Y. Saad, ILUPACK - preconditioning soft-
ware package, release v1.0, may 14, 2004. http://www.tu-berlin.

de/ilupack/.

[18] W. L. Briggs, V. E. Henson, and S. F. McCormick, A multi-
grid tutorial, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, second ed., 2000.

[19] R. Bru, J. Maŕın, J. Mas, and M. Tůma, Balanced incomplete
factorization, SIAM J. Sci. Comput., 30 (2008), pp. 2302–2318.

[20] M. Byckling and M. Huhtanen, Approximate factoring of the in-
verse, Numerische Mathematik, (2010), pp. 1–22. 10.1007/s00211-010-
0341-4.



BIBLIOGRAPHY 167

[21] P. Castillo and Y. Saad, Preconditioning the matrix exponential
operator with applications, J. Sci. Comput., 13 (1998), pp. 275–302.

[22] C. Chevalier and F. Pellegrini, PT-Scotch: a tool for efficient
parallel graph ordering, Parallel Comput., 34 (2008), pp. 318–331.

[23] E. Chow, Parallel Sparse Approximate Inverse (Least-Squares)
Preconditioner. https://computation.llnl.gov/casc/parasails/

parasails.html.

[24] E. Chow, A priori sparsity patterns for parallel sparse approximate
inverse preconditioners, SIAM J. Sci. Comput., 21 (2000), pp. 1804–
1822 (electronic). Iterative methods for solving systems of algebraic
equations (Copper Mountain, CO, 1998).

[25] E. Chow and Y. Saad, Approximate inverse preconditioners via
sparse-sparse iterations, SIAM J. Sci. Comput., 19 (1998), pp. 995–
1023 (electronic).

[26] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stew-
art, Reorthogonalization and stable algorithms for updating the Gram-
Schmidt QR factorization, Math. Comp., 30 (1976), pp. 772–795.

[27] B. N. Datta, Numerical Linear Algebra and Applications, Second
Edition, SIAM-Society for Industrial and Applied Mathematics, 2 ed.,
January 2010.

[28] T. A. Davis, Algorithm 832: UMFPACK V4.3—an unsymmetric-
pattern multifrontal method, ACM Trans. Math. Software, 30 (2004),
pp. 196–199.

[29] , Direct methods for sparse linear systems, vol. 2 of Fundamen-
tals of Algorithms, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2006.

[30] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng, A
column approximate minimum degree ordering algorithm, ACM Trans.
Math. Software, 30 (2004), pp. 353–376.

[31] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and
J. W. H. Liu, A supernodal approach to sparse partial pivoting, SIAM
J. Matrix Anal. Appl., 20 (1999), pp. 720–755 (electronic).

[32] J. Dı́az, J. Petit, and M. Serna, A survey of graph layout prob-
lems, ACM Comput. Surv., 34 (2002), pp. 313–356.



168 BIBLIOGRAPHY

[33] T. A. Driscoll, K.-C. Toh, and L. N. Trefethen, From po-
tential theory to matrix iterations in six steps, SIAM Rev., 40 (1998),
pp. 547–578 (electronic).

[34] J. Drkošová, A. Greenbaum, M. Rozložńık, and Z. Strakoš,
Numerical stability of GMRES, BIT, 35 (1995), pp. 309–330.

[35] V. Druskin and L. Knizhnerman, Extended Krylov subspaces: ap-
proximation of the matrix square root and related functions, SIAM J.
Matrix Anal. Appl., 19 (1998), pp. 755–771 (electronic).

[36] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct methods for
sparse matrices, Monographs on Numerical Analysis, The Clarendon
Press Oxford University Press, New York, second ed., 1989. Oxford
Science Publications.

[37] I. S. Duff and J. Koster, On algorithms for permuting large entries
to the diagonal of a sparse matrix, SIAM J. Matrix Anal. Appl., 22
(2001), pp. 973–996 (electronic).

[38] I. S. Duff and G. A. Meurant, The effect of ordering on precon-
ditioned conjugate gradients, BIT Numerical Mathematics, 29 (1989),
pp. 635–657. 10.1007/BF01932738.

