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Chapter 0

Introduction

This work concentrates on the two concepts appearing in its title, R-boundedness and multiplier
theorems, of which the former one is the tool, the latter the application.

One may pronounce the “R” as either randomized, Riesz or Rademacher; we prefer the first
one, since it is probably the most informative. It should guide one’s thoughts towards the heart
of the matter, the idea of attacking problems of analysis by stochastic means.

It was pointed out by Stein [23], in his introductory words preceding the treatment of classical
multiplier results and the Littlewood—Paley theory, that “often the most fruitful way of character-
izing various analytic situations — — is in terms of appropriate quadratic expressions”. Numerous
successful applications show that this is certainly true in the scalar-valued situation, and the same
techniques often extend to Hilbert spaces provided one replaces the square of an element by the
inner product of a vector by itself. Obviously, however, none of this has any meaning in a general
Banach space.

On the other hand, it is known that various quadratic sums can equivalently be treated by
means of linear expansions in terms of random weights called Rademacher functions. This is some-
times convenient in the scalar-valued situation, but more importantly, it allows one to generalize
the powerful classical machinery far beyond spaces to which the original notion applies.

On this basis, the modern notion of randomized boundedness of operator families appears as
a promising tool. This is definitely an understatement, for the recent developments have provided
significant generalizations of the classical multiplier theorems, and far reaching applications have
emerged also in the important study of maximal LP-regularity of evolution equations, treated
recently e.g. by Arendt and Bu [1], Hieber and Priiss [8] and Weis [25, 26].

Many of the most powerful modern theorems are valid in so-called UMD-spaces, i.e., Banach
spaces of unconditional martingale differences. Martingales constitute a class of stochastic pro-
cesses, so once again, randomization enters the scene. The probabilistic characterization of UMD
turns out to be equivalent to the LP-boundedness of the Hilbert transform, a transformation which
is, in a sense, a very representative example of a multiplier operator: The boundedness of this
transformation then allows us make the same conclusion concerning many others, the essential
assumption directly involving the notion of R-boundedness.

Inspired by these modern developments, it seems appropriate to rephrase the celebration of
quadratic expressions as follows: A powerful means of attacking many analytic problems, governed
by ultimate determinism, is the act of randomization.

The field of the Fourier multiplier theory is rather wide, and even the classical results would
provide material for a treatment of significantly greater length than the present one. There are
many books touching these matters, e.g. those of Duoandikoetxea [7], Stein [23], and Stein and
Weis [24]. We have only treated the classical theory to show the natural emergence of the notion
of multipliers; nevertheless, many of the classical theorems are obtained as special cases of the
modern vector-valued results which we concentrate on. Emphasis is also given to the techniques
and ideas behind the modern developments, in particular the UMD-theory, which is not so recent
as such, but on which most of the modern results are built.



The results appearing here are already known, but the collective presentation is new. A recent
work that partly parallels ours is the thesis of Witvliet [28] (a part of which has appeared in the
article by Clément et al. [3]); however, [28] concentrates more on the applications to a variety of
multiplier theorems (in which direction the treatment goes well beyond ours), but the results from
the UMD-theory are only cited there.

The presentation can roughly be divided into three parts: the introductory ideas and results,
the UMD-theory, and the modern theorems.

The first four chapters present the starting points of the theory, and we obtain the first
multiplier theorems. In Chapter 1, we show that translation invariant transformations T €
B(LP(T?); L4(T?)), where T is the unit-circle, act on trigonometric polynomials as component-

wise multipliers, formally
T Z el () = Z e, €2 )
KEZ KEZA

and a similar result is also true for operators acting on LP(R?). The multiplier problem then
emerges in an attempt to find a converse of the previous statement, i.e.: Which sequences A € cz*
give rise to bounded operators 7' = T on LP(T%)? For L' and L?, we obtain a definite answer.
The notion of multipliers is generalized to an abstract setting in Chapter 2, after first intro-
ducing auxiliary machinery related to decomposing a Banach space X into a countable direct sum
of closed subspaces X such that each z € X has a unique representation z = Zz’;l T, with
xp € Xj. Of particular importance are unconditional Schauder decompositions, for which each of
the series 21311 zp =x € X, xp € Xy, is convergent regardless of the permutation of the positive
integers in the summation. For such decompositions we show that the multiplier transformation

oo o0
T)\ Z T = Z /\kﬂfk
k=1 k=1

is bounded if and only if A € £°°,

Having found a connection between multipliers and unconditionality, we need to be able to
recognize unconditional decompositions. In Chapter 3, convenient characterizations are obtained
by examining randomized norms

n
> e
k=1

where ¢j, are independent, identically distributed, symmetric, {—1, 1}-valued random variables on
the probability space €1, so called Rademacher functions. A useful tool in this connection is the
important Khintchine—Kahane inequality, which essentially establishes the equivalence of all L?
norms in the linear span of these functions.

In Chapter 4, we use the randomized norms to introduce the notion of R-boundedness of a
family T C B(X;Y), defined by the requirement

n
E exTray
k=1

b

LP(Q;X)

<cC
Lr(Q;Y)

b)
Lr(Q;X)

n
E ELT
k=1

for all T, € T, x, € X. We give a survey of the basic properties of R-bounds, and the notion
of multiplier transformations is generalized to allow for linear bounded operators in place of the
scalar multipliers Ax. The beautiful interplay of R-boundedness with the stochastic characteriza-
tion of unconditional decompositions leads to interesting theorems for the generalized multiplier
transformations with a rather small effort.

The second part of the work is devoted to the theory of UMD-spaces, which provide a convenient
setting for vector-valued Fourier multiplier theorems. In Chapter 5, we study the basic theory of
vector-valued random variables, which then allows us to introduce the stochastic processes called
martingales and establish their basic properties.
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The UMD-spaces are finally defined in Chapter 6, by requiring the boundedness of the so called
martingale transforms on LP(Q; X). Somewhat lengthy computations show that the definition is
independent of the exponent p, and we also obtain a number of other related equivalent conditions,
which are useful in different occasions. The equivalence of the various conditions is the content of
Burkholder’s theorem, which we prove.

In Chapter 7, we prove a number of results providing us with a large variety of UMD-spaces.
In particular, every Hilbert space and every reflexive LP-space is found to be UMD. Furthermore,
we show that every UMD-space is reflexive, which implies, by a result concerning the Radon—
Nikodym property cited in the Appendix, that the dual of L?(T'; X) is LP(T'; X*) whenever X is
UMD, a very useful fact in view of some duality arguments in later chapters.

One of the main reasons for the usefulness of the UMD-spaces in the present context is the
LP-boundedness of the Hilbert transform on UMD-valued functions. This theorem is established
in Chapter 8. The proof is, despite some technical difficulties, perhaps the most beautiful in this
presentation: A totally deterministic result, namely, the boundedness of the Hilbert transform, is
shown by considering a process of random walk, on which we apply the martingale inequalities.
The random walk starts from the origin and eventually, almost surely, crosses the unit-circle at a
random point, and when doing so, it gives us an indication of the largeness of a function and its
Hilbert transform in this randomly chosen point. Averaging over all possible paths finally leads
to the desired result. (It is also true that the boundedness of the Hilbert transform implies the
UMD-condition, but due to limited space, we are forced to omit the proof of this converse result.)

Finally, the third and the last part of the work investigates the modern results concerning
Fourier multiplier theorems in a vector-valued setting. A close variant of the Hilbert transform
is the Riesz projection, whose multiplier is 1jg,o), and this is also readily generalized to the d-
dimensional setting in the obvious way. An inclusion—exclusion argument shows that an arbitrary
box can be expressed as a signed sum of translates of the positive cone [0,00)¢, and this idea,
combined with the boundedness of the Riesz projection and the basic properties of R-bounds,
leads to the R-boundedness of all operators whose multipliers are boxes [a; ). This immediately
yields a variety of simple multiplier results, and improved theorems follow, once we establish
the unconditionality of the Schauder decomposition formed of the so called dyadic blocks of the
harmonic components of a function; for f € LP(R; X),

Spf = ?*(IU:I:[Q"J"H)JC)-

The unconditionality of such decompositions in the scalar-valued situation (where this is conven-
tionally stated by means of a square function estimate) is at the heart of the classical multiplier
theorems of Marcinkiewicz and Mikhlin; the randomization techniques allow one to extend this
result to all UMD-spaces, where it also yields strong multiplier theorems.

In Chapter 10, we have a look at the most recent theorems involving operator-valued Fourier
multiplier transformations. The R-boundedness techniques are combined with the UMD-theory
in a very fruitful manner. We find that the R-boundedness of the sets

{Gt)}izo  and  {tG'(t)}iz0

is sufficient for the operator-valued function G to give rise to a bounded multiplier transformation,
and the R-boundedness of the first of the above mentioned sets is also necessary.

Since our treatment is almost entirely vector-valued, we have included in the Appendix a rather
detailed account of various results from vector-valued analysis that we exploit. We investigate in-
tegration of vector-valued functions, the Lebesgue-Bochner spaces LP(£2; X) and their duals, and
we present some fundamental results dealing with vector-valued extensions of operators. Further-
more, we give a survey of some differentiability properties of vector-valued functions and a short
introduction to Fourier analysis and the theory of distributions in the vector-valued setting.

Due to limited space, it has been impossible to include all the relevant material in this work.
Some additional results related to the topic of each chapter are cited in the Notes and comments
-sections. Bibliographical sources are indicated at the same place, and we have also mentioned a
few points in the text, which are possibly new as far as we know. A lack of a reference in no place
indicates any claim of novelty.



Chapter 1

Emergence of Multipliers

1.1 Introduction

In the classical context, the notion of multipliers emerges in Fourier analysis: It turns out that
certain important bounded linear transformations of L? to L%, 1 < p,q < 0o, namely those that
commute with translations 7, f(z) := f(z — h), have a multiplier structure when viewed in the
Fourier domain. The set of all such transformations will be denoted by (LP(U), LY(U)), where U
will be either R? or the d-torus T¢ to be defined below. Note in particular that (LP(U), LI(U)) C
B(LP(U); LY(U)).

The topic of this chapter is to explore how the multipliers enter the scene in a most natural way
via these translation invariant transformations. This should provide one answer to the question
“Why multipliers?”, and motivate the study of their abstract versions in the following chapters.

Analogous results exist concerning both Fourier series and the Fourier transform in the peri-
odic and non-periodic cases, respectively. We begin with the periodic case, which requires less
preliminaries.

1.2 Fourier series and multipliers

We first fix some notation. Denote by T¢ := {(ei2721 . . ¢i27%4) : € R?} C C¢ the d-torus,
which will be identified with the quotient space R?/Z< in the natural way. The Z%periodic
functions on R? (i.e., those satisfying f(z + k) = f(x) for each k € Z%) to be considered will
similarly be identified with functions on T¢. A function is said to be continuous on T¢ if its
periodic extension is continuous on R¢.

For purposes of integration we require the concept of a fundamental domain. This is defined
to be any bounded measurable set D C R? with the property that, for each Z € R?/Z%, there is
exactly one € 2N D. We will then define integration on T?, for each periodic measurable f and
each finite (on [0,1)?, say) periodic Borel measure u , by the formula

/T Jdn = /D fdu. (1.1)

By a periodic measure we of course mean yu defined, for E = U,.cz4E N ([0,1)¢ + k) =: U,.czaE,,
by W(B) =3, cza (B — k). Observe here that E, — x C [0,1)%. Appropriate restriction must
be made on the measurable sets with respect to the periodic measure so as to avoid convergence
problems of the complex valued series. If the E, — x are disjoint, then the corresponding series
of absolute values is dominated by || ([0,1)?), the full variation of g on [0,1)¢. This is the case
when F is a fundamental domain as defined above. Furthermore, we have the following lemma,
without which the definition of integration above would not make very much sense.

Lemma 1.1. The integral in (1.1) is independent of the fundamental domain D and thus well-
defined.
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Proof. Tt suffices to consider positive u, since in every case pu < ||, and the integration is defined
by [ fdp = ff%d“d. Also, it is only necessary to verify the claim for f being the periodic
extension of 1z, where E C [0,1)? is measurable, since the rest follows by standard approximation

arguments. (Observe that the set [0,1)¢ here is an example of a fundamental domain.) The
explicit expression of f will now be 1 e a(B+r)- We will further decompose D into UyeczaDy,

where D, := D N ([0,1)¢ + ¢). Then we have

[ san= [ 10, caweotoan= U E+m}atU 0= E+mnD)

rkezd tezd rezd
=Y WE+0) D) =3 wEN(De—r) =p(|J EOD—m) =p(EN | (De—r),
r€EZD r€EZ4 VAl KEZD

where the periodicity of p was used in the third to last step. From the fact that D is a fundamental
domain and the definition of D, it follows that U,cza(D, — k) = [0,1)¢ D E. Thus the result of
the previous computation is just u(E) independently of D. O

Now, for a finite Borel measure p on T?, the xth Fourier coefficient, x € Z%, of y is defined by

ay = / e IR Ay (x), (1.2)
Td
and whenever a, are as above, we write

o~ Z a, e, (1.3)

KEZ4

Since on T? the function spaces LP can be identified with subspaces of finite Borel measures (by
dp := fdm), the definition of Fourier coefficients immediately extends to such functions. For the
moment, the series representation (1.3) may be viewed as a purely formal expression, although,
as is well known, important convergence results exist.

Now we state the first classical theorem, which shows the emergence of multipliers.

Theorem 1.2. If T € (LP(T%),L%(T)), 1 < p,q < oo, then there exists a unique X € (°>°(Z%)
such that for LP 3 f(z) ~ Y, 74 axe'>™ % we have

Tf(x)~ Y Apane™? (1.4)

KEZ4
and [Nl oo za) < |T|g(po(ray;paray)-

Proof. Since trigonometric polynomials are dense in LP(T4), it suffices to verify the theorem for
them, and due to linearity, a proof for an arbitrary e27**, k € Z<%, will do. Note that these have
unity norm in LP(T?).

Let ¢, := Te2™ (). Then, using the commutativity of T' with translations, we have, for each
h, ¢h( _ h) — Th¢n — 7.hT€i27rn-(-) — TThei2ﬂ5~(~) — T€i27rn-(-—h) — €—i2ﬂ'n-hT€i2ﬂ'n-(-) — e—i2m~a~h¢ﬁ_
This equality holds in the L sense, i.e., for all h, for a.e. z, ¢ (z — h) — e 127 hg ().

Now, we would rather like to first fix an = and then have the previous equality for at least
a.e. h. This indeed follows: Integrating first with respect to z and then with respect to h the
identity |¢x(z — h) = ™™g, (2)| = 0, we have

/ dh | dx|¢p(z —h) — e P (2)] =0,
Td Td

and Fubini’s theorem allows us to change the order of integration. The non-negative integrand
yielding a zero integral must then vanish for a.e. z, for a.e. h.

It follows that we can fix an xo (in fact, almost any) and obtain for a.e. h, thus for almost
every y := xo — h, the above equality, i.e., ¢.(y) = e 2™ @0V (14) =: €27¥),. This means
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that Te'?™® = X\ e?™% and since T € B(LP;L?), we have |Te?™~
i27rn-x|

— |)\n| |€i27m-x|Lq
|T|‘B(LP;L<1) |6 |Lq = |e'2’”°'x|Lp = 1, that A
{Ax}ueza € £2°(Z%) and |)\|eoo(zd) < |T|3(LP’LQ). The uniqueness of A is evident from the con-
struction.

A

,»- It is then clear, recalling that |7

O

The reason for calling the T' in Theorem 1.2 a (Fourier) multiplier operator should be evident
from (1.4). Note, however, that the result of this theorem is only one-sided. This can be improved
in the important special cases of L' and L?, which we will now look at. A particularly simple
characterization of bounded multiplier operators exists in L?, where the “if” of Theorem 1.2 can
be replaced by “if and only if”.

Corollary 1.3. T € (L?(T?), L?(TY)) if and only if T satisfies (1.4) with X € (*°(Z%). Further-
more, |T|g2payy = [Algoe za)-

Proof. In L*(T?), a Fourier series Y, ;4 a,€>™% converges (in the L? norm) if and only if
D orezd la.|> converges (thus the enumeration of Z< here is irrelevant, a matter to be discussed in
more detail in Section 2.2). Furthermore, if f ~ 3 .. a,e?™ % the Fourier series converges to

d _ 2

[, an |f|L2(’11'd) =2 rezalax]”
Now, if A € £2°(Z9), then 3,4 [Ava,|” < W?oo(zd) > ez |ax|’, and thus the multiplier oper-
ator T defined by (1.4) is a linear operator satisfying |T'f|;» < |A|j« | f|;2- From the convergence
of the Fourier series and the fact that each multiplier A, certainly commutes with translations it

follows that the multiplier operator T' € (L?, L?). The rest of the assertion is now a consequence
of Theorem 1.2. O

A complete characterization, if not as simple as in the L? case, can also be obtained for
(LY (T?), L' (T?)). The characterization will involve the convolution of a function with a mea-
sure; we briefly review the relevant theory, but refer to the appropriate literature for a thorough
treatment.

