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Corresponding author: Hana Petzeltová b, tel: +420 222090737, fax +420 222090730

Abstract. We show that solutions of a two-phase model involving a non-local
interactive term become more regular immediately after the moment they separate
from the pure phases. This result allows us to prove stronger convergence to equilibria.
A new proof of the separation property is also given.

Keywords: Non-local phase-field systems; regularity of solutions; separation
property; convergence to equilibria.

1 Introduction

This paper is devoted to the study of regularity, separation from singularities, and
convergence to equilibria of a two-phase model involving terms non-local in space.
Considering a binary alloy with components A and B occupying a spatial domain
Ω, and denoting by u and 1 − u the local concentrations of A and B respectively,
the usual model describing the dynamics of phase separation is the Cahn-Hilliard
equation. This equation is derived from the free energy functional of the form

F(u) =
∫

Ω

[
f(u) + ku(1− u) +

1
2
|∇u|2

]
dx

The last term accounts for the interfacial energy. In some situations, it is more
adequate to choose an expression, where also the long range interactions are described.
This phenomenon is represented by spatial convolution with a suitable kernel, cf.
Chen and Fife [6], Giacomin and Lebowitz [13]. It leads to an alternative energy
functional of the form

F (u) =
∫

Ω

[
f(u) + κu(1− u) +

1
2

∫
Ω

K(|x− y|)|u(x)− u(y)|2dy

]
dx. (1.1)

As shown in [5], this is a natural generalization of F . Namely, we can change variables
in the convolution integral using η = x−y

2 , ξ = x+y
2 , and then expand u(x) = u(ξ +η)

and u(y) = u(ξ − η) around ξ. Taking the first term in the Taylor series of u in the
convolution term in (1.1) then gives the energy functional of the same form as F .
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With κ = κ(x) =
∫
Ω

K(|x− y|)dy, we rewrite (1.1) in the form

F (u) =
∫

Ω

[
f(u) + u

∫
Ω

K(|x− y|)(1− u(t, y))dy
]

dx. (1.2)

Then the chemical potential, defined as the gradient of the energy functional F is
given by

v = f ′(u) +
∫

Ω

K(|x− y|)(1− 2u(t, y))dy.

The model in question then reads:

ut −∇ · (µ∇v) = 0 in (0, T )× Ω, (1.3)

v = f ′(u) +
∫

Ω

K(|x− y|)(1− 2u(t, y))dy, (t, x) ∈ (0, T )× Ω, (1.4)

µν · ∇v = 0 in (0, T )× ∂Ω, (1.5)

u(0, x) = u0, 0 ≤ u0(x) ≤ 1, 0 <

∫
Ω

u0 dx = uα < 1. (1.6)

Here µ denotes a suitable mobility. A natural choice seems to be

µ =
a

f ′′(u)
, a a positive constant, (1.7)

see, e.g., Elliot and Garcke [10].
In the standard case, f is given by

f(u) = u ln u + (1− u) ln(1− u). (1.8)

This implies
f ′(u) = ln

( u

1− u

)
, µ =

a

f ′′(u)
= au(1− u). (1.9)

If we denote
w =

∫
Ω

K(|x− y|)(1− 2u(t, y))dy, (1.10)

we get

(f ′)−1(v − w) =
1

1 + exp(w − v)
, (1.11)

which gives the a priori estimate
u ∈ [0, 1]. (1.12)

Gajewski and Zacharias [12] proved global existence and uniqueness of weak so-
lutions emanating from initial functions satisfying (1.6). Following their procedure,
the same result can be proved for more general f , namely if

f ∈ C2(0, 1) strictly convex, Im(f ′)−1 = [0, 1],
1
f ′′

strictly concave. (1.13)

Convergence (in L2(Ω)-norm) of any solution to a single equilibrium with f as in
(1.8) was proved in [16], using the generalized form of the ÃLojasiewicz Theorem. The
main problem in verifying the assumptions of the ÃLojasiewicz Theorem was to show
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that there exists a time T0 such that solutions separate from the potential barriers 0
and 1, i.e., that there exists k ∈ (0, 1) such that

0 < k < u(t, x) < 1− k < 1 for a.a. x ∈ Ω, and t ≥ T0. (1.14)

So, the equation (1.3) is not degenerate after that time. With µ as in (1.9), and
u satisfying (1.12), µ(0, x) can vanish, even on a set of a positive measure, so a
degeneracy in (1.3) and (1.6) is not excluded at the outset.