[39] V. Eijkhout, Automatic Determination of Matrix Blocks, LAPACK
Working Note 151, Department of Computer Science, University of
Tennessee, Knoxville, Knoxville, TN 37996, USA, Apr. 2001. UT-CS-
01-458, April 2001.

[40] T. Eirola and O. Nevanlinna, Accelerating with rank-one updates,
Linear Algebra Appl., 121 (1989), pp. 511–520. Linear algebra and
applications (Valencia, 1987).

[41] N. S. Ellner and E. l. Wachspress, New ADI model problem
applications, in Proceedings of 1986 ACM Fall joint computer confer-
ence, ACM ’86, Los Alamitos, CA, USA, 1986, IEEE Computer Society
Press, pp. 528–534.

[42] M. Embree, The tortoise and the hare restart GMRES, SIAM Rev.,
45 (2003), pp. 259–266 (electronic).

[43] , The Arnoldi eigenvalue iteration with exact shifts can fail, SIAM
J. Matrix Anal. Appl., 31 (2009), pp. 1–10.



BIBLIOGRAPHY 169

[44] H. Fassbender, Symplectic methods for the symplectic eigenproblem,
Kluwer Academic/Plenum Publishers, New York, 2000.

[45] P. Favati, G. Lotti, and O. Menchi, Non-recursive solution of
sparse block Hessenberg systems, Numer. Linear Algebra Appl., 11
(2004), pp. 391–409.

[46] R. Fletcher, Conjugate gradient methods for indefinite systems, in
Numerical analysis (Proc 6th Biennial Dundee Conf., Univ. Dundee,
Dundee, 1975), Springer, Berlin, 1976, pp. 73–89. Lecture Notes in
Math., Vol. 506.

[47] V. Frayssé, L. Giraud, S. Gratton, and J. Langou, Algorithm
842: a set of GMRES routines for real and complex arithmetics on
high performance computers, ACM Trans. Math. Software, 31 (2005),
pp. 228–238.

[48] R. W. Freund, A transpose-free quasi-minimal residual algorithm
for non-Hermitian linear systems, SIAM J. Sci. Comput., 14 (1993),
pp. 470–482.

[49] R. W. Freund and N. M. Nachtigal, QMR: a quasi-minimal
residual method for non-Hermitian linear systems, Numer. Math., 60
(1991), pp. 315–339.

[50] L. Gemignani and G. Lotti, Efficient and stable solution of M-
matrix linear systems of (block) Hessenberg form, SIAM J. Matrix Anal.
Appl., 24 (2003), pp. 852–876 (electronic).

[51] A. George and J. W. H. Liu, Computer solution of large sparse
positive definite systems, Prentice-Hall Inc., Englewood Cliffs, N.J.,
1981. Prentice-Hall Series in Computational Mathematics.

[52] N. E. Gibbs, W. G. Poole, Jr., and P. K. Stockmeyer, An
algorithm for reducing the bandwidth and profile of a sparse matrix,
SIAM J. Numer. Anal., 13 (1976), pp. 236–250.

[53] L. Giraud, J. Langou, M. Rozložńık, and J. van den Eshof,
Rounding error analysis of the classical Gram-Schmidt orthogonaliza-
tion process, Numer. Math., 101 (2005), pp. 87–100.

[54] G. H. Golub and H. A. van der Vorst, Closer to the solution:
iterative linear solvers, in The state of the art in numerical analysis
(York, 1996), vol. 63 of Inst. Math. Appl. Conf. Ser. New Ser., Oxford
Univ. Press, New York, 1997, pp. 63–92.



170 BIBLIOGRAPHY

[55] G. H. Golub and C. F. Van Loan, Matrix computations, Johns
Hopkins Studies in the Mathematical Sciences, Johns Hopkins Univer-
sity Press, Baltimore, MD, third ed., 1996.

[56] A. Greenbaum, V. Pták, and Z. Strakoš, Any nonincreasing
convergence curve is possible for GMRES, SIAM J. Matrix Anal. Appl.,
17 (1996), pp. 465–469.