The convolution of finite Borel measures p, v on T¢ is defined as the unique Borel measure
p* v on T such that

A;MW*v%=A%A%wx+ym~umww (1.5)

for every continuous g. It is obvious from this that v x u = p * v, and it also follows that
| * v (T?) < |p|(T9) |v|(T9). When one of the measures, say pu, is absolutely continuous with
respect to the Lebesgue measure m, and thus has a Radon—Nikodym derivative f, then also
pxv K m and
d(p * v)
dm

= [ flz—y)dv(y).
’H'd

If both u and v are absolutely continuous, then % = j—#l * j—r’;, where * in this last expression
denotes the ordinary convolution of functions. Thus the two definitions agree, and we can also
regard the convolutions of functions with functions and functions with measures as special cases
of the general convolution 1.5, identifying f with fdm and v <« m with ;—7‘,’1. In particular, we may
define fxv :=vx f = %, with p := fdm. A more explicit expression for this is given above.

Of our interest is the immediate consequence of the definition (1.5) concerning the Fourier
coefficients of a convolution:

i2nk-x 27k i27k-x
JTERZES E a.b.e for p~ E age , U~ E b.e . (1.6)
KEZ4 KEZA KEZ4D

By the considerations above, this is equally valid for the convolutions of functions with functions
and functions with measures.

Now we proceed towards the multiplier theorem in L!(T?). The proof will exploit some prop-
erties of the (modified) Poisson kernel, which are given in the following lemma.
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Lemma 1.4. The modified Poisson kernel

P.(z) := Z plelgi2mres 0<r<l,
KEZA

satisfies Pr > 0 and |Py| 1 (qpay) = 1.

The actual Poisson kernel has the Euclidean norm of x in the exponent instead of the 1-norm.
The relevant properties in view of Theorem 1.5 below are identical, but they are easier to establish
for the modified kernel.

Proof. Note first that

d
d . d .
P,(z) = § ' pi= kil gi2m 35 kjwy I I E :r\kjlel%kﬂj’

ki,...kg€Z j=1k;€z

and that each of the d factors in this last product is absolutely convergent geometric series for r €
(0,1). This guarantees the convergence of the series in the definition of P, whichever enumeration
of Z we take, and it also justifies the change of the order of summation and integration in the
following computation:

/ § T|n\1el2ﬂ'n-zdx —
Td

KEZ4 KEZA

Z /[ . plol gi2msx g0 — Z 0,0 = 1.
0,1

KEZAD

The second assertion immediately follows from this, once we prove that P, > 0, since then the
last computation gives the L' norm of P,.

For the positiveness of P,., we note that each of the d factors in the product expression for P,
can be summed in a closed form (dropping for the moment the subscript j for convenience)

— &/ iomk i2mk ok ionk 1+ rei2me L
1 i2wkx —1amkry — 1 4 2R T =R i = .
+ ; r* (e +e )=1+ I; re 1 —rei2me — 1 —2rcos(2mz) + r2

Clearly both the numerator and the denominator are positive for r € (0,1), and the assertion is
hence proved. U

Now comes the L' theorem.

Theorem 1.5. An operator T is in (L'(T?), L'(T%)) if and only T satisfies (1.4) with X\ =
{Ax}ueza consisting of the Fourier coefficients of a finite Borel measure i on TY; i.e., A, is given
by (1.2) with \. in place of a,. Furthermore, Tf = p* f and |p|(T¢) = |T|B(L1(Td)).

Proof. Assume T € B(L'(T?)) and that T commutes with translations. Since |P,|,: = 1, we have
ITP;| 1 < |T|g g1y 50 {TPrYo<r<1 is bounded in L'. We then consider L'(T¢) embedded in the
set of finite Borel measures on T?, with the obvious identification dv := fdm for f € L'. Since the
space of finite Borel measures on T is the dual of C(T?), we conclude from the Banach-Alaoglu
theorem [19] that the closure of the bounded set {T'P,}o<r<1 is weak*-compact. Hence each
sequence of this set, in particular each sequence of the form {T'P,; }‘j";l, r; — 1 has a subsequence,
still denoted by {T'P,, };";1, which is weakly* convergent to a finite Borel measure y. This means
that

/TPTjgdx—>/ gdp g€ C(TY).
Td Td

Then for any € > 0 there is a ¢ € C(T%), |g|; < 1, such that |pu[(T) < [gdp + e =
lim [ TP, gdz < lim [TP,,;|,, < | |51y

It seems reasonable but requires verification to show that the p here is the one we want. To
this end, we substitute g(z) := e™27%2 into the limit statement above; then the left-hand side



1.3. SOME L* RESULTS 13

becomes, by definition, the xth Fourier coefficient of T'P,,, and this is )\HTLN‘I by Theorem 1.2 and
the series representation of the Poisson kernel, from which the Fourier coefficient are obvious. As
r; — 1, this clearly converges to A, for each k € Z? On the other hand, fw e 2mrad(z) is,
again by definition, the xth Fourier coefficient of . Thus pp~ )7, ;. A.€12™% where the A\, are
the multipliers related to 7' by Theorem 1.2.

On the other hand, if y is a finite Borel measure with Fourier coefficients {\, }c¢z4, then clearly
f e px* fis linear and |p* f|; 1 < |p| (T?)|f|;:. Furthermore,

(wrmf)a) = [

T

d(Thf)(x —y)du(y) = /Td f(x—h) —y)du(y) = (u* f)(x — h) = ma(p* f)(2),

whence p - € (L' (T?), L' (T9)). By the property (1.6), it is clear that the multipliers related to

% - are the Fourier coefficients A. Since the multipliers are unique, we combine the two parts of
the proof to deduce that T € (L'(T9), L'(T?)) if and only if T = p * - for a finite Borel measure
pt, and the multipliers of T" are the Fourier coefficients of pu. The equality |T|p11(7ay) = |4 (T4)
is evident.

We then leave the Fourier series and proceed to investigate Fourier transforms. These require
some preliminaries, which we give in the following sections.

1.3 Some [P results

We need a couple of LP concepts to conveniently handle the multipliers in the non-periodic case.
The first one of these is the notion of LP derivative. In a more general context, a perhaps more
elegant definition would identify f € L? with a tempered distribution, which always has a deriva-
tive in the distribution sense, so that no new type of derivative would be needed. We nevertheless
stick here to the somewhat old-fashioned notion, because it fits so naturally to the analysis of the
linear operators bounded from L? to LY and commuting with the translations 75; indeed, both of
these concepts appear explicitly in the definition of the LP derivative below, and it will be clear
how to exploit these properties in the sequel.

Definition 1.6. If, for f € LP(R?) and h = hje;, the difference quotients —h%_(Thf — f) converge
in the LP norm to a function g, then g is called the LP (partial) derivative of f with respect to
x;. The L? derivatives of any order are defined iteratively in the usual way. We denote by D¢, f
the LP derivative of f of order a € N, whenever it exists.

The L' derivatives are particularly important because of the property
D3, f(x) = (i2m)*ha® f(a), (1.7)

for f € L'. For ¢ € 8, the L? derivative coincides with the usual one: D¢, = D%).

The following lemma gives a criterion showing that sufficient differentiability in the L? sense
implies continuity. The related norm estimate will also be exploited in connection with the mul-
tiplier theorems.

Lemma 1.7. If f € LP(R?) has all L? derivatives, 1 < p < oo, of order |a|, < n + 1, then there
is a continuous g such that f = g a.e. and

19(0)| < C(n,p) > Do flpe- (1.8)

lal;<n+1

The assertion does not really depend on the particular choice of the point 0, but we will exploit
the result in the form stated.
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Proof. We first establish the assertion for p = 1 and then use an appropriate extrapolation for the
general case.
We first observe that (1 + |2|*)2("t) < (14 Y1_, |z,)"! < C(n) > jal,<nt1 |21, and thus

A+RPE fo| <o Y pf@|=c Y DRf@|<c 3 IDhfl.

laf, <n+1 la, <nt1 o], <n+1

(The property ‘77,‘ < |h|;1, an immediate consequence of the definition of Fourier transform,
LOO

was used in the last step.) Note that we use C' to denote constants depending only on d (and later
p), not necessarily the same at every occurrence.

Now the assumption on the L' derivatives of f says that the quantity in the right-hand side
of the previous inequality is a finite number. Since (1 + |z[*)~2("*1) € L1(R%), we then see that
f € L'. When this is the case, we know that the inverse Fourier transform of fdeﬁnes a uniformly
continuous function g, which is equal to f in the L! sense, i.e., almost everywhere. Furthermore,

l9(0)] < |flpe < ‘f‘Ll < Czla\lsn-i-l |D%1f|L1. Thus the proof of the case p = 1 is complete.

(Here we actually had a uniform bound for all |g(z)|, z € R.)

For general p > 1, multiply an f € L? by a ¢p € D. Then fi € LP is compactly supported
and thus the L' norms of fi as well as of hij(Thfi/J — f1) are bounded by the corresponding L?
norms (times a constant depending on the size of the support of ¢). Thus the convergence of the
difference quotients in L? implies convergence in L', and it follows that f1 has derivatives in L';
iterative application of this observation yields all the same derivatives as for f in L?. (Also observe
that the L' and L? derivatives, when both exist, must coincide, since convergence in either norm
implies pointwise convergence a.e. of a subsequence.) Hence f1) satisfies the assumptions of the
lemma for the case p = 1 already proved, and we conclude that there is a continuous g, such that
fY = gy, and gy satisfies (1.8) with f1) in place of f and p = 1. To obtain the desired bound we
then compute

D5l = | () D uDi s / X (5) 17 P ew 0, 1) a
Supp ¥ 55,

B<La

<C sup |1/)|%0 Z / ‘Dfpf‘dxéc(l/)) Z ‘Dfpf‘
[vl;<n+1 B<n+17SUPPY B<nt+1 b

If we now choose (and fix for the moment) the ¢ in such a way that ¢|g(o,,) = 1 and ¥|p(,r)c =
0for 0 < r < R < oo, we find that f¢p = f in B(0,r) and in particular g4 = f a.e. in
B(0,r). Furthermore, we have a definite bound of the desired form for |g(0)| given by the previous
computation. Observe that while this bound depends on v, we can fix a definite 1) as above; this
1 will do for any f € LP, so we have the desired estimate.

Once this is done, we can then take a suitable ¢y € D with r, R arbitrarily large to show that f
is equal to a continuous function g a.e. in every ball. We can deduce the continuity a.e. in every
ball centered at the origin, thus continuity a.e. in R, but the constant in the desired inequality
may now blow up. This does not matter, since we already deduced that inequality with a definite
constant.

The proof is complete. O

Another important concept in LP theory and elsewhere is the idea of “approximating the
identity”. This often occurs in applications in the form of convolving a function with something
smooth so as to produce an approximation of the function for which certain, otherwise formal,
manipulations like differentiation can be performed. The following lemma does not directly involve
any concepts of smoothness, but it nevertheless gives a useful approximation criterion to be applied
later.
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Lemma 1.8. If ¢ € L'(R?) and for each € > 0 we define ¢¢ := e "¢(e~'x), then for every f € LP,
1<p<ooorfeCyC L*® the following convergence holds:

|f ¢ —aflp, = 0ase—0, (1.9)
where a = [, ¢da.
The cases of particular interest are a = 0 and a = 1; these are really all there is in the lemma,

since the rest is only a matter of normalization.

Proof. A simple change of variable shows that also f]Rd ¢¢dxr = a for each ¢ > 0. Thus we can

compute
»oNG
dw)

(Adlf*¢e(x)—af(x)lpdm)% -(/,

< [([ra=n-sora) woia= [ ([ ita-a-sopre) por

where Minkowski’s integral inequality was applied. Inside the integral we now have the difference
norm |f(- — et) — f|,,, which is certainly dominated by 2|f|,, for each ¢, and thus the whole
of the integrand is dominated by the integrable function 2|f|,, |¢(-)|. Furthermore, as ¢ — 0,
|f(- —et) — fl;» = 0, certainly if f is continuous with compact support. For general f, we use
the density of C. in each of LP, 1 < p < oo and in Cy to write f as a sum g + h, where g € C,
and the L? norm of h can be chosen as small as one likes. The assertion of the lemma now follows
from the Lebesgue theorem of dominated convergence. O

[t = ) = sy

Another useful approximation criterion is the following.

Lemma 1.9. For f € L?, p € [1, 0], the norm can be obtained by

|flomay = sup fode.
YeD

Rd
W)‘LFSI

Proof. For p € (1,00), this follows from the duality of L? and LP together with the density of D
in LP.
A function f € L' can be approximated by an appropriate simple function Zle zj1g; in the

L' norm as closely as one likes. Then g := Zle
of g times the given approximation of f gives the L! norm of this approximation exactly. The
finite number of indicators 1g; in the representation of g can then be approximated by functions
in D (Lemma A.19).

For f € L, for each € > 0 we find a set E of positive measure such that |f| > [f|, . —€

Zj/ |zj| 1g; is in L* with norm 1, and the integral

on E. Then g := WIE € L' with unity norm, [, fgdz > |f|;« — €, and g € L' can be
approximated by functions of D (Lemma A.19). O

The following simple result is occasionally useful when dealing with translations.
Lemma 1.10. If f € LP(RY), p € [1,00), then |f +Thf|Lp(Rd) 9% |f|Lp(Rd) as |h] — oo.

Note that this is not true in L°°; a simple counterexample is given by the constant function 1,
for which 1+ 7,1 = 2 for all h.

Proof. Since, for f € L?, fB(0~R)C |fIP dv — 0 as R — oo, we can, for a given ¢ > 0, choose R so
that fB(O-R)C fI” dz < e. Consider h € B(0;2R)¢. Then

\f + T f 7 may > |(f + Thf)lB(O;R)|§p(Rd) +|(f + Thf)lB(h;R)|ip(Rd)

p p
> (|le(0;R)|Lp(Rd) - |(Thf)1B(0§R)|LP(Rd)) + (|(Thf)1B(h;R)|Lp(Rd) - |le(h§R)|LP(Rd))

> (|le(0;R) |LP(]RL1) - e)p + (|Thf13(h:R)|Lp(Rd) - 6) :
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In the first inequality, we simply reduce the domain of integration; the second follows from the
triangle inequality for the LP norm, i.e., Minkowski’s inequality. The third one exploits the
choice of R and h, for we have B(h; R) C B(0; R)® and similarly B(0; R) C B(h; R); clearly
Sagn I fIPdz = [, |f|” dz for any measurable A. (Recall 7, f(z) := f(z —h).) For |h| sufficiently
large we further have

|le(0§R)|LP(Rd) = |Thf13(h;R)|Lp(]Rd) > |le(0§R)|LP(]Rd) —€

for any given € > 0. Combining this estimate with the previous one and employing the arbitrariness
of € to pass to the limit ¢ — 0, we deduce that

. . p p
1|1hI|n—12<f |f + Thf|Lp(Rd) >2 |f|LP(Rd) .
The reverse inequality with lim sup in place of liminf is obvious from the triangle inequality. O

These results at our disposal, we are better prepared to look at the continuous analogues of
the multiplier theorems introduced in Section 1.2.

1.4 Fourier transforms and multipliers

The multiplier theorems related to Fourier transforms are conveniently dealt with by using the
theory of (tempered) distributions. That is, we will first allow for generalized multipliers, in a
sense to be made precise below, and then show that these can be identified with proper functions
under certain circumstances. The part of the theory of distributions required here is presented in
the Appendix, Section A.6. The setting there is vector valued for later purposes; however, this
does not essentially complicate the matters. Also, the theory needed in the present context is
quite standard and found in many textbooks.

We begin with the continuous analogue of Theorem 1.2, where the multipliers are merely
distributions, as noted above, but improved forms for special cases will be encountered immediately
afterwards.

Theorem 1.11. If B € (LP(R?),L9(R?)), 1 < p,q < oo, then there exists a unique u € 8* such
that B¢ = u¢ for each ¢ € 8.

Note that we have written the theorem in the given form in order to emphasize the multiplier
nature of the result. By Lemma A.43, a statement equivalent to the last equation is given by
B¢ = u * ¢, and this is what we are going to prove.

Proof. Take a ¢ € 8. As a first step, we are going to show that B¢ has L7 derivatives of arbitrary
order and that, in fact, D}, B¢ = B(D*¢). To see this, take h = hje;, e; the jth vector in the
standard basis, and observe that —hlj(Tthﬁ —B¢) = B(—hlj(rhqb —¢)) = B(gT‘pj) in L¢ as h — 0.
The linearity and commutativity with translations of B were used in the first step and continuity
from LP to L? in the second; recall that convergence of the difference quotient to the derivative in
8 implies the corresponding convergence in LP by Lemma A.28. The result for general o follows
by induction.