In this paper, we prove the separation property for more general f satisfying (1.13),
and show that T0 may be taken arbitrarily small. The proof here is also significantly
simpler than that in [16].

With (1.14) at hand, we prove higher regularity of solutions, and, as a consequence,
a stronger convergence to equilibria than in [16]. Even if we can write the equation
(1.3), after the separation time, in terms of u only, we get a parabolic equation, but
we do not have good boundary conditions, so that the maximal regularity is not
applicable. Also, it is possible to write a parabolic differential equation for v, but this
equation contains the term |∇v|2, which prevents us to gain better regularity if the
initial value is not sufficiently smooth. The way to improve the regularity of u is to
estimate the norm of ut and then apply a bootstrap argument.

To show that solutions converge in a better norm than in L2(Ω), we realize that the
higher regularity yields compactness of trajectories in a smaller space, which together
with the convergence proved in [16], gives the desired result.

Convergence of solutions of phase-field systems to equilibria was studied by many
authors, we can mention only some of them. The first application of the ÃLojasiewicz
inequality to these systems was by Aizicovici, Feireisl and Issard-Roch [3] in the
case of a nonisothermal system of second order. The non-local version of the Allen-
Cahn equation was studied in Feireisl, Issard-Roch and Petzeltová, [11], where also
the non-smooth version of the ÃLojasiewicz Theorem was proved. Convergence in
the conserved phase-field systems with memory was proved in [2], the situation with
dynamic boundary conditions was treated, e.g., by Chill, Fašangová and Prüss, [8].

Phase-field systems with singular potentials and the separation property were
analyzed, in the non-degenerate situation, in [14], [15]. In the latter paper, a nonlocal
(in space) system with inertial term was studied with the assumption that the initial
function is already separated from the pure phases. The same assumption was used
in the papers by Rocca and Rossi [18], Cherfils, Gatti and Miranville [7]. Cahn-
Hilliard equations with singular potentials were studied, by Dupaix [9], Miranville and
Zelik [17], from the attractors point of view. Recently, separation from singularities
for fourth order parabolic equations were proved by Schimperna and Zelik [19] for
nonlinearities of power type. Convergence to equilibrium for Cahn-Hilliard equation
with logarithmic potential was studied by Abels and Wilke [1]. Because of the fourth
order equation, they have stronger regularity, which enables to show the separation
property from some large time on, due to the separation of the equilibria. This is in
contrast to our situation, where we have to show the separation. Only then are we
able to prove regularity.

The paper is organized as follows. The main results are stated in Section 2, then
the new proof of the separation property is given in Section 3. Finally the regularity
of solutions, and the strong convergence are proved in Section 4.
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2 Preliminaries and Main results

Let Ω ⊂ Rn be a bounded domain with a smooth boundary ∂Ω and ν the outer unit
normal on ∂Ω. Denote by H1(Ω) = W 1,2(Ω), 〈., .〉 the pairing between H1(Ω) and its
dual H1(Ω)∗. Denote

H1
0 (Ω) = {f ∈ H1(Ω);

∫
Ω

f(x)dx = 0},

and
H−1

0 (Ω) = (H1
0 )∗(Ω).

To simplify the notation, we omit Ω in the following text, when no confusion can take
place. We equip H1

0 with the inner product

(f, g)H1
0

= (∇f,∇g)L2 .

The Riesz isomorphism is then given by the negative Laplacian with Neumann bound-
ary conditions

〈−∆Nf, g〉(H−1
0 ,H1

0 ) = (f, g)H1
0

= (∇f,∇g)L2 .

It means that the inner product in H−1
0 is given by

(f, g)H−1
0

= (∆−1
N f, ∆−1

N g)H1
0

= (∇∆−1
N f,∇∆−1

N g)L2 ,

and
‖f‖2L2 = −(∇∆−1

N f,∇f)L2 ≤ ‖f‖H−1
0
‖f‖H1

0
.