[57] L. Grigori, J. W. Demmel, and X. S. Li, Parallel symbolic fac-
torization for sparse LU with static pivoting, SIAM J. Sci. Comput.,
29 (2007), pp. 1289–1314 (electronic).

[58] M. J. Grote and T. Huckle, Parallel preconditioning with sparse
approximate inverses, SIAM J. Sci. Comput., 18 (1997), pp. 838–853.

[59] F. G. Gustavson, Two fast algorithms for sparse matrices: multi-
plication and permuted transposition, ACM Trans. Math. Software, 4
(1978), pp. 250–269.

[60] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients
for solving linear systems, J. Research Nat. Bur. Standards, 49 (1952),
pp. 409–436 (1953).

[61] N. J. Higham, Accuracy and stability of numerical algorithms, Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
second ed., 2002.

[62] M. Hochbruck and C. Lubich, On Krylov subspace approximations
to the matrix exponential operator, SIAM J. Numer. Anal., 34 (1997),
pp. 1911–1925.

[63] M. Hochbruck, C. Lubich, and H. Selhofer, Exponential inte-
grators for large systems of differential equations, SIAM J. Sci. Com-
put., 19 (1998), pp. 1552–1574 (electronic).

[64] W. Hoffmann, Iterative algorithms for Gram-Schmidt orthogonaliza-
tion, Computing, 41 (1989), pp. 335–348.

[65] L. Hoffnung, R.-C. Li, and Q. Ye, Krylov type subspace methods
for matrix polynomials, Linear Algebra Appl., 415 (2006), pp. 52–81.

[66] T. Huckle and A. Kallischko, Frobenius norm minimization
and probing for preconditioning, Int. J. Comput. Math., 84 (2007),
pp. 1225–1248.



BIBLIOGRAPHY 171

[67] T. Huckle, A. Kallischko, A. Roy, M. Sedlacek, and
T. Weinzierl, An efficient parallel implementation of the MSPAI
preconditioner, Parallel Comput., 36 (2010), pp. 273–284.

[68] M. Huhtanen, Factoring matrices into the product of two matrices,
BIT, 47 (2007), pp. 793–808.

[69] , Matrix subspaces and determinantal hypersurfaces, Ark. Mat., 48
(2010), pp. 57–77.

[70] M. Huhtanen and R. M. Larsen, Exclusion and inclusion regions
for the eigenvalues of a normal matrix, SIAM J. Matrix Anal. Appl.,
23 (2002), pp. 1070–1091 (electronic).

[71] M. Huhtanen and O. Nevanlinna, A minimum residual algorithm
for solving linear systems, BIT, 46 (2006), pp. 533–548.

[72] C. G. J. Jacobi, Über ein leichtes verfahren die in der theorie der
säculärstörungen vorkommenden gleichungen numerisch aufzulösen,
Crelle’s Journal, 30 (1846), pp. 51–94.

[73] C. Jagels and L. Reichel, The extended Krylov subspace method
and orthogonal Laurent polynomials, Linear Algebra Appl., 431 (2009),
pp. 441–458.

[74] , Recursion relations for the extended Krylov subspace method, Lin-
ear Algebra and its Applications, (2010).

[75] C. Janna, M. Ferronato, and G. Gambolati, A block fsai-ilu
parallel preconditioner for symmetric positive definite linear systems,
SIAM Journal on Scientific Computing, 32 (2010), pp. 2468–2484.

[76] G. Karypis and V. Kumar, A fast and high quality multilevel
scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20
(1998), pp. 359–392 (electronic).

[77] L. Knizhnerman and V. Simoncini, A new investigation of the ex-
tended Krylov subspace method for matrix function evaluations, Numer.
Linear Algebra Appl., 17 (2010), pp. 615–638.

[78] L. A. Knizhnerman, Calculation of functions of nonsymmetric ma-
trices by means of Arnoldi’s method, Zh. Vychisl. Mat. i Mat. Fiz., 31
(1991), pp. 5–16.