Now we are in a position to apply Lemma 1.7: B¢ has L7 derivatives of arbitrary order, in
particular, those of order at most d + 1, and thus B¢ equals a.e. a continuous functions with
which it is henceforth identified (in L?, we merely pick another member of the equivalence class).
Now we employ first the inequality provided by Lemma 1.7, then the commutativity of B and D®
established above, and finally Lemma A.28 to estimate.

1Bo(0)] <C > [DF(B) o < |BlyprpaC Y, 1Dl

laf;<n+1 lal;<n+1

d
< A|BlyponaC Y D 18los, -

lal, <n+1 k=0
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Here, A, N, C and § are independent of ¢, so this computation shows that ¢ — B¢(0) is a
continuous (obviously linear) functional on §, thus a member @ of 8*. (The reflection is just for
convenience later on.)

Finally, we will show that the u € 8" we introduced here is just the u in the assertion that we
want. Thus take a ¢ € 8 and apply Lemma A.44 to compute u * ¢(x) = <u,rwq~$> = <u,rf_;25> =
(W, T_g¢) = Bt_,0(0) = 7_, B$(0) = Bp(x). The assumption that B commutes with translations
was used in the second to last step. Note that the point evaluation here certainly makes sense,
since u * ¢ is continuous, in fact C*°, by Lemma A.44.

The theorem is now proved. O

As with the multipliers for Fourier series (and nearly always), the L? case presents the most
beautiful symmetry.

Theorem 1.12. B € (L*(R?), L*(R?)) if and only if i € L>, where u is as in Theorem 1.11. In
particular, U is a proper function. Furthermore, |ﬂ|Lm(Rd) = |B|’B(L2(Rd))'

Proof. The “if” part follows immediately, since a bounded function g can always be used to define
an operator B € (L*(R%), L*(R?)) by Ef) = g(E; in L? the definition can be stated in terms of
Fourier transforms as here due to Plancherel’s theorem. The boundedness of B is obvious by the
same theorem, while the commutativity with translations is perhaps most easily seen investigating
them, too, in the Fourier domain and recalling that 75 f(z) = e~127% (z). Tt is obvious that the
multipliers e2™"* commute with the multiplier g(z).

Let us then assume that B € (L?(R?), L?(R?)) and u € 8* is the related tempered distribution
provided by Theorem 1.11. We define ¢o(z) := e~™12* € §; this function is useful because it is a
fixed point of the Fourier transform operator: goo = (g, as an easy standard computation shows.
(Note that we define the Fourier transform by ¢ (x fRd Y(y)e 127 ¥ dy: for other close variants
of the definition found in the literature, there ex1sts a suitable goo with the same property, as well.)

We further let f := upg = @ * @o. This is in L? by the Plancherel theorem, since (by Theo-
rem 1.11) u* g = Bypo € L2, as po € L? and B € B(L?). Finally, let g : f . Now certainly g is
a proper function (as the quotient of two functions, with the denominator strlctly positive). Our
intention is to show that g = u. As always with distributions, this is done by investigating with a
test function; due to the density of D in §, it in fact suffices to verify the claim for an arbitrary
Y € D.

Observe that also 2 2o € D, this is a property to be used in a minute. Now u(¢)) = u(po %) =
U (= (po = Jpa f%dx = Jyagt¥dz, but this is just what we went for.

It is now shown that @ = g is a proper function; all that remains is its essential boundedness.
To this end, take a ¢ € § and compute ‘gc/ﬁ‘Lz = ‘u/*\qﬁ‘m = |u*¢|p2 = [Bo|p2 < [Blyg2) |92

Since 8 is dense in L2, the inequality holds for all ¢ € L?, and this can clearly only be the case if
U=g € L>® with ||, < |B|93(L2)- It is easy to see that, in fact, the equality holds. O

We then come to the L! case.

Theorem 1.13. An operator B is in (L'(R?), L'(R%)) if and only if the related distribution u
given by Theorem 1.11 is a finite Borel measure ju. In this case, |p| (R?) = |Blgprmay)-

Proof. If u = p is a finite Borel measure, then the convolution with an f € L! is given by
pox f@) == fxp(z / f(z —y)du(y), (1.10)

and this satisfies |1 * | g 11 (a)) <[4 (R?) as is readily verified integrating the previous expression

with respect to 2 over R? and employing Fubini’s theorem to change the order of integration.
From (1.10) it is also clear that u * - commutes with translations.
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To show the converse, we take the u € 8* related to B as in Theorem 1.11. We then define

ue == u* W(-,€2), where
2
W(za) = — 5 050, (1.11)
(4ma)2

is the Gauss—Weierstrass kernel. Two properties of this kernel interest us: W(-,a) € 8 for each
a>0,and [,,W(x,a)dr =1 as is readily verified by standard computations. We also note that
W(-,€2) = W¢(-,1), where the superscript € has the same meaning as in Lemma 1.8; in fact, we
are going to use that lemma pretty soon.

We first observe that [uc|,, = [BW(-,€?)|,, < |Blgpr) |W(. )|, = Bl Thus v is
a bounded sequence in L'. We then consider L' embedded in the space of finite Borel measures
on R? (by the natural identification dv := fdm for f € L'). We know that this space of finite
Borel measures is the dual of Co(R?). As in the proof of Theorem 1.5 for the periodic case, we
invoke the Banach—Alaoglu theorem to deduce the existence of a sequence {e,}72,; with €, — 0,
for which w,, converges weakly™* to a finite Borel measure p, i.e.,

/ gue, dm — / gdu
R4 R4
for each g € Co(R?).

We claim that this p is the one we are looking for, and for this we must show that u(y) =
Joadp for ¢ € 8. To this end, we investigate ¥, := ¥ * W(-,€?) = ¢« W<(-,1). We wish to show
that 1. — 1 in 8 as € = 0. If we can do this, then the rest of the argument follows easily: We
have u(¢e) = u(yp x W(-,€2)) = u(W(-,€?) 1) = u* W(-,€2)()) and for € = ¢, the right-hand
side tends to f]Rd 1¥du, whereas the left-hand side tends to u(%)); thus these quantities are equal by

the uniqueness of the limit. (We used above the symmetry W = W to add the reflection without
altering the value.)

We hence turn to investigate the desired convergence of .. By Lemma 1.8, for D%y € Cy,
we know that D*(z) = [, D*¢(z — y)W*(y,1)dy — D*(x) uniformly. Furthermore, since

= (z—y+y)P = > <5 (g)(ac —y)877y7, we can compute

o) = [ (=i v =)W Dy + Y

0#£7<8

(f) /Rd(x ~ )77z — y)y W(y, dy.

The first term here converges to z*¢(z) uniformly in z by the same argument as before. For
the other terms we observe that y"We(y,1) = e hi(e~1y) We(y,1) = el (y?W(y,1)). Here,
yYW (y, 1) is an integrable function on R?. Denoting its integral over R? by a.,, Lemma 1.8 shows
that [o.(z — y)? ¥(z — y)(y" W (y,1))dy = a2’ 74(z) as € — 0 uniformly in z. Thus elrh
times this quantity tends to zero for v # 0. Hence all that remains in the limit is the first term,
which has the desired convergence. The convergence of 2% D). (z) follows by the same argument
by writing D% in place of ¥. Thus the convergence ). — v in § is established, and the proof is
complete. O

For certain values of p and ¢, we have a characterization of (L”(R?), LY(R?)) even simpler than
in the cases of L' and L? examined above. It turns out that all bounded linear operators from
LP to L7 commuting with translations must vanish if ¢ < p < oc. Thus the only interesting cases
with finite exponents can occur for p < ¢q. (Note that we have already found a large number of
non-trivial operators in (L', L') as well as in (L?, L?), so that one need not be afraid of the whole
work being a characterization of the zero operator.)

Proposition 1.14. For 1< q < p < oo, we have (LP(R?), LY(R?)) = {0}.

Proof. For an arbitrary but fixed f € LP, we examine the function f + 7, f. Given B € (LP, L9),
we have B(f + 7,f) = Bf + 7wBf. Then |Bf + B f|;, < |B|3(LP;LQ) |f + 7hf|,. Taking the

limit |h| — oo in the previous inequality and employing Lemma 1.10, we deduce 24 |IBf| . <
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2% |B|B(LP;L4) |fl;». Assuming B # 0 and taking the supremum over all f € L? with |f|,, <1

we obtain 27 < 2%, which is clearly false for ¢ < p; thus the assumption B # 0 resulted in a
contradiction and must be false. O

To conclude this section, we present a duality property of the spaces (LP(R?), L4(R?)).

Proposition 1.15. For p,q € [1, 00|, we have
(LP(RY), LU(RT)) = (LT(R?), LP(R7)),
and the identity mapping is an isometric isomorphism between the two spaces.

Proof. For B € (L?,L%) (p,q € [1,00]), Theorem 1.11 provides us with a unique u € 8* such that
B¢ =ux¢for all ¢ € §. Then, for ¢, € §,

[ s oridn = wn oy = (3 v) = (w60 d) = (200 6) = G@rv.) = [ @ewiods (112)

The first and last steps make sense, since by Lemma A.44, u* ¢ (similarly @ %) can be identified
with a slowly increasing function; the product of such a function with 9 € § (or ¢) is again in 8,
in particular in L'.

If ux- € (LP,L%), it follows by Holder’s inequality that

[ )ids < bl [6lr < agaoise s [6lr

Taking now the supremum over all ¢ € 8 with |¢|,, < 1 gives, by Lemma 1.9, |[u* |,z <
|us|51p,10) [¥]a for ¢ € 8. But this shows that @ - € (L7, L?) whenever u - € (L?, L), and
[T * -|B(L?;L5) < Ju -|$(Lp;Lq). The reverse inclusion and inequality follow by changing the roles
of p and ¢ with their conjugate exponents, and the proof is complete after observing that w * - is
in one of the spaces (LP, L?) if and only if 4 * - is, and the norms agree. O

Corollary 1.16. B = u - € (L®(R?),L°(R?)) if and only if u is a finite Borel measure y.
When this is the case, |u| (RY) = |Blg(poe (r)) -

Proof. This is immediate from Theorem 1.13 and Proposition 1.15. o

1.5 Notes and comments

This chapter is mostly based on Stein and Weiss [24]. Proofs of the relevant results related to the
convolutions of measures are indicated in Rudin [20].

The introduction of the modified Poisson kernel for the proof of Theorem 1.5 simplifies the
background work. The properties of this kernel which are relevant in this context are the same as
those of the actual Poisson kernel, but they are established more readily for the modified version;
the easy computations in Lemma 1.4 follow [20].

The chapter is definitely not exhaustive in the treatment of classical theorems on Fourier
multipliers. More results, for instance concerning interrelations between (LP(T¢), L4(T?)) and
(LP(R?), L4(R%)) are covered in Stein and Weiss [24].



Chapter 2

Decompositions of Banach Spaces

2.1 Introduction

In this chapter, we present an abstract framework which will guide us in generalizing the classical
multiplier theorems. We are motivated by the form of the multipliers acting on functions on the
torus: The function is first decomposed into the harmonic components, and the action of the
multiplier operator is defined separately for each of these components. In order to generalize this
idea, we now investigate ways of decomposing vectors of a Banach space X (a complete linear
normed space) into sums & = ), xj, where z; € X} and Xj are distinct subspaces of X. An
important special case of such a decomposition is the representation of a vector in terms of a linear
basis.

A well-known fundamental result in the theory of linear spaces says that every non-trivial
vector space has a Hamel basis, a linearly independent collection of vectors, such that every vector
of the space can be expressed as a finite linear combination of the basis vectors. This is a very
general result, a consequence of the very axioms of a vector space (and the axiom of choice),
and no reference to any convergence or topology is involved. However, since convergence plays a
prominent role in all analysis and since Banach spaces are not only linear normed spaces (thus
metric and hence topological spaces with a rich structure) but also complete, it should not be
surprising that the Hamel bases are not the most useful tool in this connection. In Hilbert spaces,
an even more restricted class of linear spaces, an orthonormal basis is of course desirable, but it
is clear that this concept is not as such applicable in a general Banach space.

The concept which proves to be useful is that of a Schauder basis, and its generalization, the
Schauder decomposition. A Schauder basis is a countable sequence {e,, }>°; C X, X Banach, such
that each z € X has a unique representation z = 220:1 Erep with & scalars. As a preparation
for definitions of various types of convergence of the infinite sum above and for the formulation of
various properties of these bases, we next examine some properties of series.

2.2 Convergence of series
The following definition presents the various kinds of convergence of interest.

Definition 2.1. Let {z,}32, C X be a sequence in the linear normed space X. We call the series

22021 In

1. convergent to x € X, if imy_ o0 Zgil z, —z| =0, denoted by Y " | x, = x;
X

2. unconditionally convergent, if .~ Ty(n) converges for every o € Sz, i.e., every per-
mutation of the natural numbers;

20
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3. summable to x € X, if for all € > 0 there is an Fy C Z,, #Fy < oo, such that for all
Fo CF CZy4, #F < oo, we have

IR

keF

<€
X

4. shrinking, if for all € > 0 there is an Fy C Z 4, #Fy < oo, such that for all F C Z \ Fy,
#F < oo, we have
> o

keF

< €

X
5. absolutely convergent, if the series Y .-, |Tnly of positive real numbers is convergent.

In a Banach space X, several but not all of these convergence types are equivalent. Recall that
the property that absolute convergence implies convergence characterizes completeness of normed
linear spaces. Thus in a Banach space it is clear that an absolutely convergent series is also
unconditionally convergent, since the absolutely convergent series can be permuted according to
elementary analysis. While the converse is true in the finite-dimensional setting, this is not the case
in general. For instance, let H be an infinite-dimensional Hilbert space with an orthonormal system
{en}22, C H. Then the series 3°° | aye, converges if and only if 31°° |a,|® converges, and as
this last expression is a series of positive reals, it converges if and only if each of its permutations
converges. Thus the same is true for Y, ane,. However, the series Y °  ane, converges
absolutely if and only if > ° | |a,| converges. Since sequences {a, }22, € {* — (' are abundant,
a standard example being {1152, , it is clear in this case that absolute convergence is a strictly
stronger property (and typically too strong to be of interest) than unconditional convergence. In
fact, a result by Dvoretzky and Rogers asserts that the equivalence of absolute and unconditional
convergence is characteristic of finite-dimensional Banach spaces [8]. (The discussion above shows
this in the case of a Hilbert space.)

Lemma 2.2. Let {z}72, C X, where X is a Banach space. The following statements are
equivalent:

~

. Yoheq T, is unconditionally convergent.

- Y opey @k is summable.

Y oheq Xk 48 shrinking.

< Yohey Ak is convergent for each bounded sequence {\;}3, € (X(Z).

- Y he €xxy is convergent for each sequence {€}2°, € {—1,1}%+.

D v AN L

.Y rey Ok is convergent for each sequence {8;}5, € {0,1}4+.

Furthermore, the sum of an unconditionally convergent series is independent of the permutation,
even if X is merely a linear normed space (not necessarily complete).

Proof. We first derive the uniqueness of the sum of an unconditionally convergent series from
the corresponding result for real or complex numbers. If EZ’;I T (k) converges for an arbitrary
permutation o, then so does > ;7 (2%, z,(x)) for each 2* € X*. Now, in the scalar case, the
sum must be independent of the permutation, thus (z*,Y ;" ;1)) is the same for any two
o € Sz, for all x* € X™*. Since X separates the points of X, the sum must be equal for any two
permutations.

1 = 2. Let z := Zzozl Tk, where the series converges unconditionally. We claim that
> heq xk is summable to z, and that for a given € we can take Fy := {1,...,N} for some
N. If this is not the case, then for arbitrarily large N we find a finite ¥ C Z; + N so that
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. o) .
> kerur, Tk — 2|, > €. On the other hand, since )72, z;, is convergent to z, we have, for large

enough n, that |Zk€Fo T — $|X < %e. For such n and the corresponding F and F' as above, we

have |3, xk|X > |ZkeF0UF Tp —x|X - |Zk€F0 Tp —a:|X > € — 1€ = Le. Since these consid-

erations were valid for all large enough n, we pick some n; and the corresponding finite F; and
inductively choose nj, > max Fj_; and a suitable finite Fj. Let Ny := {ng,...,ng41 — 1} and
let 0 € Sz, permute each of the N}, in such a way that the appropriate number of lowest values
ng,...,n) of Ny are mapped onto Fy, C Nj. Then the series 21311 T, (k) cannot converge, since it

fails the Cauchy criterion as the sequence of differences of its partial sums Z;llink To(k) = D ke 7, Tk
does not tend to 0.

2 = 3. This follows immediately by taking, for a given € > 0, the set Fy as in the definition
of summability. For a finite F C Zy \ Fy we then have |>, a:k|X < |Zk€FuFO Ty —a:|X +
|ZkeF0 Ty — x|X < 2e.