We will also use the following consequence of the Gagliardo-Nirenberg inequality:

‖ξ‖2L2 ≤ ε‖∇ξ‖2L2 + Cε−n/2‖ξ‖2L1 , ε ∈ (0,
1
2
), (2.1)

and the following version of the Poincaré inequality:∥∥∥∥z − 1
|Ω1|

∫
Ω1

z(x) dx

∥∥∥∥
L2

≤ C
1
|Ω1| ‖∇z‖L2 , Ω1 ⊂ Ω, (2.2)

which is a particular case of [20, Lemma 4.3.1].
By C we denote a generic constant, which may vary even within one line.
The existence of global weak solutions of the problem (1.3)-(1.6) satisfying∫ ∞

0

[
〈ut, h〉+

∫
Ω

µ∇v · ∇h dx
]
dt = 0 for all h ∈ L2((0,∞); H1(Ω)),

u ∈ C((0,∞); L∞(Ω)) ∩ L2((0, T ); H1(Ω)), ut ∈ L2((0,∞); H1(Ω)∗), (2.3)

w ∈ C((0,∞); W 1,∞(Ω)), ‖w(t)‖W 1,∞(Ω) ≤ Bw for all t ≥ 0, (2.4)

∫ ∞

0

∫
Ω

µ|∇v|2 dx < ∞, (2.5)
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was proved in [12] with f given by (1.8). The following assumptions were imposed on
K.

∫
Ω

∫
Ω

|K(|x− y|)| dx dy = k0 < ∞, sup
x∈Ω

∫
Ω

|K(|x− y|)|dy = k1 < ∞, (2.6)

and the operator J defined by J z = −2
∫
Ω

K(|x− y|)z(y)dy satisfies

‖J z‖W 1,p ≤ rp‖z‖Lp(Ω), 1 ≤ p ≤ ∞. (2.7)

As to the global behavior of solutions, the strong convergence to a single equi-
librium in the L2(Ω)-norm was proved in [16]. The equilibrium is a triple u∗, v∗, w∗

satisfying

u∗(x) =
1

1 + exp(w∗(x)− v∗)
, w∗(x) =

∫
Ω

K(|x− y|)(1− 2u∗(y))dy, v∗ = constant.

(2.8)
The following Theorem was proved in [16]:

Theorem 2.1 Let f, µ,K satisfy (1.8), (1.7), (2.6), (2.7). Let the triple (u, v, w)
be a solution of the problem (1.3)-(1.6) in the sense of (2.3)-(2.5). Then there exist
T0 ≥ 0, B > 0, k > 0 such that

k ≤ u(t, x) ≤ 1− k for a.a. x ∈ Ω, and t ≥ T0, (2.9)

‖v(t)‖L∞(Ω) ≤ B for all t ≥ T0. (2.10)

Moreover, there is (u∗, v∗, w∗) satisfying (2.8) such that

u(t) → u∗ strongly in L2(Ω),

v(t) → v∗ strongly in L2(Ω),

w(t) → w∗ strongly in H1(Ω),

as t →∞.

We will show that the same result holds also for f satisfying only (1.13), and
that T0 can be taken arbitrarily small. Thus, in what follows, we will assume that f
satisfies (1.13), and that

µ(z) =
a

f ′′(z)
,

µ(z)
z(1− z)

≤ Bµ for z ∈ (0, 1). (2.11)

Without loss of generality, we take a = 1, |Ω| = 1.
For the regularity of solutions, we will also need

‖J z‖W 2,2 ≤ r2‖z‖W 1,2 , (2.12)

f ∈ C3(0, 1) (2.13)

If (2.12) is satisfied, then

u ∈ L∞((0,∞); W 1,2) ⇒ ‖w‖L∞((0,∞);W 2,2) ≤ B1
w. (2.14)

The main results are summed up in the following Theorem. Under the additional
assumptions (2.12) and (2.13) we obtain more regularity on u and, as a consequence,
a stronger asymptotic result if f is analytic.
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Theorem 2.2 Let f, K, µ satisfy (1.13), (2.13), (2.6), (2.7), (2.12), (2.11). Let the
triple (u, v, w) be a solution of the problem (1.3)-(1.6). Let T0 > 0. Then there exists
k > 0 such that

u ∈ L∞((T0,∞); W 2,2(Ω)), (2.15)

and (2.9) holds. Moreover, if f is real analytic in (k−δ, 1−k+δ) for some δ ∈ (0, k),
and t →∞, we get

u(t) → u∗ strongly in B, (2.16)

for any space B such that W 2,2(Ω) is compactly embedded in B.

Corollary 2.1 In the three dimensional case the solution converges in C(Ω).