172 BIBLIOGRAPHY

[79] D. Kressner and C. Tobler, Krylov Subspace Methods for Lin-
ear Systems with Tensor Product Structure, SIAM Journal on Matrix
Analysis and Applications, 31 (2010), pp. 1688–1714.

[80] C. Lanczos, Solution of systems of linear equations by minimized-
iterations, J. Research Nat. Bur. Standards, 49 (1952), pp. 33–53.

[81] S. Larsson and V. Thomée, Partial differential equations with nu-
merical methods, vol. 45 of Texts in Applied Mathematics, Springer-
Verlag, Berlin, 2003.

[82] N. Li, Y. Saad, and E. Chow, Crout versions of ILU for general
sparse matrices, SIAM J. Sci. Comput., 25 (2003), pp. 716–728 (elec-
tronic).

[83] R.-C. Li and Q. Ye, A Krylov subspace method for quadratic ma-
trix polynomials with application to constrained least squares problems,
SIAM J. Matrix Anal. Appl., 25 (2003), pp. 405–428 (electronic).

[84] MathWorks, Matlab. http://www.mathworks.com/products/

matlab/.

[85] J. A. Meijerink and H. A. van der Vorst, An iterative solution
method for linear systems of which the coefficient matrix is a symmetric
M-matrix, Math. Comp., 31 (1977), pp. 148–162.

[86] C. Moler and C. Van Loan, Nineteen dubious ways to compute the
exponential of a matrix, twenty-five years later, SIAM Rev., 45 (2003),
pp. 3–49 (electronic).

[87] R. B. Morgan, A restarted GMRES method augmented with eigen-
vectors, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 1154–1171.

[88] , Implicitly restarted GMRES and Arnoldi methods for nonsym-
metric systems of equations, SIAM J. Matrix Anal. Appl., 21 (2000),
pp. 1112–1135 (electronic).

[89] , GMRES with deflated restarting, SIAM J. Sci. Comput., 24
(2002), pp. 20–37 (electronic).

[90] N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen, How fast
are nonsymmetric matrix iterations?, SIAM J. Matrix Anal. Appl., 13
(1992), pp. 778–795. Iterative methods in numerical linear algebra
(Copper Mountain, CO, 1990).



BIBLIOGRAPHY 173

[91] O. Nevanlinna, Convergence of iterations for linear equations, Lec-
tures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1993.

[92] NIST, Matrixmarket. http://math.nist.gov/MatrixMarket/.

[93] M. Olschowka and A. Neumaier, A new pivoting strategy for
Gaussian elimination, Linear Algebra Appl., 240 (1996), pp. 131–151.

[94] C. C. Paige, M. Rozložńık, and Z. Strakoš, Modified Gram-
Schmidt (MGS), least squares, and backward stability of MGS-GMRES,
SIAM J. Matrix Anal. Appl., 28 (2006), pp. 264–284 (electronic).

[95] B. N. Parlett, D. R. Taylor, and Z. A. Liu, A look-ahead
Lánczos algorithm for unsymmetric matrices, Math. Comp., 44 (1985),
pp. 105–124.

[96] D. W. Peaceman and H. H. Rachford, Jr., The numerical solu-
tion of parabolic and elliptic differential equations, J. Soc. Indust. Appl.
Math., 3 (1955), pp. 28–41.

[97] J. K. Reid, On the method of conjugate gradients for the solution of
large sparse systems of linear equations, in Large sparse sets of linear
equations (Proc. Conf., St. Catherine’s Coll., Oxford, 1970), Academic
Press, London, 1971, pp. 231–254.

[98] W. Rudin, Real and complex analysis, McGraw-Hill Book Co., New
York, third ed., 1987.

[99] A. Ruhe, Numerical aspects of Gram-Schmidt orthogonalization of
vectors, Linear Algebra Appl., 52/53 (1983), pp. 591–601.

[100] Y. Saad, Analysis of some Krylov subspace approximations to the ma-
trix exponential operator, SIAM J. Numer. Anal., 29 (1992), pp. 209–
228.

[101] , Numerical methods for large eigenvalue problems, Algorithms and
Architectures for Advanced Scientific Computing, Manchester Univer-
sity Press, Manchester, 1992.