3 = 4. Investigate a fixed but arbitrary sequence A € £*°. By separately considering each of
the four sequences in the decomposition A\; = ||, (/\Z - A + i/,L;r — iy, ) if necessary, we may
assume, without loss of generality, that Ay € [0,1]. If the sequence in 4 is not convergent and
thus not Cauchy, we can find an € > 0 and arbitrarily large n,m such that |> ;- MeTr|y > €

Here (An,..-,Am) € [0,1]Y = conv{0,1}?V, where N = m — n + 1. Denoting by {aj}?il an
enumeration of the vertices of the hypercube [0,1]", it is then possible to express any point of
the cube (the convex hull of the vertices) as a convex combination of the vertices, in particular,

My ooy Am) = Zfil viad ie., A\, = Zfil viad for k=n,...,m, where ) € {0,1} and 7 > 0

. 2N .
with > 7, #/ = 1. Then

m 2N m ] 2N m )
<[] =[S S| <X [S
k=n X j=1 k=n X j=1 k=n X
m
< max aRT = T
ae{o’l}N Z kLk Z k ’
k=n X keF X
for a certain finite set F C {n,...,m}. Since this happens infinitely often, > 7, z; cannot be
shrinking.

4 = 5. This is trivial.

5 = 6. This follows directly, since any § sequence is obtained from a certain e sequence by
0 = %(ek + 1), and since the convergence of the series Y .-, zj is included in the assumption
5 (taking e := 1 for all k). If 5 holds, then Y77 dpzx = 307, exzp + £ 300 @, and the
left-hand side converges, since the right-hand side does.

6=1.If 21311 T, (k) is not convergent, then the sequence of partial sums is not Cauchy, and
it is not true that |Ezl:n Zo(k) |X — 0 as n,m — oc. Thus for some € > 0 we find arbitrarily large
n,m such that |Zzn:n Ty (k) |X > e. Pick Ny := {ny,...,m;y} with such n;, m;. Inductively choose
Ny := {ng,...,my} such that p; := mino(N;) > maxo(Ny_1) =: qg—1. (This is possible, since
o(n) — oo as n — oc for any 0 € Sz,.) Define a § sequence by d; := 1if j € UpZ,0(Ax) and 0
otherwise. Then ) -, §xz) cannot converge, since the differences of partial sums Z;’;pk 0jz; =
> jea, To(j) do not tend to 0.

O

In the proof of the implication 3 = 4 we obtained a byproduct, which we state as a separate
result for later reference. It is obvious that the same argument applies with [0, 1] replaced by any
interval [a, b]; furthermore, completeness was not relevant in this step.

Lemma 2.3. For A,...,An € [a,b], 1,...,2n € X, where X is a linear normed space, the

following inequality holds:
N N
Z ATk < max QR
et X acf{a,b}N et -
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Furthermore, the proof of this fact essentially relied on the obvious geometric fact [0,1]" =
conv{0,1}". This can also be viewed as a consequence of a more general result concerning convex
hulls of Cartesian products. (Note that [0,1]" = [0,1] x --- x [0,1].) We also find this a natural
place to state this result, which has some use later on:

Lemma 2.4. Let W;, i =1,...,n, be subsets of (possibly different) vector spaces. Then
conv(Wy x -+ x Wy,) = conv(Wy) X -+ x conv(W,).

Proof. If (z;)", € []_, conv(W;), then the z; are convex combinations z; = Zﬁzl Niwli of

w!* € W;. (We can choose the same N for each i, possibly after augmenting some terms with

Al =0.) We can always write the previous expression in the form z; = N [Thoy AFw],

N i J1yeenfn=1
: Jr —
since 3 _ A" =1, and thus

N n n
Y - Jk (o Jiyn )
(zi)izy = E H A (wy')isy € COHV(H Wi),
Jreemsdm=1 k=1 i=1
since obviously (any enumeration of) {TT;_; A*}N  _ is a proper set of coefficients for a convex

combination. Thus [];_, conv(W;) C conv([];_, W;).

For the converse, it is easy to see that the Cartesian product of convex sets is again con-
vex. Also, it is clear that ]!, conv(W;) D T[], W;, and it follows that ]!, conv(W;) D
conv([];_, W;), since this last expression is the smallest convex set containing the Cartesian prod-
uct of the W;, i =1,...,n. O

2.3 Schauder decompositions

We begin with the definitions of Schauder decompositions and bases, making use of the concepts
of convergence introduced above.

Definition 2.5. A Schauder decomposition of a Banach space X is a sequence D = {Dy}%2, C
B(X) of projections such that

1. DDy =0 for k #£ ¢,
2. x=Y ., Dyx for allz € X.

The operators P, = > ,_, Dy, are called the partial sum projections corresponding to D.
A Schauder basis is a sequence {e}7>, such that each x € X has a unique representation
oo
T=7 1 &ker, & € K.

A Schauder decomposition or basis is called unconditional, if the series in the corresponding
definition converges unconditionally for every x € X. The range of a Schauder decomposition is
the setran(D) := U2, ran P,,, i.e., all the vectors whose series representation in the decomposition
has only finitely many non-zero terms.

The following result gives a simple but useful characterization of Schauder decompositions.

Lemma 2.6. A collection D = {Dy}7°, C B(X) satisfying DDy = 6¢Dy is a Schauder decom-
position of X if and only if Tan(D) = X and the partial sum projectors P, are uniformly bounded.
Then the projectors Dy, are also uniformly bounded.

Proof. If D is a Schauder decomposition, then ran(D) > P,z — z as n — oo for all z € X, so
obviously ran(D) is dense. From P,z — z it also follows that |P,z|y is bounded in n for each
fixed z, and the boundedness in n of | P, |5y follows from the principle of uniform boundedness.
That Dy, too, are uniformly bounded follows from the identity D,, = P, — P,_1.
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Conversely, suppose ran(D) is dense and |P,|gx) < K for all n € Z,. To show that D is a

Schauder decomposition, we must prove that x = 21311 Dyz, i.e., that P,x — x as n — oo for
each z € X. As usual, let € > 0 be given.
By the density of ran(D), we can find z; € ran(Dy), k = 1,..., N, such that the estimate

Eszl Tk —ﬂf‘X < € = g5g is valid. Forn > N, Egil zy € ran(P,); thus P, Zgil Ty =

Thus for given € > 0 there is an N such that for all n > N we have [P,z — 2|y < €, but this is
just what we went for. O

Zgil zr. We then compute

|Prx — 2|y = <(K+1)eg =e.

X

From the similarity of the definitions of a Schauder decomposition and basis, one might suspect
that they have something to do with each other. The following lemma verifies these suspicions
by showing that Schauder bases are essentially a special case of Schauder decompositions with
dimran(Dy) = 1.

Lemma 2.7. Let {X}}72, be a collection of closed linear subspaces of a Banach space X . If each
z € X has a unique representation T = 212021 x with xy, € Xy (ie., X = @,20:1 Xy is a direct
product of the subspaces Xy ), then {Dy}¢2, defined by Dyx := x is a Schauder decomposition
of X.

Conversely, if {Dy}32, is a Schauder decomposition, then X}, := ran(Dy) defines a sequence
of subspaces as in the first assertion of the lemma. The correspondence is one-to-one.

Proof. Once the existence parts are shown, the uniqueness is obvious from the statement. The
first assertion is the interesting part of the lemma, since the converse statement is almost trivial:
For projections Dy, ran(Dy) is closed, and the series expression for z is of course given by the
Schauder decomposition x = 21311 Dyx. If there is another expression 21311 zp = x, then Dyx =
D¢y 7l Dyxy, = Y pey DeDyxy, = Dyxy = x4, ie., 2/ is uniquely determined by z. Above we
used the boundedness of D, to bring the operator inside the sum, together with the projection
property Dyxy = xy, for zp € ran(Dy), and finally the property 1 of Schauder decompositions.

Clearly the Dy defined as above are linear and satisfy the properties 1 and 2 of a Schauder
decomposition, so it suffices to show that the Dy are bounded. As in the proof of Lemma 2.6,
we do this by first investigating the partial sums. Let us thus define a new norm on X by
]l x = suppez, [>jy Tkly. Since lim, o0 [32)_, 2kl = |2]x, we see that for each 2 € X,
2]y < |lz|lx < oo. Now the identity mapping I : (X, ||-||x) = (X,||x) is a bounded linear
bijection. If we can show that X with the new norm is a Banach space, then it follows from the
open mapping theorem that the inverse I~! is also bounded, and thus the two norms are equivalent.
Once this is established, we know that |37, Dyz|, < |lz]|y < C|z|y and the boundedness of
D,, follows by considering the difference of two partial sums as in the proof of Lemma 2.6.

For the completeness, let || — 2|y — 0 as n,m — oo. Then

N
> (@ —ap)

k=1

—0asn,m— o (2.1)

X

uniformly in N. By considering the difference of (2.1) as such and with N — 1 in place of N, we
deduce that |z}, — 27|y — 0, where {2} }72; C Xn. As a closed subspace of the Banach space
(X, ]| x), Xn is itself a Banach space, and so the Cauchy sequence converges: z%, — =, and this
holds for each N € Z,. Letting n tend to oc in (2.1), it follows that chvzl(x,’f — ) L 0 as

m — oo uniformly in N. Since Y, | 2} converges for each m, it follows that )7 | 2) converges
to the limit of the Cauchy sequence investigated. O
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The result concerning the new norm ||-||y, which was the essential ingredient of the proof of
Lemma 2.7 appears interesting enough to be stated on its own. After doing this we proceed to
some corollaries.

Lemma 2.8. Let {D;}{2, be a Schauder decomposition of the Banach space X. Then the new

norm

n

E Dkac
k=1

]l = sup
nesy

X

is equivalent to |-|x.

Corollary 2.9. For a Schauder basis {e;}72,, there is a Schauder decomposition {Dy}72, with
ran(Dy,) = span(ey,) and Dyx = Epeg for v =Y po Ekex. For a Schauder decomposition {Dy}2,
with dimran(Dy) = 1 for each k, there exists a Schauder basis {ex}2, such that 0 # ey, € ran(Dy,).
The correspondence is one-to-one, up to scaling of the basis vectors ey,. If the basis is unconditional,
so is the decomposition, and vice versa.

Proof. Since span(ey) is a closed subspace, the unconditionality part is the only thing not dealt
with in Lemma 2.7. However, this is also immediate, since the definition of unconditionality simply
requires the unconditional convergence of the same series in both cases. O

Knowing the relation between Schauder bases and decompositions, we can state an analogue
of Lemma 2.6 to give a useful criterion for a sequence to be a basis.

Corollary 2.10. A sequence {e;}32, C X of non-zero vectors is a Schauder basis of X if and
only if span{er }3° , is dense and there is a constant K such that

n m
kaek <K kaek (2.2)
k=1 X k=1 X
for all integers m > n > 1 and all scalars &, k=1,....,m.

The smallest possible constant K is called the basis constant of {e;};2,. If K =1 (obviously,
it cannot be less), then the basis is said to be monotone. For instance, each countable orthonormal
basis of a Hilbert space is monotone. Another example will be given in Example 3.1.

By definition, span{e;}°, is always dense in its own closure. If {e;}{2, is a basis of this
closure of its linear span, then {e;}72; is called a basic sequence, independently of whether
span{e;};>, = X or not. Dropping the density requirement from the assertion of Corollary 2.10,
it also gives a characterization of all basic sequences {e}2, C X.

Proof. If {e,}$2; is a Schauder basis, let D be the corresponding decomposition. We know from
Lemma 2.6 that span{e;}72, = ran(D) is dense and (2.2) is a direct consequence of the uniform
boundedness of the partial sum projectors P,.

To prove the converse, we first note that it follows from (2.2) that the e, are linearly inde-
pendent. Indeed, suppose F' C Z is finite and & # 0 for some k£ € F. Let p € F be the
smallest number with this property, and set & := 0 for k ¢ F. Then we have |Zk€F fkek|X =

?za)l(kaek X > K~ |ZZ:1 £kek|X =K' |€k] |ek|X > 0.

Thus every = € span{ej};, has a unique representation z = > ,* , ey for some m € Z4
and scalars &, k = 1,...,m. We then define Dyx := &ey if £ < m and 0 otherwise. We want to
show that D := {D}}¢2, is a sequence of operators satisfying the conditions of Lemma 2.6. On
span{ey}32,, Dy D¢ = dp¢ and the sum operators P, := Y}, Dj, are uniformly bounded by the
assumption (2.2). Thus D,, = P,—P,_ are uniformly bounded as linear operators on span{e; }3° ;
and they can be extended to uniformly bounded linear operators on Span{e;}7>; = X. The same
conclusion follows for P,. Lemma 2.6 then shows that D is a Schauder decomposition of X; thus
{er}72, is a Schauder basis by Corollary 2.9. O



26 CHAPTER 2. DECOMPOSITIONS OF BANACH SPACES

Example 2.11. The sequence {t*}2°  is linearly independent and dense on C[0, 1] with supremum
norm, but not a basis.

Thus the linear independence of a dense sequence does not guarantee that it is a basis. We
saw in the proof of Corollary 2.10 that the condition (2.2) implies linear independence of {e;}%2 ;.
By the same Corollary, this example shows that the converse is not true.

Proof. The linear independence of {t¥}2 is obvious, since a polynomial of non-zero coefficients
does not vanish identically. The density follows from Weierstrass’ approximation theorem. How-
ever, only a real analytic (in particular, infinitely differentiable) function f has a convergent power
series representation f(t) = 3 .-, axt’, whereas continuous non-differentiable functions on [0, 1]
are abundant. O

Next we describe some alternative characterizations of unconditional Schauder decompositions
(thus by Corollary 2.9 also of unconditional bases). Lemma 2.12 is closely related to Lemma 2.2
above. For compactness of notion we introduce, for each A € £>°(Z,.), the operators

TAZDME = Z)\ka.’E. (23)
k=1 k=1

If D = {D}{2, is an unconditional Schauder decomposition, this is well-defined for every z € X
by Lemma 2.2(4), i.e., the series on the right is convergent. For any Schauder decomposition (not
necessarily unconditional), the definition is valid for z € ran D. The operator T} in (2.3) is, in
fact, the first example of abstract multiplier operators, many more of which will be encountered
in the sequel.

As a corollary of Lemma, 2.12 below, we obtain the first abstract multiplier theorem.

Lemma 2.12. Let D = {Dy}72, be a Schauder decomposition of the Banach space X. Then the
following statements are equivalent:

1. D is unconditional.

o

The family {T5}6e{0 1+ of operators on ran D is uniformly bounded.

o

The family {Tx}xee~(z,) of operators on ran D is uniformly bounded.
4. The family {TE]»Ee{f1 1+ of operators on ran D is uniformly bounded.

Proof. 1 = 2. Now that unconditional convergence is assumed, the operators Ts are well-defined
on all of X. The uniform boundedness is established by repeated application of the uniform
boundedness principle, the first goal being the boundedness of each Ty itself. We first consider the
partial sum operators T defined as the nth partial sum of (2.3). Then clearly each T3 is bounded
as a finite sum of bounded operators Dy. Furthermore, Tz — Tz for each z € X; thus |T'z|
is bounded for every x € X, and the principle of uniform boundedness implies the boundedness
in n of |T5”|B(X). Then the strong limit T is also bounded.

Now from the fact that Y 77, z; is shrinking (Lemma 2.2(3)) it follows that for sufficiently
large N, the finite set Fp corresponding to a given e > 0 satisfies Fy C {1,..., N}, and thus for any

finite F' C Z4 + N we have |Zk€F Dkx|X < €, thus Z/JcM:NH O Dy . < e for any M > N, and

eventually |E;’;N+1 6kaar|X < e. A combination of assumption 1 and Lemma 2.2(6) yields that
this series converges. Now each T is a sum of two operators 13" + S§', where T is the nth partial
sum as above and S§ is the rest. We just saw that the S}z are all bounded in § for a fixed z and
a large enough n. Fix such an n and observe that there are only finitely many different operators
T3 (indeed, 27, one for each 6 € {0,1}"). It then follows that |T5z|y is uniformly bounded in
0 for a fixed z, and one more application of the uniform boundedness principle shows that the
operator norm |Ts|5 y is bounded in 4.
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2 = 3. By using the decomposition \;, = |\, (A} — Ay +1iu) —ip, ) if necessary, we may
assume )\, € [0,1]. For ran(D) 3 = = Y_,_, Dyx), we apply Lemma 2.3 to deduce |Th\z|y =
1> ket AeDrz|y < maxseqoiyn [Yopoy OkDrly = |Tsz|x < Clz|y, where the last inequality
follows, of course, from the assumption 2.

3 = 4. This is trivial.

4= 1. Now |> )L, exDpx|y <C |3, Dpx|y — 0asn,m — oo, since Y~ Dyx converges.
Thus the sequence of partial sums of Y ;- €, Dz is Cauchy and hence convergent for any € €
{-1,1}%+. By Lemma 2.2(5), this is equivalent to the unconditional convergence of Y ;- € Dyx.