3 The separation property.

In this section, we show that the solution of our problem separates from the pure
phases 0 and 1. This property was in fact obtained in [16], but through an unneces-
sarily complicated proof. Below we present a significantly simpler proof. Moreover, in
[16] the nonlinearity was assumed to be as in (1.8). Here we only assume f to satisfy
(1.13), and we show that solutions separate from the pure phases after an arbitrary
short time T > 0.

In the proof below, we only sketch the parts of the proof common to that of [16],
and concentrate on the new, simplified steps.

We prove that, under the assumptions detailed in the previous section, one has
that the solution of (1.3)-(1.6) is such that ln u(t), ln(1 − u(t)), and, consequently,
v(t), are bounded in the sense that

ln u, ln(1− u), v ∈ L∞([T,∞); L∞(Ω)). (3.1)

The bound is shown to depend on the initial function u0(x) only through the value
of uα. Thus, e.g., the case |{x| u0(x) = 0}| > 0 is not excluded.

Proposition 3.1 Let f, K, µ satisfy (1.13), (2.6), (2.7), (2.11). Let the triple (u, v, w)
be a solution of the problem (1.3)-(1.6) satisfying (2.3), (2.4), (2.5). Let T0 > 0 be
an arbitrary positive time. Then there exists k > 0 depending only on T0 and uα,
such that

k ≤ u(t, x) ≤ 1− k for a.a. x ∈ Ω, and t ≥ T. (3.2)

Proof: The way to prove (3.2), is to show first that

‖ ln u(t, .)‖Lr < B, ‖ ln(1− u(t, .))‖Lr < B for all t ≥ T0, r ∈ [1,∞), (3.3)

assuming that
ln u0, ln(1− u0) ∈ L∞(Ω). (3.4)

The upper bound B in (3.3) is shown to be independent of t ∈ [T0,∞), r ∈ [1,∞),
and of the pointwise values of u0(x). The upper bound does depend on T0 and on uα

- the integral mean of the initial value u0.

6



We then approximate u0 with un
0 satisfying (3.4) and employ the continuous de-

pendence of solutions ([16, Lemma 2.1]) together with Fatou’s Lemma to get

‖ ln u(T0)‖L∞(Ω) ≤ B, ‖ ln(1− u(T0))‖L∞(Ω) ≤ B, (3.5)

even for u0 as in (1.6).
So, in what follows, we assume (3.4), prove (3.5) and (3.3).
Assuming (3.4), we get

ln u(t), ln(1− u(t)) ∈ L∞(Ω) for all t ≥ 0. (3.6)

Indeed, by continuity, there exists a maximal time tmax such that (3.6) holds in
[0, tmax). If tmax < ∞, then our procedure leads to the bound (3.5) with T0 = tmax,
which contradicts the maximality of tmax.

Denote
Mr(t) = ‖ ln u(t, .)‖Lr(Ω), t ≥ 0, r = 1, 2, 3, ... (3.7)

We show that Mr(t) ≤ B for t ≥ T0, the proof of ‖ ln(1 − u(t, .))‖Lr(Ω) ≤ B, t ≥ T0

is analogous.
The proof consists of several steps. First, in Lemma 3.1, we derive a differen-

tial inequality for Mr, which yields a bound on the possible growth of Mr(t) with
increasing r. Specifically, we show that, for T ∈ (0,∞),

sup
t≥T

Mr(t) ≤ B1(T )r2, for all r ∈ [1,∞). (3.8)

Here B1 < ∞ is independent of r, but does depend on T .
In Lemma 3.2 we prove that, for any T > 0, there exists B2(T ) such that

Mr(T ) ≤ B2(T ) < ∞, for all r ∈ [1,∞). (3.9)

Lemma 3.3 is needed to prove Lemma 3.2. Finally, having (3.9), we show that

B2(T ) ≤ B for all T ≥ T0, (3.10)

with B depending only on T0.

Lemma 3.1 Let the assumptions of Proposition 3.1, and (3.4) be satisfied. Then
there exists a nonincreasing function B1 = B1(T ), independent of r, such that (3.8)
holds for all T > 0. Moreover, there exists T1 ≥ T0 such that TB1(T ) is increasing
on (T1,∞).