[102] , A flexible inner-outer preconditioned GMRES algorithm, SIAM
J. Sci. Comput., 14 (1993), pp. 461–469.

[103] Y. Saad, ILUT: a dual threshold incomplete LU factorization, Numer.
Linear Algebra Appl., 1 (1994), pp. 387–402.



174 BIBLIOGRAPHY

[104] , SPARSKIT: a basic tool kit for sparse matrix computations -
version 2, 1994.

[105] , Iterative methods for sparse linear systems, Society for Industrial
and Applied Mathematics, Philadelphia, PA, second ed., 2003.

[106] Y. Saad and M. H. Schultz, GMRES: a generalized minimal resid-
ual algorithm for solving nonsymmetric linear systems, SIAM J. Sci.
Statist. Comput., 7 (1986), pp. 856–869.

[107] Y. Saad and H. A. van der Vorst, Iterative solution of linear
systems in the 20th century, J. Comput. Appl. Math., 123 (2000), pp. 1–
33. Numerical analysis 2000, Vol. III. Linear algebra.

[108] Y. Saad and K. Wu, DQGMRES: a direct quasi-minimal residual al-
gorithm based on incomplete orthogonalization, Numer. Linear Algebra
Appl., 3 (1996), pp. 329–343.

[109] V. Simoncini, A new iterative method for solving large-scale Lyapunov
matrix equations, SIAM J. Sci. Comput., 29 (2007), pp. 1268–1288.

[110] V. Simoncini and D. B. Szyld, Recent computational developments
in Krylov subspace methods for linear systems, Numer. Linear Algebra
Appl., 14 (2007), pp. 1–59.

[111] G. Starke, Optimal alternating direction implicit parameters for non-
symmetric systems of linear equations, SIAM J. Numer. Anal., 28
(1991), pp. 1431–1445.

[112] , Alternating direction preconditioning for nonsymmetric systems
of linear equations, SIAM J. Sci. Comput., 15 (1994), pp. 369–384. It-
erative methods in numerical linear algebra (Copper Mountain Resort,
CO, 1992).

[113] G. W. Stewart, On the solution of block Hessenberg systems, Numer.
Linear Algebra Appl., 2 (1995), pp. 287–296.

[114] J. Todd, Applications of transformation theory: a legacy from
Zolotarev (1847–1878), in Approximation theory and spline functions
(St. John’s, Nfld., 1983), vol. 136 of NATO Adv. Sci. Inst. Ser. C Math.
Phys. Sci., Reidel, Dordrecht, 1984, pp. 207–245.

[115] Top500, Top500 supercomputing sites. http://www.top500.org/.



BIBLIOGRAPHY 175

[116] L. N. Trefethen, Approximation theory and numerical linear alge-
bra, in Algorithms for approximation, II (Shrivenham, 1988), Chapman
and Hall, London, 1990, pp. 336–360.

[117] L. N. Trefethen and D. Bau, III, Numerical linear algebra, Soci-
ety for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
1997.

[118] G. Vainikko, Fast solvers of the Lippmann-Schwinger equation, tech.
rep., Institute of Mathematics, Helsinki University of Technology, 1997.

[119] J. van den Eshof and M. Hochbruck, Preconditioning Lanczos
approximations to the matrix exponential, SIAM J. Sci. Comput., 27
(2006), pp. 1438–1457 (electronic).

[120] H. A. van der Vorst, Bi-CGSTAB: a fast and smoothly converg-
ing variant of Bi-CG for the solution of nonsymmetric linear systems,
SIAM J. Sci. Statist. Comput., 13 (1992), pp. 631–644.

[121] , Iterative Krylov methods for large linear systems, vol. 13 of Cam-
bridge Monographs on Applied and Computational Mathematics, Cam-
bridge University Press, Cambridge, 2009. Reprint of the 2003 original.

[122] H. A. van der Vorst and G. H. Golub, 150 years old and still
alive: eigenproblems, in The state of the art in numerical analysis
(York, 1996), vol. 63 of Inst. Math. Appl. Conf. Ser. New Ser., Ox-
ford Univ. Press, New York, 1997, pp. 93–119.