O

Remark 2.13. 1. An equivalent statement to the conditions 2 to 4 of Lemma 2.12 is to say
that there is a C' > 0 such that

<C (2.4)

n n
PRLE > @
k=1 k=1

for z, € ran(Dy), k=1,....n, for alln € Z and € € {—1,1}2+, and similarly with § and
A replacing €. The smallest C for which (2.4) is valid is called the unconditional constant
of D and denoted by Cp.

X X

2. Since by Lemma 2.12 the validity of (2.4) implies unconditionality of the Schauder decom-
position D, the series involved in (2.4) with xy, := Dyx are convergent for any x € X. It is
legitimate to pass to the limit n — oo to deduce the same inequality for infinite series.

3. By substituting exxy in place of zy, in (2.4), it follows that the inequality in fact is two-sided:
n n n

D] <> enm >

k=1 k=1 k=1

Now we state the first abstract multiplier theorem. This simple result will be exploited in
deriving more powerful theorems in the sequel.

c! < <C

X

, €, ==1, =z €ran(Dy). (2.5)

X X

Corollary 2.14. If D = {Dy}32, is an unconditional Schauder decomposition of the Banach
space X, then the operator Ty defined by (2.8) is bounded, i.e., T\ € B(X), if and only if X € £°.

Proof. The “if” part is already included in Lemma 2.12(3) and Remark 2.13(2). To show the “only
if” part, take A ¢ > and pick a sequence {kj};“’:l C Z such that |/\k].| — oc. Finally take
Tg; € ran(DkJ.) normalized to unity norm and conclude that |T>\a:kj |X = |)\kja:kj |X = |)\kj | — 00,
thus T\ is not bounded.

We conclude this section with a simple construction to yield new Schauder decompositions of
X from existing ones.

Definition 2.15. Let D = {Dy}{2, be a Schauder decomposition of the Banach space X, and
{ni}32, C Z4 be a strictly increasing sequence. Then the sequence D' := {D}}%, of operators
defined by D), := > * 11 D¢ is called a blocking of D.

=Nk —

It is easy to verify that a blocking of a Schauder decomposition is again a Schauder decompo-
sition. Furthermore, the blocking is unconditional if the original decomposition is.

2.4 Notes and comments

This chapter mostly follows the presentation in Hieber and Priiss [8] and in Witvliet [28]. A
number of results have also been taken from James [11].

Bases of Banach spaces have been studied for quite a long time. James’ paper contains more
classical theorems concerning this subject than we have cited here. The notion of unconditional
convergence, according to Hille and Phillips [9], dates back to the work of Orlicz in 1933.



Chapter 3

Randomized Norms

3.1 Introduction

We now introduce some probabilistic aspects to the analysis of Schauder decompositions. These
pave the way for the extremely important concept of R-boundedness that will be used later on.
Recall that R stands for “randomized”. Furthermore, the randomization concepts help us in
describing some relations between a Schauder decomposition D = {D;}7°; and the collection
of dual operators D* := {D;}72,. This gives us an abstract framework for powerful duality
arguments, which are often fruitful in applications, since many of the most common operators of
analysis have either a self-adjoint or a skew-adjoint nature.

Of particular interest will be independent, identically distributed, symmetric {—1, 1}-valued
random variables on a probability space (2,F,P), i.e., a measure space (any set) ) with a o-
algebra § C 2% and a probability measure P : § — [0,1]. These will be denoted by ¢y, k € Z,
and referred to as the Rademacher functions. Such random variables are of course abundant,
a standard example being 7 (¢) := sgnsin(2¥nt), k € Z4, on Q = [0, 1] with P = m, the Lebesgue
measure and § = M0, 1], the corresponding o-algebra of measurable subsets of [0, 1]. (Sometimes,
the name of Rademacher is only used for the particular functions 7. We will use the name for all
independent, identically distributed, symmetric {—1,1}-valued random variables; usually, we are
only concerned about the joint distribution and not the “internal structure” of the functions.)

For a sequence 1, ...,2, € X, the randomized norm |y} _, skxk|Lp(Q;X) will be of interest.
Here LP(Q); X) is the space of all §-measurable functions f : @ — X whose pointwise norm is
integrable in the pth power. A more detailed account of vector valued integration is given in the
Appendix, Section A.2; in the present context, however, this is hardly needed: Observe that the
randomized norms |y °,_; exxkl,, (@.x) only involve simple functions (and in fact norms of such

functions), so only a naive idea of integration is required; indeed

Substituting ez in place of zy, in this equation, € € {—1,1}", and observing that the summation
on the right is thereafter over exactly the same values (possibly in a different order), we find that
the randomized norm remains invariant under such transformations; explicitly

n
E ET

k=1

i
n p p

Zsk(w)xk

k=1

Z kT

k=1

(3.1)

dIP(w)) = 2% >

X ne{-1,1}n

LP(Q;X) X

n

E €LEKTE

k=1

LP (O X) LP (9 X)

In probabilistic language, this illustrates the fact that {exer}}_; and {ex}}_, have identical joint
distributions. (The argument above applies to any function of the e and not just to the random-
ized norms considered.)

28
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A simple property of the Rademacher functions, which relates them to the context of Schauder
bases, is the following;:

Example 3.1. For z;, € X \ {0} and € Rademacher functions on Q, {e,x,}52, is a monotone
basic sequence in LP(2; X), p € [1,00).

Proof. Applying the triangle inequality, we find that

n 1 n 1 n n+1
kaﬂﬁk < 5 kaﬂck + Tt + 3 kaﬂck — Tn41 = Z EkTk )
k=1 LP(;X) k=1 LP(Q;X) k=1 LP(Q;X) k=1 LP(Q;X)

where the last equality follows from the fact that e,4; attains both of the values 1 and —1
with probability %, independently of the other e. The assertion, i.e., the inequality (2.2) with
er = ez and K = 1, follows from the previous computation by iteration, and observing that the
same computation is valid with z; replaced by &gxy.- O

3.2 Randomization and duality of decompositions

We now give the first result, an easy consequence of Lemma 2.12 and Remark 2.13, concerning
the relation of randomization and unconditionality.

Lemma 3.2. For a Schauder decomposition D = {D}32, of a Banach space X, the following
conditions are equivalent:

1. D is unconditional.

2. For every p € [1,00) there exists a Cp, > 0 such that
n
>
k=1

for all ), € ran(Dy), k € Z4+ and alln € Z.

n

C;l < Scp

LP(Q;X)

(3.2)

n
EkTE E Tk
k=1 k=1

X X

3. There exists one p € [1,00) and some Cp, > 0 such that (3.2) holds.

Proof. 1 = 2 follows by observing that, for a fixed w € , (2.5) is valid with ¢ := e(w) (by
Lemma 2.12 and Remark 2.13) and integrating the pth power of this inequality over 2 with
respect to P, recalling that P(2) = 1 for a probability measure.

2 = 3 is obvious.

3 = 1. Here we use the fact that, for a sequence {e,}2°, C {—1,1}7+, the joint distributions
ofey,...,en and €161, . . ., €xéy are identical. Thus, writing the inequality (3.2) with ez in place
of zy, it follows that

= Cp
LP(2;X)

<
LP(Q;X)

n n
Z EkTE E T,
k=1 k=1

Thus the operators T, on ran(D) (defined by (2.3)) are uniformly bounded by [Te|g x) < C? for
€ € {—1,1}%+, and the claim follows from Lemma 2.12(4), O

X X

In Lemma 3.2 we saw that the value of the exponent p in randomization was quite irrel-
evant. This is an example of a more general phenomenon related to the randomized norms
1> ret skxk|Lp(Q.X). In fact, the inequality of Khintchine and Kahane states that

n n
E EkTk E EkTk
k=1

k=1

S K‘]vp
La(;X)

(3.3)

LP(Q:;X)
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for some constant K, , depending only on p,q € (0,00), in any linear normed space X. In the
present work we are mainly concerned about exponents p in the range [1,00). The inequality
is trivial for ¢ < p, with K,, = 1, since the L” norm on a probability space is an increasing
function of p by Jensen’s inequality. We will prove the Khintchine-Kahane inequality for ¢ > p in
Section 3.3.

Motivated by Lemma 3.2 and the Khintchine-Kahane inequality, we give the following defini-
tion akin to the unconditionality of a Schauder decomposition, but concerning a general sequence
of bounded linear operators.

Definition 3.3. A sequence {Ry}72, C B(X), X Banach, is called a random unconditional
if for some p € [1,00) there exists a Cp, > 0 such that

n
E EkRk.T
k=1

<G
LP(2;X)

(3.4)

n
Z Rkél?
k=1

b'¢
forallx € X andn € Z.

Remark 3.4. 1. It follows immediately from the Khintchine—Kahane inequality that the con-
dition (3.4) of random unconditionality holds for all p € [1,00), if it holds for one.

2. From Lemma 3.2(2) it follows that every unconditional Schauder decomposition of X is a
random unconditional on X . However, it suffices that D is merely an unconditional Schauder
decomposition of Tan(D); indeed, then (3.4) holds for all x € ran(Dy), in particular for
Tz = 2?21 Dz, where © € X is arbitrary, and thus, after simplification, also for x.

We then give the first result concerning the dual D* of a Schauder decomposition.

Lemma 3.5. Let D = {D;}7°, be an unconditional Schauder decomposition of the Banach space
X. Then the dual D* := {D}}32, is an unconditional Schauder decomposition of Tan(D*) with
the same unconditional constant Cp. The closure here means closure in norm.

In particular, D* is a random unconditional on X*.

Proof. From Lemma 2.12 and Remark 2.13 it follows that the operators T, € B(X) are uniformly
bounded by Cp. Then

(Trx*,z) = (2", M.x) = <x ,Zekaa:> = nl;rrgo <x ,Zekaa:>

k=1 k=1
n oo
= lim ZekD,’;z*,z =: w*—g exrDiz™ .z ),
n— oo
k=1 k=1

where the last equality simply defines the weak* series. Thus T = w*-).;~ e, D;. Now D} €
B(X*) and (D;Djz*,x) = (*,D¢Dyx) = 0 for k # £ for all x € X; thus D;D; =0, k # £. It
is then clear that D* is a Schauder decomposition of Tan(D*). Furthermore we have the simple
estimate [(T7z*, 2)| < |27 y. |Tez|x < Cplz*|x. 2] x; thus |T7|4 . < Cp uniformly in e. The
unconditionality of the decomposition then follows from Lemma 2.12(4), and the fact that D* is
a random unconditional from Remark 3.4(2). O

Both the assertion of the previous Lemma and its proof were quite trivial, consisting only
of some rather obvious identities. If X is reflexive, however, it follows, as will be shown in
Corollary 3.6 below, that D* is a Schauder decomposition of all of X*. This conclusion is not
generally valid if the reflexivity is given up, as the following example demonstrates: Let X = ¢! and
D the Schauder decomposition corresponding to the standard (Schauder) basis {e; } 72 ;, where the
kth coordinate of ey, is 1, all others being 0. The unconditionality of this basis can be demonstrated
in various ways, for instance by Lemma 2.12(3) using the fact that (¢1)* can be identified with ¢>°
in the obvious way. However, £°° is not separable and thus cannot have any countable basis.
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Corollary 3.6. If X is a reflexive Banach space and D is an unconditional Schauder decomposi-
tion of X, then D* is an unconditional Schauder decomposition of X*.

Proof. By Lemma 3.5 it suffices to show that the closed subspace Tan(D*) is all of X*. If this
is not the case, then the Hahn—Banach theorem implies the existence of a non-zero z** € X**,
which vanishes on all of Tan(D*). Since X is reflexive, 0 = (z**,2*) . = (2*, )y for some 2 = X
and all z* € tan(D*). For arbitrary z* € X*, D;z* € ran(D*), and substituting this in place
of z* above we have 0 = (z*, Dyx) for all z* € X*. It follows that Dysz = 0 for each ¢; thus
z =3 ;o Dyzy = 0, but this is a contradiction, since we assumed z** (which was identified with
x in the obvious way) to be non-zero. O

Lemma 3.7. A Schauder decomposition D of a Banach space X is unconditional if and only if
both D and D* are random unconditional.

Proof. The “only if” part follows directly from Lemma 3.5 and the fact that any unconditional
Schauder decomposition is a random unconditional. For the converse, our intention is to apply
Remark 2.13(1), but to do so, we must make some preliminary computations. We first observe

that
<x*,kam>‘ = <x*,isk(w)Dk isl(w)Dw>‘
k=1 k=1 =1
= ‘<i sk(w)Dzm*,isg(w)Dw>
k=1 =1

We integrate over ) with respect to P and invoke the Cauchy—Schwarz—Bunyakovsky inequality

n

Zsk(w)D,’;x*

k=1

isz(w)Dlm

(=1

<

X* X

to obtain
n n n
‘<$*,ZDME> < ZEkDZQIZ* ZE{D{QE
k=1 k=1 L2(Q;X*) =1 L2(9Q:X)
n n
< (s ZDZ.T* ZE{D(Q? ,
k=1 x= le=1 L2(Q:X)

where we used in the second inequality the fact that D* is a random unconditional. Then exploit
the assumption that D is a Schauder decomposition via Lemma 2.8 to deduce

‘<zn:D,’;m*,x>‘ = ‘<m*, z”: Dka:> zn:Dka:
k=1 K=1

k=1
for some K > 0. The notation of Lemma 2.8 was used in the second to last step, recall that
lzllx = sup,ez, |> %=1 Drwr| - The last inequality is the essential content of that Lemma.
This last computation shows that [>,_; Djz*|,. < K |z*|y. and we may use this in the earlier
inequality to finally obtain, after choosing z* of unity norm so as to make the pairing of Y_,_, Dy
and x* equal to the norm of the first quantity,

zn: Dkﬂf
k=1

< a7 e <t xe el x < K27k

X

T,

< KCy
X

zn: E[.Dkilf

=1

L2(QX)

Using this last result, it is straightforward to verify the condition of Remark 2.13(1):

ikakl' iekskax zn:Ekaw kax
k=1

k=1 k=1 k=1
In the last two steps we used the fact that exep, and g5 have the same joint distribution, and the
random unconditionality of D. O

< KCj
L2(%X)

< KC» = KC»

X L2(9;X) b's
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3.3 Equivalence of randomized norms

We already saw in Lemma 3.2 an example of the phenomenon, where the randomization by
Rademacher functions makes different L? norms equivalent. We also indicated the wider generality
of this effect and formulated the Khintchine-Kahane inequality, which was applied to deduce the
independence of the property of random unconditionality (Definition 3.3) on the exponent p in
the definition. There will be other, more significant consequences later on. This section is devoted
to justifying this important inequality. In fact, we prove a more general result concerning norms
of Rademacher chaoses, by which we mean expressions of the form

S Y ]l

k=0 #I=k i€l

n
:ilfq)—f-)\ E Tigi+ ...+ A E Tiy,...in€i1 """ Eip +...+)\n$1’m’n61"'6n,
3 1§i1<...<ir§n

where Z#I:k indicates summation over all I C {1,...,n} having exactly k elements, and ¢; are
Rademacher functions. The z; (note that they are indexed by sets I) are vectors of a linear
normed space X. (One could guess from the form of the Khintchine-Kahane inequality (3.3)
that no completeness is involved. Indeed, the inequality is of essentially algebraic (as opposed to
analytic) nature as the integrals reduce to the summations (3.1).)

We start with a lemma concerning real variables only; nevertheless, it already contains the
essence of the matter.

Lemma 3.8. Forz,y € R, 1 <p < g < oo and ¢ a Rademacher function, we have
p—1

T+ p £y
q—1

Proof. We start with some simple reductions. Since A := 4/ % < 1, it is clear that the inequality

<lz+eylnq)-
La(Q)

holds if z = 0 or y = 0. Otherwise, dividing both sides by z, the inequality reduces to the case
x = 1; i.e., we need to prove

1 q
(5 +11-219) <

(z0+ar+n-um)". (35

Consider first the case 1 < p < ¢ < 2 and |y| < 1; symmetry of y and —y in the inequality
allows us to assume 0 < y < 1 without further loss of generality. Now |+Ay| < 1, and thus the
left-hand side of (3.5) attains the form (omitting the exponent %)

S+ (1)) = §<>A73+Z<> - i( >)\2ky2k

with an absolutely convergent power series.

An estimate concerning the binomial coefficients in the previous expression is now in order.
We claim that (,}) 2= bl < 2(,)- For k=1, this says that 1 < 1. To make an induction it suffices
to show that (¢ —2k)(q —2k—1) < (p—2k)(p— 2k — 1) for k > 1; the left and right-hand sides of
the next member in the sequence of asserted inequalities are obtalned from the previous one after
multiplying by these quantities (and the common factor 1/(2k + 1)(2k + 2)). This last inequality
is true, since the derivative f'(x) = 2z — (4k + 1) of f(z) := (x — 2k)(x — 2k — 1) is negative for
x <2< 2k + 3; thus f(q) < f(p) for p< g < 2.