Proof: We derive a differential inequality for Mr, given by (3.7).

d
dt

Mr(t) =
d
dt

(∫
Ω

(− ln u(t))r dx

) 1
r

= −M1−r
r

∫
Ω

(− ln u)r−1

u
ut dx (3.11)

= M1−r
r

∫
Ω

∇
( (− ln u)r−1

u

)
µ∇v dx = M1−r

r

∫
Ω

∇
( (− ln u)r−1

u

)
(∇u + µ∇w) dx.

To obtain the second line of (3.11), recall that, with the notation in (1.10), (1.7), and
taking a = 1, we get
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µ∇v = ∇u + µ∇w. (3.12)

For r = 1 we have, by the second part of (2.11),

d
dt

M1(t) = −
∫

Ω

|∇ ln u(t)|2 dx−
∫

Ω

µ

u
(t)∇ ln u(t)∇w(t) dx

≤ −1
2

∫
Ω

|∇ ln u(t)|2 dx + C.

To estimate
∫
Ω
|∇ ln u|2 dx, we use the generalized version of the Poincaré inequality

(2.2). Denote

Ωt
1 = {x ∈ Ω; u(t, x) ≥ 1

2
uα}.

Then, necessarily,

|Ωt
1| ≥

1
2
uα for all t ≥ 0, (3.13)

and we have∫
Ω

|∇ ln u(t)|2 dx ≥ C|Ωt
1|2

[1
2

( ∫
Ω

| ln u(t)| dx
)2

−
∣∣∣ ln

uα

2

∣∣∣2]. (3.14)

It follows that
d
dt

M1(t) ≤ −c1M
2
1 (t) + c2,

where the constants depend on uα, the integral mean of u0, but not on the pointwise
size of the initial function. Hence M1 can be dominated by a solution of the ordinary
differential equation of the form (3.19) with b = 0, which is bounded for t ≥ T
independently of the size of the initial value.

M1(t) ≤ m1 for all t ≥ T. (3.15)

To show the similar estimate for r > 1, we continue in (3.11).

d
dt

Mr = −M1−r
r

∫
Ω

[
(r − 1)(− ln u)r−2 + (− ln u)r−1

][
|∇ ln u|2 +∇(lnu)

µ

u
∇w

]
dx

≤ −M1−r
r

∫
Ω

[(r − 1)(− ln u)r−2 + (− ln u)r−1]
1
2
|∇ ln u|2 dx (3.16)

+M1−r
r

∫
Ω

[
(r − 1)(− ln u)r−2 + (− ln u)r−1

]1
2
B2

µB2
w dx.

Taking into account that

(− ln u)r−2|∇ ln u|2 =
4
r2
|∇(− ln u)

r
2 |2, (− ln u)r−1|∇ ln u|2 =

4
(r + 1)2

|∇(− ln u)
r+1
2 |2,

we have

d
dt

Mr ≤ −M1−r
r

1
r

∫
Ω

∣∣∣∇(− ln u)
r
2

∣∣∣2 dx−M1−r
r

2
(r + 1)2

∫
Ω

∣∣∣∇(− ln u)
r+1
2

∣∣∣2 dx

+M1−r
r C1[Mr−1

r−1 + (r − 1)Mr−2
r−2 ]. (3.17)
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Drop the first term on the right side of (3.17). Then apply the inequality (2.1) to
estimate the second term. As to the last two terms, note that trivially Mr−1 ≤ Mr.
There follows

d
dt

Mr(t) ≤ −M1−r
r (t)

2
ε(r + 1)2

∫
Ω

(− ln u(t))r+1 dx

+C2M
1−r
r (t)ε

−n−2
2

( ∫
Ω

(− ln u(t))
r+1
2 dx

)2

+ C1[1 + (r − 1)M−1
r (t)].

Apply the interpolation inequality to estimate M r+1
2

above in terms of Mr and M1.
One then has

d
dt

Mr ≤ −C3
1
r2

M2
r + C4MrM1 + C1r.

We conclude that Mr can be dominated by solutions of the ordinary differential
equation

ḋ(t) = −ad2(t) + b d(t) + c,

where
a = C3/r2, b = C4m1, c = C1r, (3.18)

m1 given by (3.15). The solution of this equation is given by the formula

d(t) =
βκ exp(a(β − α)t)− α

κ exp(a(β − α)t)− 1
if d(0) > β or d(0) < α, (3.19)

d(t) =
βκ exp(a(β − α)t) + α

κ exp(a(β − α)t) + 1
if d(0) ∈ (α, β),

with the equilibria

α =
b

2a
−

( c

a
+

b2

4a2

) 1
2
, β =

b

2a
+

( c

a
+

b2

4a2

) 1
2
.