[123] H. A. van der Vorst and C. Vuik, GMRESR: a family of nested
GMRES methods, Numer. Linear Algebra Appl., 1 (1994), pp. 369–386.

[124] M. van Veldhuizen, A note on partial pivoting and Gaussian elim-
ination, Numerische Mathematik, 29 (1977), pp. 1–10.

[125] R. S. Varga, Matrix iterative analysis, Prentice-Hall Inc., Englewood
Cliffs, N.J., 1962.

[126] E. L. Wachspress, Extended application of alternating direction im-
plicit iteration model problem theory, J. Soc. Indust. Appl. Math., 11
(1963), pp. 994–1016.

[127] , Iterative solution of the Lyapunov matrix equation, Appl. Math.
Lett., 1 (1988), pp. 87–90.



176 BIBLIOGRAPHY

[128] H. F. Walker, Implementation of the GMRES method using House-
holder transformations, SIAM J. Sci. Statist. Comput., 9 (1988),
pp. 152–163.

[129] J. W. Watts, A conjugate gradient truncated direct method for the
iterative solution of the reservoir simulation pressure equation, Society
of Petroleum Engineer Journal, 21 (1981), pp. 345–353.

[130] D. B. West, Introduction to graph theory, Prentice Hall Inc., Upper
Saddle River, NJ, 1996.

[131] J. H. Wilkinson, The evaluation of the zeros of ill-conditioned poly-
nomials. I, II, Numer. Math., 1 (1959), pp. 150–180.

[132] , Error analysis of direct methods of matrix inversion, J. Assoc.
Comput. Mach., 8 (1961), pp. 281–330.

[133] , The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965.

[134] , The perfidious polynomial, in Studies in numerical analysis,
vol. 24 of MAA Stud. Math., Math. Assoc. America, Washington, DC,
1984, pp. 1–28.

[135] D. M. Young, Iterative solution of large linear systems, Academic
Press, New York, 1971.



(continued from the back cover)

A591 Juhana Siljander

Regularity for degenerate nonlinear parabolic partial differential equations

September 2010

A590 Ehsan Azmoodeh

Riemann-Stieltjes integrals with respect to fractional Brownian motion and

applications

September 2010

A589 Antti Rasila, Jarno Talponen

Convexity properties of quasihyperbolic balls on Banach spaces

August 2010

A588 Kalle Mikkola

Real solutions to control, approximation, factorization, representation, Hankel

and Toeplitz problems

June 2010

A587 Antti Hannukainen, Rolf Stenberg, Martin Vohralı́k

A unified framework for a posteriori error estimation for the Stokes problem

May 2010

A586 Kui Du, Olavi Nevanlinna

Minimal residual methods for solving a class of R-linear systems of equations

May 2010

A585 Daniel Aalto

Boundedness of maximal operators and oscillation of functions in metric

measure spaces

March 2010

A584 Tapio Helin

Discretization and Bayesian modeling in inverse problems and imaging

February 2010

A583 Wolfgang Desch, Stig-Olof Londen

Semilinear stochastic integral equations in Lp

December 2009



HELSINKI UNIVERSITY OF TECHNOLOGY INSTITUTE OF MATHEMATICS

RESEARCH REPORTS

The reports are available at http://math.tkk.fi/reports/ .

The list of reports is continued inside the back cover.

A596 Olavi Nevanlinna

Multicentric Holomorphic Calculus

November 2010

A595 Juho Könnö, Rolf Stenberg

Numerical computations with H(div)-finite elements for the Brinkman problem

November 2010

A594 Atte Aalto, Jarmo Malinen

Cauchy problems from networks of passive boundary control systems

October 2010

A593 Toni Lassila

Model reduction and level set methods for shape optimization problems

October 2010

A592 Olavi Nevanlinna

Upper bounds for R-linear resolvents

September 2010

ISBN 978-952-60-3532-1 (print)

ISBN 978-952-60-3533-8 (PDF)

ISSN 1797-5867

Aalto University, Mathematics, 2011