Using this estimate, it now follows readily that

(£ < E5)

Qs

— [ p
2k
+; <2k>y :
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the last step being the easy inequality (1 + z)" < 1+ rz for x > 0 and r = % € (0,1]. The
first step should be clear by the estimate for the binomial coefficient after recalling that A2 =
(p—=1)/(qg—1) € (0,1].

Thus, for 1 < p < ¢ < 2, we have proved (3.5) for |y| < 1, and the case y = £1 follows by
continuity. If |y| > 1, then

0>(1-y?)A-XN)=(1+y22N2£2y0) - (N + 9> £29)) = [T y\]* — [y £ \[*;
thus |1 £ yA| < |y||1+ A/y| and

1

q

(G nal 1= 20)) " <1l (5024 Awl 41117019
<ol (G + 1P 1= 3) " = (G171 -1)) "

We used the inequality (3.5) for the case |y| < 1 for 1/y in the second to last step.

Now (3.5) is proved completely in the case 1 < p < g < 2. The case 2 < p < ¢ < oo will be
established by a duality argument. Once this is done, the assertion is completely proved; indeed,
the case 1 < p < 2 < ¢ < oo then follows by joining the inequalities for (p,2) and (2, q).

For the duality argument, observe that the inequality of the lemma asserts the contractivity
of the (linear) operator T': L9({—1,1}) — LP({—1,1}), which maps a function taking the values
x 4y and z — y into one taking the values x + Ay and z — Ay. (We consider the set {—1,1} with
the symmetric probability measure ¢, ¢{#1} = }.) One can easily verify that the operator T
described can be represented as

T () = /Q F(©ds(e) + A /Q £ ()ds(e) 1.

where Q := {—1,1}. Furthermore, for f € L? (thus Tf € L?) and g € LP (p is the conjugate
exponent of p, % + % = 1),

.9 = [ Trongtmisen = | ( [ 1@ +a [ f<e>ed<<e>-n) 9(n)de(n)
-/ ( [ swasm + [ gtmastn ) f()ds(e) = (Tg. f).,

ie., T* = T (in the sense that the two operators have the same formula given above). The
contractivity of T implies contractivity of 7%, and thus T* is a contraction from LP({—1,1}) to
L7({-1,1}), where 2 < g < P < oc when 1 < p < ¢ < 2 (and the conjugate exponent mapping is a
bijection between the two ranges). Thus we have proved the assertion for the remaining exponents,
and the proof is complete. O

Now we do the same in an arbitrary linear normed space X.

Lemma 3.9. For z,y € X, X a linear normed space, 1 < p < q < oo and € a Rademacher

function, we have
p—1
T+ b €y
q—1

Proof. We need only minor manipulations to reduce the new assertion to the real valued case

<lz+eylpeo;x) -
La(2;X)
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already proved; we again denote A := ,/f}’%}, and alsouw:=z+y,v:i=a—y:

1 q

(G024 2t +1e = i)
C(1f]1+A 1- )
-G {R e+ e

{(%(Iulx +Jolx) + S (fulx |U|X))q + G(Iulx +1olx) = S (fulx - Ile))q})é
1
2

B 1—A 1+ X
5w+ ey

{(0ulx +1e10+ 3tud = 1010)) + (Ful + bl = 3ulx ~ bl0) )

1
= (5(|x +ylx + 1z - ylﬁ’())

P

The first inequality was simply the triangle inequality, the second being the real valued version
of the present lemma in Lemma 3.8. O

Next comes the deep result. The proof will essentially be based on the idea of breaking the
expectation of a function of independent random variables into expectations with respect to a
smaller number of variables at a time. This fundamental idea of conditional expectation will be

treated more thoroughly in Section 5.2. Here we only deal with simple functions, so a naive idea
is sufficient: If € := (g;)7!, is a finite sequence of Rademacher functions, &’ := (¢;)_, and ¢ is a

i=1
function of n + 1-sequences, then

BAE) =g . 0

ce{—1,1}n+1

zzin > (é > d)(e’,enﬂ)) = E (E (¢(c',ent1)| €))

ele{—1,1}n ent1€{—1,1}

= % Z (2% Z ¢(€/75n+1)) ::E(E(¢(5/,5n+1)|5n+1)).

engp1€{—-1,1} ee{-1,1}n

We have here introduced the notion of conditional expectation with the naive meaning of “taking
the expectation with some variables held constant”. This is fully sufficient when dealing with simple
functions. Recall that the expectation is just the integral over the probability space; this is related

1
to the randomized norm notation adopted earlier by [32}_; exk| (. x) = (Bl oy exrlh)” -
Now for the chaos inequality:

Proposition 3.10. In a linear normed space X, the Rademacher chaoses obey the law

n

k n
S(E5) Tallsl <X X alls
i—o V4 #I=k G€l {4 x) k=0#I=k i€l |1, q.x)

forl<p<q<oo.

Proof. We have already proved the case n = 1 in Lemma 3.9. We assume for induction that the
assertion is valid for some n > 1. The proof consists of showing that the assertion then holds for

n + 1 in place of n. We again denote A := ,/ 2’%}. It is also worth making the simple observation

that each I C {1,...,n+1} either satisfies I C {1,...,n},orI 3 n+1land I\{n+1} C {1,...,n}.
We denote Z,, := {1,...,n}. For notational convenience only in this proof, we will use the special
expectation symbols E' :=E(-|ep41) and E,q1 :=E(:|€1,...,&,). These symbols emphasize the
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facts that E,41 is the expectation when the random variable €, varies and the others are held
constant; E' works the other way round. Now comes the induction step:

ay\ 5 q :
n—+1 n
k _ k )
- n
E Z)\ Z xrr H&, E Ent1 A Z (1‘1+)\6n+11‘w{ +1})H61
k=0 #I=k iel k=0  #I=k iel
I1CZip 41 X ICZy x
1
_ _a\ @
n AN
v k
<|E jEups Z)\ Z ($I+6n+1$1u{n+1})H6i
| k=0  #I=k i€l ||
- P 1
n q q P
/ k
< | Entr |E A (z1 + Ent1ZT1Ugn+1}) Hfi
k=0  #I=k i€l |y
P1E\>» PN 2
n n+1
< | EBogr |E (w1 +5n+1$1u{n+1})H5i =|E Z Z JKIHEi
k=0 #I=k iel k=0 #I=k iel
ICZn x I1CZ 41 x

The first inequality was the case n = 1 of the assertion (i.e, Lemma 3.9) and the third the
induction assumption. The second inequality used a simple consequence of Minkowski’s integral
inequality, for % >1,

{ [ ([ r@ode...0) Cia (,7)}
< { [ ([ oo ..o) : dLEHH(C)}% |

where L., ,, :=Po E;il is the law of the random variable €,11, and the joint law is defined as
usual by L, o, = Le X...x L. . (The fact that the expectations and conditional expectations
can be computed by integrating with respect to the joint laws under very general circumstances
is a deep result in the theory of product measures. In the present context involving only simple
functions, the result is easily verified without resorting to these theorems.)

The proposition is now proved. O

Pl
ap

Corollary 3.11. In a linear normed space X, the following inequalities are valid for

X = E Tiy,..in€is " Eins

1§i1<...<ir§n

where x;, .5 € X for 1 <i; <...<i, <n, and €; are Rademacher functions, i =1,...,n:
g—1)\%
1X| Lo x) < o1 1%| £ 0 x) for l1<p<g<x (3.6)
2
X[ 200, x) < exp r(; = 1)) Xl x) for  0<p<2 (3.7)

Functions of the form of X are referred to as homogeneous Rademacher chaoses. We should
note in (3.7), that the constant 2 has no deeper meaning than the fact that the computations are
simplified by this choice. What is relevant to us, is the fact that we obtain the inequality for p in
an open interval starting from 0 and extending beyond 1.
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Proof. For (3.6), set xy := 0 for #I # r in Proposition 3.10. We will derive (3.7) from (3.6).
We choose a ¢ > 1 and compute

-1

CEOHCERSN

P _ i
b q

E(%%) = B 1205 ) < @25 (B(2S 7))

Since p < 2, 2(1'1%1” > 2{1‘1_—_12 = 2, and we can apply (3.6) of the corollary to deduce

- 2g—p g—1
=P 9=2 12g9—pg—1

2 N7 (2-p B 2 )2t T
(0xh) " < (222-0) CER) .

Moving the factors with E(|f£|§() to the left-hand side of the inequality and raising both sides to
the power of %, we obtain

B I=

(mxR0)" < (1+ j%ﬁ’)%w) CEIS

In the limit ¢ — oo, the coefficient tends to exp (%(2 — p)), but this is just what we wanted to
prove. o

Corollary 3.12 (Khintchine—-Kahane inequality). For 0 < p,q < oo, there ezist finite con-
stants K, , so that, in every normed linear space X,

n n
Zﬁkl‘k S qu Zska:k
k=1 La(2;X) k=1 LP(Q;X)
for all z;, € X, and all Rademacher functions e, k=1,...,n.

If X is also complete (i.e., a Banach space), and the series Z,;“;l EpTy converges in one of
the LP norms, then it converges in each of these norms and the inequality above also holds with n
replaced by oo.

This says that in the linear span of constant vector multiples of the Rademacher functions, all
LP norms, 0 < p < oc, are equivalent. Strictly speaking, |-|LP(Q;X) with p < 1 is not a norm, but
the previous statement is nevertheless true with the obvious interpretation.

Proof. For ¢ < p, Jensen’s inequality shows the claim with K, , = 1. For 1 < p < ¢ < oo,
this is a special case of (3.6) in Corollary 3.11 with » = 1, and we can take K, = 1/%. For
0<p<1landp< q< oo (or actually 0 < p < 2, but part of this range is already covered),
we can estimate the L? norm by the L? norm (with K,» = 1 if ¢ < 2 and /g — 1 otherwise)
and the L? norm by the L? norm according to (3.7) in Corollary 3.11, with K, , = e»~'. Thus
Kyp=K,2Ksp=(V/—1V1)er " will do for 0 < p < 2 and arbitrary .

For the assertion concerning Banach spaces, recall that each LP(2; X), p € [1,00) is Banach,
when X is, and LP(Q; X), p € (0,1), is a complete metric space with the metric o(f,g) =
|f— g|§p(Q;X). (These assertions can be shown as in the real case, e.g. [20].) It is immediate
from the inequality with finite n, that the sequence of partial sums of Z,;“;l erxy is Cauchy in
either all L?(€; X)) or none. Hence the convergence of the series in some LP allows us to deduce
convergence in all LP and thus to pass to the limit n — oc to deduce the desired inequality for
infinite series. O

If the norm of X is induced by an inner product, then the Khintchine-Kahane inequality can
be written in the form in which the scalar valued version is traditionally stated.
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Corollary 3.13. For all p € (0,00), there are finite constants ap, A, so that, for each inner

product space X, alln € Z and xy, € X, €, Rademacher functions for k=1,...,n, we have
n n n n
2
ap Zz’:‘ka?k < Zz’:‘ka?k = Z|$k|x < Ap Zskwk
k=1 LP(2;X) k=1 L2(Q;X) k=1 k=1 LP(Q;X)

If X is also complete (i.e., a Hilbert space) and if 220:1 |xk|§( < 00, then the previous inequality
holds with n replaced by oo, and all the series are convergent in the corresponding norms.

Proof. Clearly the equality in the middle is all that is new in the first assertion compared to the
general form of the Khintchine-Kahane inequality. This equality follows readily:

n n n n n

2
E ErT :/ Zz’:‘kwk, E EjT; dP = Z (xk,wj)x/sksde: E |£Ek|X,
k=1 L2(2X) @ \ k=1 j=1 X k,j=1 Q k=1

where we used the fact that the Rademacher functions are orthonormal.

For the second assertion, observe that L?(Q; X) is also a Hilbert space, when X is, with
the inner product (f,9)2(q,x) = Jo (f(w),9(w)) x dP(w). Also observe that ez |xk|)—(1 are
orthonormal in L?(Q; X) by the previous computation, and thus

o

> ErT
>3 bl A
k=1

k=1 il x

converges in L?(Q; X) if and only > 7o | |zx |§( converges. The rest now follows from the inequality
of Khintchine and Kahane for series in Banach spaces. O

3.4 Notes and comments

Section 3.2 comes from Witvliet [28] and Section 3.3 from de la Pefla and Giné [4].

The best constants K, in the Khintchine-Kahane inequalities are sometimes of interest, and
they are known in some cases; the present proof does not give the smallest constants (except, of
course, in the rather trivial case ¢ < p, when K,, = 1). Latala and Oleszkiewicz [13] give an
ingenious elementary proof providing the best constant Ky, = V2 in the important case of L?
and L'; this proof is also found in [4].

There is some variation in the literature concerning the name of the Khintchine-Kahane in-
equality. Sometimes the scalar valued version of the inequality (often stated in a similar form
as Corollary 3.13) is related to the name of Khintchine, who first proved it, whereas the vector
valued version is called Kahane’s inequality. The classical paper of Kahane [12] containing some
inequalities involving randomized norms is often cited in this context; however, the Khintchine—
Kahane inequality does not actually appear in this paper. Somewhat easier reasoning can be used
to prove the scalar inequality; see e.g. Stein [23].

There is also variation in the way of spelling the name of Khintchine. We have included the
maximum number of characters, but in an urgent need to save ink it seems to be possible to leave
out the “t”, or the “e”, or even both.



Chapter 4

R-boundedness

4.1 Introduction

The notion of R-boundedness has proved to be a significant tool in the study of abstract multiplier
operators, and it has other far reaching applications falling outside the scope of this work. The
definition is given as follows:

Definition 4.1. A family of bounded linear operators T C B(X;Y), with X and Y normed linear

spaces, is called randomized bounded (R-bounded) if for some p € [1,00) there ezists a finite

C such that, for alln € Z4 and oll Ty, € T, 21, € X and € Rademacher functions, k = 1,...,n,
<C

we have the inequality
n n
Z epTLay Z ERTE
k=1 LP(Q;Y) k=1 LP(9;X)

The smallest C is denoted by R,(T) and called the R-bound of T of order p.

Remark 4.2. By the Khintchine—-Kahane inequality, the definition of R-boundedness is inde-
pendent of the order p in the sense that any T C B(X;Y) either satisfies the condition for all
p € [1,00) or for none of them. (The R-bounds R,(T) may depend on p, though.) In fact, the
Khintchine—Kahane inequality shows that we could take different exponents p,q € [1,00) on the
two sides of the inequality defining R-boundedness, and the resulting inequality either holds for all
pairs (p,q) or for none of them.

(4.1)

Several properties of R-bounds follow immediately. We first note that these bounds behave

like norms:
Rp(T+8) SRp(T) +Rp(8),  Rp(TS) < Rp(T)Rp(8),

The first property above follows from the triangle inequality and the second by applying the
definition of R-boundedness twice, first to the family T, then to 8. Also, every set of one bounded
linear operator is R-bounded, and Rp{T'} = |T|y x.y), as is easily seen from the definition (4.1)
by extracting the norm of 7" from the left-hand side.

Clearly a subset of an R-bounded set is also R-bounded. It is also useful to observe that we
can always assume that 0 € T without affecting the R-bounds:

Lemma 4.3. For T C B(X;Y), Rp,(TU{0}) = Rp(T).

Proof. Let T, € TU{0}, k=1,...,n,and let J C {1,...,n} consists of those k for which T}, # 0.
Then

n n
E exThay E EkTk
k=1 k=1

where the last inequality follows from the monotonicity of the basic sequence {ez;}72, (Exam-
ple 3.1).

= Z ska:ck

keJ

< Rp(7)

E EkTk

keJ

< Rp(7)
LP(Q;X)

I

LP(9;X)

LP(Q;Y) LP(Q;Y)
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With the convention that 0 € 7,8, we immediately see that TU S C T+ § is also R-bounded
if T and 8 are. Now iteration of the triangle inequality for R, (8 + 7), with § and T singletons,
shows that every finite family of bounded linear operators is R-bounded. These properties seem
quite reasonable.

To provide some insight into the abstract notion, we give a few examples of the meaning of
R-boundedness in some special spaces.

Example 4.4. Let T C B(X;Y), X,Y normed linear spaces.

1. If T is R-bounded, then it is uniformly bounded, with

sup |T o < inf R, (7).
Tep7| |’B(X,Y)—p€[1700) »(7)

2. The converse of 1 is true if X and Y are inner product spaces, and in this case Ro(T) =
supTE‘J’|T|‘B(X;Y)‘
Proof. Part 1 is immediate from the definition, taking n := 1. Part 2 follows from the Khintchine—

Kahane inequality for inner product spaces (Corollary 3.13). O

Example 4.5. If X = LP(['1;Hy), Y = L9(T; Hz), where T'1,Ts are measure spaces equipped
with o-finite measures p1, po (respectively), and Hi,Ho are Hilbert spaces, then T C B(X;Y) is
R-bounded if and only if

(Z |kak(-)|3c2) <M (Zm(-)@cl) (4.2)
k=1 k=1

La(T2) N Lr(Ty)

=

for some finite M, for alln € Zy and fr, € X, k=1,...,n.