The constant κ is such that the initial condition at t = 0 is satisfied. It tends to
1 if d(0) → +∞. As the function d is decreasing for d(0) > β, and bounded for
0 ≤ d(0) ≤ β this gives us the estimate

d(t) ≤ β exp(a(β − α)T )− α

exp(a(β − α)T )− 1
for all t ≥ T,

regardless of the initial value d(0). With a, b, c as in (3.18) we arrive at (3.8) with B1

decreasing on (0,∞), and TB1(T ) increasing for T large enough.
q.e.d.

The final step is to show (3.3). We begin with the following

Lemma 3.2 Let the assumptions of Lemma 3.1 be satisfied, and let T > 0. Then
there exists B2 = B2(T ) > 0 such that

Mr(T ) ≤ B2(T ), for all r ∈ [1,∞), (3.20)

where B2 depends only on T, uα.
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Proof: We show that M2k , k = 0, 1, 2, ... can be dominated by yk on a suitably
chosen time interval (tk, T ], tk > 0, where

yk(t) =
1

t− tk
, (3.21)

and {tk}∞k=0 an increasing sequence such that tk ↗ t∞ < T . Having this, we get

M2k(T ) ≤ yk(T ) ≤ 1
T − t∞

, k = 1, 2, 3, ..., (3.22)

and, consequently, (3.20) for all r by interpolation. The functions yk satisfy

y′k(t) = −y2
k(t), yk(T ) =

1
T − tk

,

yk(t) →∞ for t ↘ tk, yk(t) ≥ ckyk−1(t), tk < t ≤ T, ck =
T − tk−1

T − tk
. (3.23)

Define t0 < T, c0 > 1 such that (B1 as in Lemma 3.1)

T > [c0B1(T )]−1, t0 = T − [c0B1(T )]−1, and B1(t0) ≤ c0B1(T ). (3.24)

This is possible because B1 is nonincreasing with time. We show (by induction), that
we can choose tk such that tk ↗ t∞ < T and such that

M2k(t) ≤ yk(t), t ∈ (tk, T ). (3.25)

Our choice of t0, c0, (see (3.24)), together with (3.8) shows that

M1(t) ≤ B1(t0) ≤ c0B1(T ) = (T − t0)−1 ≤ (t− t0)−1 = y0(t), t0 < t ≤ T,

so (3.25) holds for k = 0. For the induction step we need the following

Lemma 3.3 Let the assumptions of Lemma 3.2 be satisfied. Let t0 > 0 be as in
(3.23). Let τ > t0, r ≥ 2 be such that dMr

dt exists at t = τ and satisfies

dMr(τ)
dt

+ M2
r (τ) ≥ 0, Mr(τ) ≥ 1√

r
. (3.26)

Then there is a constant Q = Q(t0) independent of r such that

Mr(τ) ≤ Q
1
r r

3n
2r M r

2
(τ). (3.27)

Proof: Suppose that (3.26) is satisfied. Then, referring to (3.17), we get

−M2
r (τ) ≤ d

dt
Mr(τ) (3.28)

≤ −1
r
M1−r

r (τ) ·
∫

Ω

∣∣∣∇(− ln u(τ))
r
2

∣∣∣2 dx + C1((r − 1)M−1
r (τ) + 1).

We multiply both sides by −rMr−1
r , and use (3.8) to get∫

Ω

∣∣∣∇(− ln u(τ))| r
2

∣∣∣2 dx ≤ rMr+1
r (τ) + C1r

(
rMr−2

r (τ) + Mr−1
r (τ)

)
≤ B5r

3Mr
r (τ),

(3.29)
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where B5 (essentially equal to B1(t0)) is independent of r. Now apply the estimate
(2.1) with ξ = | ln u(τ)| r

2 and ε = (2B5r
3)−1, to obtain a lower bound for the left side

of (3.29). Combining this with (3.29) and simplifying yields (3.27).
q.e.d.

We proceed to prove Lemma 3.2. Take r = 2k, k a positive integer, and let

ck
def= (Q(t0))

1
2k (2k)

3n

2k+1 , tk = T −
(

B1(T )
k∏

i=0

ci

)−1

.

With these values of tk, define yk as in (3.21). Note that by (3.24), t0 > 0, and that
by this choice of ck, tk one has that (3.23) is satisfied. Without loss of generality,
assume ck > 1, for all k. Straightforward calculations show that γ

def= Π∞k=0ck < ∞,
so yk(T ) ≤ (T − t∞)−1 holds for all k with t∞ = γ−1.

Assume that (3.25) is true for k − 1. We show, by contradiction, that it holds for
k.

Let M2k(t̃) > yk(t̃) for some t̃ ∈ (tk, T ). Then there is t̂ ∈ (tk, t̃] such that
M2k(t̂) > yk(t̂), M ′

2k(t̂) exists, and, since yk blows up as t ↘ tk,

M ′
2k(t̂) ≥ y′k(t̂) = −y2

k(t̂) ≥ −M2
2k(t̂).

But then, by (3.27), and the choice of ck, and by (3.23),

M2k(t̂) ≤ ckM2k−1(t̂) ≤ ckyk−1(t̂) ≤ yk(t̂),

a contradiction, which proves (3.22), and, consequently, Lemma 3.2.
q.e.d.

To complete the proof of Proposition 3.1, we prove (3.10). We realize that T
is arbitrary, the bound of Mr is given by (T − t∞)−1, which depends only on the
choice of c0, and, by (3.24), on the product TB1(T ). This is eventually an increasing
function, which can be observed from the decay rate of B1 estimated in (3.19). So
we can choose c0 fixed, and then (3.22) holds for any T > T0 with the same t∞. By
interpolation, we get (3.9) with B independent of T for any r, which yields (3.10),
and, consequently, (3.3) and (3.1). This finally implies (3.2).

q.e.d.

Remark: The crucial point of the proof was to show (3.5), i.e., the existence of
one point, where the solution is separated from the potential barriers. Once (3.5) is
obtained, there is an alternative way to show (3.10), namely to apply the Alikakos
procedure [4] as in [16] to get M2k bounded on the whole line. This also yields (3.10),
but the procedure is more lengthy.

4 Regularity

In this section, we show that solutions of our problem are more regular after the
separation time T0, and prove Theorem 2.2. In order to derive higher regularity of
solutions, we first show that

ut ∈ L∞((t0,∞); H−1
0 (Ω)) ∩ L2((t0,∞); L2(Ω)) (4.1)
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for some t0 ≥ 0, where t0 is such that the norm ‖ut(t0)‖H−1
0

is finite.
We will proceed formally; the proof can be made exact by approximation of the

t−derivative by the corresponding quotient.
We differentiate the equation (1.3) with respect to t, and take the scalar product

with ∆−1
N ut. Recall that ut has zero mean. We have

d
dt
‖ut‖2H−1

0
= 2(utt, ut)H−1

0
= 2(∇∆−1

N utt,∇∆−1
N ut)L2 = −2(utt, ∆−1

N ut)L2 ,

(∇((µ∇v)t),∆−1
N ut)L2 = −((µ∇v)t,∇∆−1

N ut)L2 = −(µt∇v + µ∇vt,∇∆−1
N ut)L2

= −(µt∇w + µ∇wt,∇∆−1
N ut)L2 − (∇ut,∇∆−1

N ut)L2

= −(µt∇w + µ∇wt,∇∆−1
N ut)L2 + ‖ut‖2L2 .

Hence
1
2

d
dt
‖ut‖2H−1

0
+ ‖ut‖2L2 = (µt∇w + µ∇wt,∇∆−1

N ut)L2

≤ C‖ut‖L2‖∇∆−1
N ut‖L2 ≤ 1

2
‖ut‖2L2 +

C2

2
‖ut‖2H−1

0
.

Integrating with respect to t, we get

‖ut(t)‖2H−1
0

+
∫ t

t0

‖ut(s)‖2L2ds ≤ ‖ut(t0)‖2H−1
0

+ C2

∫ t

t0

‖ut(s)‖2H−1
0

ds.

By the last part of (2.3), this yields (4.1).
With (4.1) at hand, we can improve the regularity of ut. We proceed as above,

but after differentiating (1.3) with respect to t, we multiply it by ut instead of ∆−1
N ut.

After integration by parts and taking the boundary conditions (1.5) into account, we
obtain

1
2

d
dt
‖ut‖2 = (∇(µ∇v)t, ut) = −(µt∇w + µ∇wt +∇ut,∇ut)L2

≤ C‖ut‖L2‖∇ut‖L2 − ‖∇ut‖2L2 ≤ C‖ut‖2L2 − 1
2
‖∇ut‖2L2 .