Note that the asserted equivalent condition (4.2) can also be formulated by requiring that
the operators T' : LP(T'y; 0%(Zy; H1)) = LUTo; 02(Z4; Ho)) defined by T'f := (T fr)52, for f =
(fr)22, € LP(T'1;0%(Z1;H;)) be bounded for all sequences {T}.}%2, C 7.

Proof. Assume the condition (4.2). Using Fubini’s theorem to change the order of integration
when desirable (observing in particular that L™(Q; L™(T;; H;)) = L"(T;; L™ (Q; H;))), we compute

q
= / dﬂQ
T2 La(:30)
0 $ v
Sa / <Z|kak|§f2) dps | =ay
k=1
La(Tg)

1
1 n % >
Y /F(mel) dpi
e (ry) b=

n 2
(S,
k=1
1
D P
d/ﬂ) =
LP(Q;H1)

<a,'MA, (/F
1

The first and last inequalities used the inner product space version of the Khintchine—-Kahane
inequality; the second was the assumption of the condition (4.2). The computation shows that this
condition implies that T is R-bounded (using Remark 4.2 on different orders p, ¢ in the definition
of R-boundedness). The proof of the converse inequality follows the same pattern. O

Q=

n

kakak

k=1

n

kakak

k=1

La(Q;L9(T2;32))

1
2

(Z |kak|§fQ)
k=1

<a;'M

kafk

k=1

n
>t
k=1

LP(Q;LP (I'13Hq))
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The examples show that in special cases R-boundedness reduces to conditions which do not
involve any randomization, and in a Hilbert space, this notion does not give anything new. In
general, however, the randomization gives significant flexibility due to the equivalence of differ-
ent LP norms, as we saw in the previous proof. By now one should appreciate the power of the
Khintchine-Kahane inequality, which reduced the proofs of the previous assertions to straightfor-
ward computations.

4.2 Elementary properties

Here we give a survey of some simple properties of R-bounds and provide further examples of
R-bounded sets of operators. We start with a couple of technical results related to the verification
of the R-boundedness of a given set of operators.

Lemma 4.6. To check the R-boundedness of a family T C B(X;Y), it is sufficient to verify the
inequality (4.1) for all sequences of distinct elements Tj, € T. The best constants are the same.

It is obvious that the sufficient condition here is also necessary.

Proof. Suppose that the inequality (4.1) holds whenever T; # T} unless i = j. Then consider a
general sequence {7} }?:1 C TJ. Denote by Sk, £ = 1, ..., m, the distinct operators in this sequence,
and by I the set of those j € {1,...,n} for which T; = Sj. We then compute

p p p
m

Zszjl‘j = ZSk Z EjTj = Zsk(w')Sk Z EjT
j=1

20 G S B e i)

In the last step we inserted in the expression auxiliary Rademacher functions &) on another
probability space Q', recalling that the joint distribution of the Rademacher functions remains
invariant under change of signs. We integrate over ', and change the order of integration to
obtain

p p
/, > e WSk Y gz dP' (') = / > Sk Y ejw)z; dP(w)
Q k=1 JjE LP(Q:X) Q k=1 JjEI Lr(Q;X)
p
<cv / S Y g dP(w),
Q=1 jel Lr(:X)

where the assumption was used point-wise for each fixed w' € Q' inside the integral. Reverting
the steps in which we introduces the auxiliary €}, we can manipulate the right-hand side of the

p
>y €T

last inequality into the form C? ‘L (
P

, and this shows the claim. O

Corollary 4.7. If T = {T*}2, C B(X;Y) is a countable sequence of operators, then it is
sufficient to verify the inequality (4.1) for all truncated sequences {T*}?_, of the first n members
of the sequence.

Tt is clear that the R-boundedness of the (countable) set 7 is independent of the order in which
we enumerate its element. Thus it is interesting that, given any enumeration, the subsets of n first
members of the sequence are fully representative of all finite subsets of T in view of R-boundedness;
this is what the assertion above states.

Proof. If S, k=1,...,n are distinct members of T, then there are numbers m; < ... < m,, such
that {Si}p_, = {T™*}}_,. Thus, if the inequality (4.1) holds for all for the truncated sequences
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as in the assertion, we have, setting z™™ := x}, and 27 := 0 for j ¢ {my}}_, and letting {e7}}",
be another sequence of Rademacher functions,

n Mn Mn n
ZEkSkxk = ZE]TJCEJ <C E elgt =C E ERTE
k=1 LP(O;X) Jj=1 LP(Q:X) Jj=1 LP(Q:X) k=1 LP(Q;X)

Since this holds for all distinct S € T, £k = 1,...,n, the R-boundedness of T follows from
Lemma 4.6. O

A very useful device in connection with R-bounds is the contraction principle of Kahane:

Lemma 4.8 (Kahane’s contraction principle). For ai,f8; € C, |ag| < |8k|, zx € X, &
Rademacher functions, k =1,...,n we have

n
E QREERT
k=1

The coefficient 2 is not needed if oy, Br are real.

<2
LP(;X)

n
> Brery
k=1

LP(2;X)

Proof. By considering new vectors yi := [rxj if necessary, we can always reduce the inequality
to the case B, = 1, |ag| < 1, k =1,...,n. If the a;, are real, i.e., aj, € [—1,1], then Lemma 2.3
applies to give

n
Z QkERT
k=1

where the last equality used the property of the Rademacher functions that exe; and € have the
same joint distribution. The assertion for real coefficients is hence established. The complex case
follows by applying the first part of the proof to the real and imaginary parts separately. O

n

n
> e

k=1

< max
T ee{-1,1}n
Lr(Q:;X)

b

Lr(;X)

€kELTE
1

k= L (Q:X)

The contraction principle has many corollaries. Before proceeding to them, we formulate a
generalized notion of R-boundedness, which is useful in some applications:

Definition 4.9. A sequence (T1)72, of operator families Ty C B(X;Y) is called R-bounded
relative to a sequence (Xj)32, of closed subspaces of X if

n n
E exTpxy E EkT
k=1 k=1

for allm € 74, €, Rademacher functions, Ty, € Ty and xp, € Xy, k=1,...,n.

<cC
LP(Q;Y)

Lr(;X)

Observe that T is R-bounded if and only if all sequences (T3)32,, Tx C T, are relatively
R-bounded for all (X;)32,, X C X.

Corollary 4.10. If T C B(X;Y) is R-bounded and B(0;7) C C is the closed ball of radius r
centered at the origin of the complex plane, then

R(B(0;7)T) < 2rR, (7).

For [—r,7] in place of B(0;1), the 2 can be omitted. The same results hold for relatively R-bounded
sequences (Ti)72 , if we multiply each family in the sequence by B(0;r) or [—r,7].

Proof. Tt is clearly sufficient to consider the relative R-boundedness. Take Ty € Ty, ¢ € B(0;7),
zr € Xg, k=1,...,n. Then

n
E ERT

k=1

<2 <2r-C-

)
Lr(Q2;X)

n
E Ekera:k
k=1

n
E erCrThrs
k=1

L?(Q;X) L2 (Q2:;X)
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where the first inequality was the contraction principle (thus the 2 can be omitted for real (}), and
the second simply the definition of the (relative) R-boundedness, C' being the relative R-bound.
For proper R-boundedness, C' = R, (7). O

Example 4.11. Let ® C L°°(T") be uniformly bounded. Then
Ry({mg : /(T3 X) = LT X) £ £+ 0 boce) < 2500 [0l
€

Proof. Using Fubini’s theorem and the contraction principle, we obtain

= (/F . du(v))

P
< 25up 9] 0oy dp(y) | =2 sup |l oo ()
ge® LP(9;X)

S erd (M)

k=1

Zskf

and this is just what we claimed. O

n
> ewmyf
k=1

Lr(Q;LP (I;X))

S

k=1

I

LP(Q;LP(I5X))

The following result shows that R-boundedness, even relative, behaves rather well with some
common set operations.

Lemma 4.12. Let T C B(X;Y) be R-bounded, and (Tj)52, be R-bounded relative to (Xy)72,.
Then the same is true for the following families obtained from the original ones:

1. the strong closures T and (Tp)52,,
2. the convex hulls convT and (conv Tj)52,, and

3. the (complex) absolute convex hulls

abco(T) Z)\T nEZyNEGT €T;j=1,..,m > [N|=15,

j=1 j=1

and (abcoTy)32, as well as the real absolute convex hull defined similarly, but with R in
place of C.

The R-bounds remain the same under these set operations, except for the (complex) convex hull,
for which the R-bound is at most doubled.

Note that the set operations are applied to each family T separately in the relative case.

Proof. Again, it is sufficient to consider relative R-boundedness.
1. If Ty, € Tg, k =1,...,n, where the bar denotes the strong closure, then there are sequences

{TJ}] 1 C T} such that T]x — Ty for each € X as j — oc. Thus, for z; € X,

< ZskTgmk

k=1

Lr(Q;y) k=1

+ €,
LP (X))

LP(;Y)
where the € can be forced as small as one likes by choosing sufficiently large j.
2. We use here the fact that conv(Ty) x -+ x conv(T,) = conv(Ty X ... x Tp) (Lemma 4).

Thus (Tp)p_y = Yoy (T, ie., Th = Y0y N T with T € Tj and A, > 0, Ypl, M
whenever T}, € conv(‘Tk) k=1,...,n; thus

n n N
ZEkaﬂ?k = ZﬁkZ/\jT;fl“k
k=1

LP(Q;Y) k=1 j=1 Lr(Q:Y)

< Z)\ ZEkT]xk
Jj=1

—

<Z>\ C

Le(Q;y) =1

E EkTE

)

LP(2;X)
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and this last expression is of the desired form since Zjvzl Aj=1.

3. For the absolute convex hull, we observe that, whenever E?Zl Al =1,

Z)\jTj = Z |)\]| (ﬁi@) € COIIV(S(O; I)T),
j=1 j=1 J

since {|A;[}}_, is a proper set of coefficient for a convex combination. (S(0;1) is the unit sphere
in C.) Since S(0;1) C B(0;1), the last assertion follows from Corollary 4.10. O

4.3 Some abstract multiplier theorems

It is time to provide some answers to the natural question: why R-boundedness? We claimed above
that the new notion would be useful in the study of multipliers. We now try to verify this claim.
In this section, we present a number of results, which follow rather readily from the properties
of R-boundedness. We will also see its interplay with the unconditional Schauder decompositions
studied in Chapter 2.

In order to study what we have called abstract multiplier operators, we should first define
what we mean by this concept. Motivated by the form of multiplier operators acting on Fourier
series in Chapter 1, we already investigated in Chapter 2 abstract multiplier operators of the from
Thx =Y po, Dz (whereD = {D;}32, is a Schauder decomposition of the Banach space X).
The boundedness of such operators was simply and neatly characterized by Corollary 2.14 for
unconditional D. There are two obvious directions in which to generalize matters: either relax
the assumptions on D (e.g., give away the unconditionality) or consider more general multipliers.
For the second procedure, we introduce abstract multiplier operators of the form

Tz:=Y TiDpx,  {Ti}32, C B(X;Y). (4.3)
k=1

To have some multiplier structure, we require that T Dy, = ATy Dy for all k € Z,, where
A = {A}}72, is an unconditional Schauder decomposition of Y. Recalling that the operators Dy,
respectively Ay, of a Schauder decomposition are projectors onto the closed subspaces ran(Dy,) C
X, respectively ran(Ay) C Y, this condition states that T} maps ran(Dy) C X into ran(Ag) C Y.

An important special caseis Y = X, A = D, in which case this says that ran(D},) is an invariant
subspace of Tj. For this reason, also in the general case, we will refer to multiplier operators 7' of
the form described as D, A-invariant multiplier operators, and the corresponding sequences
{T}72, as D, A-invariant sequences (of operators). For A = D, we simply speak of D-
invariance. The D-invariance holds, in particular, if Dy commutes with T} for each k € Z,, a
slightly stronger requirement.

This generalization of the notion of multipliers seems reasonable, since the starting point in
Chapter 1 was the characterization of bounded operators with certain commutativity properties,
and since the scalar valued multipliers so far studied certainly commute with “everything”.

The first result providing us with many bounded D-invariant multiplier operators goes as
follows:

Theorem 4.13 (Clément et al. 2000). Let {Dy}2, be an unconditional Schauder decompo-
sition of the Banach space X, and {A}32, of Y. Let T C B(X;Y) be R-bounded. Then for each
D, A-invariant sequence {T}.}%2, C T, equation (4.3) defines a bounded linear operator from X to
Y. The operators so defined are uniformly bounded with |T|z ) < infyei o0) Cp(A)Rp(T)Cp(D),
where C,(A), Cp(D) are constants as in (3.2) (Lemma 3.2).



44 CHAPTER 4. R-BOUNDEDNESS

Proof. Using the D, A-invariance of {T}}7°,, together with Lemma 3.2, we compute

n n n
Z Tk_Dk:IT Z Aka_DkiE S CP(A) Z EkAkaDkl‘
k=m X k=m X k=m LP(Q-X)
= A) Z EkaDk.T: < C
k=m LP(;X) Lr(Q;X)
< Cp(A)R, Z Dyx
X

Since Y~ , Dy, converges for each z € X, the sequence of partial sums is Cauchy, and taking
the limit m,n — oo in the inequality above shows that the same is true for Y ;2 Ty Dyx; thus
the operator T in (4.3) is well-defined for each x € X. Setting m := 0 and passing n to infinity
shows that |T'[5 x) < Cp(A)Rp(T)Cp(D). O

The following theorem deals with the other generalization mentioned above, namely relaxing
the requirement that the decomposition D be unconditional.

Theorem 4.14 (Marcinkiewicz-type multiplier theorem, Clément et al. 2000). Let D =
{Dy}2, be a Schauder decomposition of the Banach space X, and D' be the blocking corresponding
to the sequence {ny}3>, C Zy. Then the following conditions are equivalent:

1. The multiplier operators Ty, defined in (2.3), are uniformly bounded for all X\ € £>° satisfying
[Alpe <1 and

ngp—1

> 18] = [Ami i1 = Ayt F A2 = A ga] A Pt — A | S 1
l=nj_1+1

2. D' is unconditional and ({P;}7X, — .1)72, is R-bounded relative to (van D})72,. (P de-
notes denotes the jth partial sum projection of D.)

Proof. 1 = 2. Clearly every A € £*° bounded in norm by 1 and constant on each block {n;_; +
1,...,n.} but otherwise arbitrary is of the form considered in part 1, and thus T are uniformly
bounded for all such A\. The unconditionality of D’ then follows from Lemma 2.12(3), since
Tz =Y 4o, AFD}x for such A, where \* is the constant value of \; for ny_1 < j < ny.

Let an n € Z4 and {my}{2; C Z4, with ni_1 < my < ny be given. For a fixed w € Q and ¢
Rademacher functions, as usual, the operator

n mp Nk mp
ng )Pu Dy =Y ey D, Y D Zsk w) Y. D;
k=1 j=1 i=ng_1+1 Jj=nk—1+1

acts as a multiplier operator, the multipliers €5 (w) of which are bounded in absolute value by 1
and constant on each block {ny_1+1,...,n}. Thus there is a AM(w) € £*° satisfying the conditions
in part 1 such that T)(,) coincides with the operator described above. By part 1, which is now
assumed, these operators are uniformly bounded for all w € Q; thus

W) Py, D g M

’
X

with M independent of w, and integrating over 2 yields

z”: Dz

k=1

< MCy(
b'¢

<M
Lr(Q;X)

zn: EkPmk D;Cl‘

k=1

Lr(;X)
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With z := Zzzl xy, ) € ran D), arbitrary, the asserted relative R-boundedness follows.