Integrating with respect to t, we get

‖ut(t)‖2L2 +
∫ t

s

‖∇ut(τ)‖2L2dτ ≤ ‖ut(s)‖2L2 + 2C

∫ t

s

‖ut(τ)‖2L2dτ for some s ≥ t0.

and, as ut ∈ L2((t0,∞); L2(Ω)), we deduce that

ut ∈ L∞((s,∞); L2) ∩ L2((s,∞); W 1,2). (4.2)

Taking t0 < T0, we get (4.2) with s = T0.
The next step is to show that also

∇u ∈ L∞((T0,∞); L2). (4.3)
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To this end, we write
∇u = µ∇v − µ∇w.

The last term belongs to the desired space by (2.4) and (2.11). For µ∇v we have

µ∇v ∈ L2((T0,∞); L2),

by (2.5).
We show that also the time derivative of µ∇v belongs to the same space, which

implies (4.3).
(µ∇v)t = µt∇v + µ∇vt

= µt(
1
µ
∇u +∇w) + µ(− 1

µ2
µt∇u +

1
µ
∇ut +∇wt)

= (1− 2u)ut∇w + µ∇wt +∇ut.

All these terms belong to L2((T0,∞), L2), and (4.3) follows.
Finally, we go to the equation (1.3), and rewrite it in terms of u only. This is

possible because of the separation property of solution, which means that both µ, 1
µ

are bounded away from zero.

ut = ∇(µ∇v) = ∇
(
µ(

1
µ
∇u +∇w)

)
= ∇(∇u + µ∇w)

= ∆u + (1− 2u)∇u∇w + µ∆w. (4.4)

By (2.7), (2.12), (4.2) and (4.3) we have

∆u ∈ L∞((T0,∞); L2(Ω)).

So
u ∈ L∞((T0,∞); W 2,2(Ω)).

It follows that the trajectory of u is compact in any space B ⊃ W 2,2 with compact
embedding. Then, taking into account the convergence result from Theorem 2.1, we
have, for f analytic in (k − δ, 1− k + δ), δ ∈ (0, k):

u(t) → u∗ in B as t →∞.

In particular, if n = 3, we have

u(t) → u∗ in C(Ω) as t →∞.

This concludes the proof of Theorem 2.2. q.e.d.
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[2] S. Aizicovici and H. Petzeltová, Convegence to equilibria of solutions to a conserved
phase-field system with memory, Disc. Cont. Dyn. Syst.- S, 2 (2009), 1–16.

[3] S. Aizicovici, E. Feireisl and F. Issard-Roch, Long time convergence of solutions
to a phase-field system, Math. Methods Appl. Sci, 81 (2001), 277–287.

[4] N.D. Alikakos, Lp-bounds of solutions of reaction diffusion equations, Comm.
Partial Differential Equations, 4 (1979), 827–868.

[5] P. W. Bates and A. Chmaj. An integrodifferential model for phase transitions:
stationary solutions in higher space dimensions. J. Stat. Phys., 95 (1999), 1119–
1139.

[6] C.K. Chen and P.C. Fife, Nonlocal models of phase transitions in solids, Adv.
Math. Sci. Appl., 10 (2000), 821–849.

[7] L, Cherfils, S. Gatti and A. Miranville, Existence of global solutions to the Caginalp
phase-field system with dynamic boundary conditions and singular potential, J.
Math. Anal. Appl., 343 (2008), 557–566.

[8] R. Chill, E. Fašangová and J. Prüss, Convergence to steady states of solutions
of the Cahn-Hilliard and Caginalp equations with dynamic boundary conditions,
Math. Nachr., 279 (2006), 1448–1462.

[9] C. Dupaix, A singularly perturbed phase field model with a logarithmic nonlinear-
ity: upper-semicontinuity of the attractor, Nonlinear Anal., 41(5-6, Ser A: Theory
Methods) (2000), 725–744.

[10] C.M. Elliot and H. Garcke, On the Cahn-Hilliard equation with degenerate mo-
bility, SIAM J. Math.Anal., 27 (1996), 404–423.

[11] E. Feireisl, F. Issard-Roch and H. Petzeltová, A non-smooth version of the
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