2 = 1. We start by manipulating a multiplier operator T}, initially defined in terms of the
Schauder decomposition D, into a form, in which we can exploit the properties of the blocking
D'. Recall that D; = P; — Pj_;, and observe that

n Nk Nk
YooNE =P+ Y N=N-)Pa= Y (NP =N Pie)
j=ng_1+1 j=ng_1+1 Jj=ng—1+1

- /\nkPnk - /\nk_1Pnk—1'

The previous equality obviously remains valid when multiplied from the right by D}, and for
ng—1 < j < ng, we also have D; = D; D), = (P; — Pj_1)D;),. Thus

2 N

Z )‘ij = Z ()‘j—l _Aj)Pj—lD;c_'_AnkPnkD;c _Ank—lp’nk—lD;c‘
Jj=ng-1+1 Jj=nk—1+1
The terms containing P,,_, D}, vanish, since D} = 32"~ . Dj and P, _, = Y57 Dj. Fur-

thermore, P,, D} = Dj.
For x € ran D = ran D’ we then have, with a finite sum,

nkl

Z)\DQE—Z Z )\Dx—Z)\nkaac+Z > (N —Aj1)P Dy,

k=1 j=ng_1+1 k=1 j=ngr_1+1

The first term is bounded by C'|z| i by the first abstract multiplier theorem, Corollary 2.14. For the
second term, observe that $27* (Aj=Ajp1)Pe St |Aj = Ajta|-abeo{P;}7E, L C

J=ne—1+1 j=nr-1+1
B(0; 1) abco{ P;}* for A as in condition 1. It then follows that

Jj=nk—1+1

=) np—1 oo np—1
Yol X =N P | Dial <G en | Do (A= AP | Dix
k=1 \j=ng_1+1 x k=1 Jj=np_1+1 LP(9Q;X)
< Cyp(D')-2R|> exDix < Cp(D') - 2R - Cy( =20,(D")R x|y,
k=1 LP(Q;X) X

where the first and third inequalities exploited the unconditionality of D’ via Lemma 3.2 and the
relative R-boundedness in the assumption via Lemmas 4.10 and 4.12(3).
The implication is established. O

4.4 Notes and comments

This chapter is based on treatments in Clément et al. [3], Hieber and Priiss [8], and Witvliet [28].
We have also been inspired by the lectures of, and personal communication with Jan Priiss at
Helsinki University of Technology in August 2000.

The notion of relative R-boundedness appears implicitly in [3] and in [28]; the introduction
of this concept streamlines the statement of Theorem 4.14. Theorem 4.13 is slightly generalized
from the result in [3] or in [8].

R-boundedness gives rise to other related notions which describe various analytic situations
by means of randomization. For instance, the requirement of the R-boundedness of the family
{t(t + A)"'}i>0 of resolvent operators, where A is a linear operator, is used in [8] to define an
R-sectorial operator, a concept which turns out to be useful in the study of parabolic partial
differential equations.



Chapter 5

Martingales

5.1 Introduction

Martingales constitute a particular class of stochastic processes, which has found applications in
various fields of mathematics. In the present context, they are required to formulate the UMD-
property of certain Banach spaces, which turns out to be equivalent to a number of other properties,
each important by itself. The definition of martingales goes as follows:

Definition 5.1. A martingale is a sequence f = (fr)52, of random variables (in probabilistic
terms, a discrete parameter stochastic process) on a probability space (Q,§,P), which is adapted
to an increasing sequence ()72, of sub-o-algebras of §, and the difference sequence of which,
defined by S fy, := fr — fr—1 (with fo :=0), satisfies the condition E( 0 fi|§r—1) = 0. By adapted
we mean that each fi is §r-measurable.

The definition of a martingale as given here is the same for vector-valued random variables
as for the real case, once the auxiliary concepts appearing in it, in particular the conditional
expectations E( | §) are given proper content. The purpose of the following section is to give
insight into this matter.

It follows from the elementary properties of conditional expectation (which will be essentially
the same in the vector-valued case) that the martingale condition for the difference sequence
{6 fr}32, can equivalently be stated as fr,_1 = E( fr| §x—1). If, in the real-valued case, the equality
in this last equation is replaced by “<” or “>”, for each k, then f is called a submartingale or a
supermartingale, respectively.

5.2 Conditional expectation

The notion of conditional expectation appears in the very definition of martingales in Section 5.1
and it is one of the most fundamental and far reaching ideas in probability theory. We here give a
meaning for this concept in the vector-valued setting. To be precise, we concentrate on separable
Banach spaces, for which the integration theory developed in Section A.2 is valid, bearing in mind,
however, the extension in Remark A.7.

It is easy to give a definition of the conditional expectation by means of what we want; showing
that such an operator exists is more involved:

Definition 5.2. For f € L'(F;X) and a o-algebra & C §, the conditional expectation of f
with respect to &, denoted by E( f|®), is a g € L'(®; X) which satisfies

/ng]P’:/Gfd]P’ (5.1)

for all G € &.
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Remark 5.3. An application of Corollary A.5 to g := g1 — go € L*(®; X), where g1, 9> are two
functions satisfying the definition of E( f| &), immediately shows that that E( f| &) is essentially
UNIQUE.

In the scalar-valued case the existence of g is a direct consequence of the Radon—Nikodym
theorem: pu(G) := [, fdP defines a measure on & which is absolutely continuous with respect to

the restriction P|g of P on &: u < P|g. It then suffices to take g := d—%""—@. (Observe that it is

essential in this last expression to have P|g rather than P, since Z—g = f a.s., and f need not be
®-measurable. See also Section 5.4 for a discussion on an alternative proof.)

As direct a procedure will not work in the vector-valued setting; however, a construction of
the conditional expectation essentially similar to that of the integral is possible, starting from the

simple functions.

Lemma 5.4. For f € L'(F; X) and a o-algebra & C g, the conditional expectation E( f| &) exists
and satisfies |[E( f| &)y < E(|f|x|®) (a.s.). The operator E(:|®) is a contractive projector of

L'(F; X) onto L'(8; X).

Note that the right-hand side of the last inequality above is a conditional expectation of the
scalar (in fact, positive) random variable | f| .

Proof. If f is a simple function f = Y}, #x1p,, we can take

k=1

since clearly

/gdP:Zxk/E(lEk|Q5)dIP:sz/ lEkd]P:sz]P(GmEk):/fd]P.
@ k=1 ¢ k=1 ¢ k=1 @

(Observe that the conditional expectations appearing in the above equation only involve real

random variables, for which the existence was already demonstrated. Also note that the first

equality is not the definition of the integral for simple functions, since g need not be simple (as

E(1g,|®) need not be an indicator, or even a finite sum of indicators). However, if the E( 15, | &)

were such finite sums, then the equality would be a matter of definition, and the general case is

obtained by the continuity of E = fQ -dP and the density of simple functions, as in Section A.2.)
We further compute (assuming Ej, disjoint)

n
/ > s,
Q k=1

and this says that |E( f] (’5)|L1(®;X) < |f|L1(&X) for simple f, by continuity and density for

n

dP < > lzklyx [ [E(1e,|®)[dP= ) ||y P(Ex) =

k=1 Q2

il‘k]E(lEkW)

k=1

dP,
X X

all f € LY(F; X). (In the second step we implicitly removed the absolute value signs, since the
conditional expectation of a non-negative random variable is a.s. non-negative.)

Thus E(-]®) is a bounded (obviously linear) operator from L!(F; X) to L*(&; X) when re-
stricted to simple measurable functions, whence we can uniquely extend it to a bounded linear
operator on all of L!(F; X). It is also clear that E(-|®) is the identity (a.s.) when restricted
to LY(®; X)) = ran(E(+|F)). Thus the conditional expectation has the projection property
E(E(:|®)| &) = E(-|®), and the fact that it is contractive follows by density and continuity
from the norm inequality established above for simple random variables. O

Now that we have the conditional expectations, we need some tools to work with them. The
first lemma merely reminds us of some results in the scalar case.

Lemma 5.5. Let {f,}°2, C L*(F) and & C F be a sub-c-algebra. Then the following convergence
results hold:
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1. (Monotone convergence.) If 0 < fr, 1 f (a.s.),then 0 <E( fn| 8) 1 E( f| 8) (a.s.).
2. (Fatou’s lemma.) If 0 < f,, (a.s.), then E(liminf, , f,|®) < liminf,, o E( fn]| &) (a.s.).

3. (Dominated convergence.) If | fn| < g € LY(F) and f, — f (a.s.), then we have the conver-
gence E(|fn — fl|®) = 0 (a.s.) and consequently E( fp| ®) = E( f| &) (a.s.).

Proof. Assume the hypotheses of the monotone convergence theorem. Since we have, by definition,
JoE(fn|®)dP = [ fndP > 0 for each G € &, we know from real analysis that E( f,|®) > 0
(a.s.). The same argument with f, 11 — f, > 0 in place of f,, shows that E( f,41|®) > E( fn| ®)
(a.s.). Thus there exists g := limy, 00 TE( fn]| ®) (a.s.), and the “ordinary” theorem of monotone
convergence shows that

/ngIP’:nlergoT/GE(fn|®)dP:1}LngoT/andP:/GdeP’

for all G € &. Thus g =E( f|®) (a.s.), and g satisfies the properties asserted.
Fatou’s lemma and the dominated convergence theorem now follow as in real analysis [20, 27],
with only notational modifications. O

Remark 5.6. The dominated convergence theorem can immediately be extended to Banach spaces:
If |fulx < g€ LY3) and fr — f (a.s.), then Lemma 5.5(3) applied to the scalar-valued functions
|fn — flx vields E(|fn — f|x|®) = 0 (a.s.), and thus E( f,| &) = E( f|®) (a.s.).

The other two convergence results as such have no meaning in a general Banach space, but of
course they can be useful in estimating norms of vector-valued random variables.
Next we present a version of Jensen’s inequality for vector-valued integrals.

Lemma 5.7 (Jensen’s inequality). For a random variable f € L'(F;X), a o-algebra & C §
and a continuous convex mapping ¢ : X — R for which ¢o f € L'(F), we have the inequality (a.s.)

¢poE(f]6) <E(dof|8).

Proof. First consider a simple random variable f = 22:1 1, , where the measurable sets Ej,
are chosen in a canonical way so that they are pairwise disjoint and U}_; E; = Q (possibly with
some z; = 0). When this is the case, we have Y /_, 1, (w) =1 for all w € 2, and consequently,
Yo E(1p,]6) =E(Y.;_, 15,/ ®) =E(1/8) =1 (a.s.). Furthermore, we have E(1g,|®) >0
(a.s.), since 15, > 0.

We have now shown that {E(1g,|®) (w)}}_, is a proper set of coefficients for a convex combi-
nation, for almost all w € 2. The desired inequality now follows from the familiar form of Jensen’s
inequality (which can be proved by induction from the very definition of a convex function):

SE(f18) (@) = ¢(Q_2xE (15, | 8) (@) < D d(@r)E (15, | 8) (w)
k=1 k=1

=E (Z¢($k)1Ek
k=1

6) (W) =E(¢o f| &) (w).

Now we have the inequality for simple f. For general f € L'(g; X), we first assume that ¢,
in addition to the assumptions of the lemma, attains a minimum. Then Lemmas A.1 and A.3
provide us with a sequence {f;}%2, of simple random variables so that f; — f pointwise and in
LM(3; X), and §(fy(w)) < 6(F(w)) + L.

Since E (-] ®) is continuous from L!(F; X) to L!(®; X), the convergence f;, — f in L'(F; X)
implies E( fx|®) — E( f|®) in L!(®; X), and a subsequence (which we will hereafter concentrate
on and still denote by {fi}32,) converges almost surely. Since ¢ is continuous, we further have

b0 fi— dof (as) and g0 E( fi &) — 6o E(f]®) (as.).
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We then obtain (a.s.)
6oE(f1®) = Jin §oE(fi]®) < lmsipE (4o fil®) < lmsupE (¢°f+ %‘@) —E($of]®),

where the first inequality was simply Jensen for simple functions (i.e., the first part of the

proof) and the second follows from the construction of f; (and the monotonicity of E(-| &),
Lemma 5.5(1)). We have now proved the lemma with the additional assumption that ¢ attains a
minimum.

We should now get rid of the extra condition on ¢. If ¢ is any continuous and convex function,
sois ¢ Vi, t € R, but this latter one also attains a minimum if we choose ¢ > inf ¢. We then pick
a sequence {t, }5°; of such values so that ¢, | inf ¢ (whether or not inf ¢ is finite). We know from
the previous part of the proof that ¢ V ¢, satisfies Jensen’s inequality, and thus

¢poE(f]6) <(¢Vin)oE(f]&) <E((Vin)ofl&) (5.2)

If inf ¢ > —oc, then we write the right-hand side of (5.2) in the form

E(¢o f1&) +E((tn — 6)l{p<i,}|©),

which follows from ¢ = ¢ V t, + (¢ — tn)114<s,} and the linearity of E(-|®).

Now | A)ip<t, }| <ty —inf ¢, and (t, — ¢)1f4<¢,3 — 0 as n — oo pointwise, so that
it follows from the dominated convergence theorem that the last term on the right-hand side
of (5.2) tends to zero (a.s.) as n — oo. Since (5.2) holds for all n € Z, and the left-hand side is
independent of n, the inequality must also hold in the limit.

Otherwise, inf ¢ = —oo, and we can take our sequence to be t, = —n. If ¢ and ¢~ are the
positive and negative parts of ¢, then ¢ V (—n) = ¢ — ¢~ A n and we can write the right-hand
side of (5.2) as

E(¢*of|®) —E((¢~ An)of|®).

As n 1 0o, we have ¢~ An 1 ¢~ pointwise; thus it follows from the monotone convergence theorem
that the right-hand side of (5.2) tends to E( ¢ o f| &) (a.s.) asn 1 oc. Hence the things are settled
as asserted also in this case.

Now the proof is complete for all f and ¢ as in the assertion. O

Remark 5.8. The analogous results for “ordinary” expectations (i.e., integrals) B follow from the
corresponding results for conditional expectations by taking & := {0,Q} (the trivial o-algebra).
Indeed, all {0, Q}-measurable functions are constants, so E( f|®) = Ef, surely (as opposed to
almost surely).

Some corollaries of Jensen’s inequality are immediate.

Corollary 5.9. For o-algebras & C §, the conditional expectation E(-| ®) is a contractive pro-
jection of LP(F; X) onto LP(&;X), 1 <p < occ.

Proof. For p € [1,00), the mapping ¢ = ||% : X — R is obviously continuous and convex,

permitting the computation

E(f16)L0e:x) = E(E(f|®)%) <EE(fx|8) =E(fIX) =1L zx) -

For p = oo, use Jensen’s inequality to give |E( f|®)|y <E(|f|y|®). Denoting g := E( f| &),
take G = {lgly > |flpe(zx) + 3} € 6. I P(G) > 0, then [ [gly dP > [, |f|x dP, which
contradicts |g|y <E(|f|x|®). Letting n | 0, we deduce that |g] ;e () < [flpe(g)- O

Example 5.10. If f € LP(Q; X)%+ is a martingale, then the difference sequence {Sfx}3S, is a
monotone basic sequence on LP(2;X), 1 < p < oco.
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Proof. Recall that basic sequences and monotonicity where defined following the characterization

in Corollary 2.10. Now, for any integers m > n > 1 and any scalars ag, k= 1,...,m,
S wdfi = B (zakm &)
k=1 k=1

and the claim follows from the contractivity of E( | &) on LP(Q; X). O

Corollary 5.11. If f = {fi}32, € LY(Q; X)%+ is a martingale, and ¢ : X — R is continuous and
convez, and ¢o fy, is integrable for k € Z ., then ¢o f := {$o f,,}2°, € LY ()%+ is a submartingale.

In particular, taking ¢ = |-|x we see that {|fx()|x}?>,; is a non-negative submartingale,
whenever f is a martingale.

Proof. Clearly ¢ o f;, is Fr-measurable, if f;, is, and E( ¢ o fi|Fr—1) > ¢ o E( fx| Fr—1) = ¢ o
Jre—1- O

The following fundamental property of the conditional expectation is of significant value:

Lemma 5.12. If g € LP(&;B(X;Y)), p € [1,00), f € LP(F;X), & C J, then E(gf|®) =
gE( f|&).

Observe a number of important special cases: If g is constant, then it is certainly in any LP on
a probability space, so the conditions of the lemma are satisfied. Clearly a scalar-valued g can be
interpreted as B(X)-valued by the obvious identification of A and Aid. With ¥ = C, we have a
result concerning g € LP(&; X*) and f € LP(&; X). We can also revert the roles of g and f, since
X can always be identified with a subset of B(B(X;Y);Y).

Proof. Since g and E( f| &) are ®-measurable, they are limits a.s. of simple B-measurable functions
s and ty, and it is easy to verify that the functions w — sg(w)tx(w) converge a.s. to w — g(w) f(w),
thus this last function is also B-measurable.

If g is simple, say g = Y ,_, Ax1p,, Ar € B(X;Y), Ej, € & then, for arbitrary G € &,

/g]E f|®)dP = ZAk/ E(f|&)dP = ZAk/

GNE} GNE},

fdP = /G gfdP.

For arbitrary g € LP, p < oo take a sequence {s;}%2, C S(®;X) converging to g a.s. and in
L?, with |s — g|B(X.y) < |9|3(X,Y) a.s. (Lemma A.3). Then

[ s - ofde|

and a similar estimate holds with E( f| ®) in place of f. Thus the equality fG gE( f|®)dP =
Jo 9fdP holds for all G € &, and it follows that the &-measurable function gE( f| &) is the
conditional expectation of gf by definition. O

/|5k g|‘BXY|f|Xd]P<|Sk g|LPQ‘BXY |f|LP(QX)—>O

Corollary 5.13. If f € LP(Q; X)%+ is a martingale on X, and A € B(X;Y), then Af =
(Afr)2, € LP(;Y)%+ is a martingale on Y .

Proof. By Lemma 5.12, we have E( Afy|Fn-1) = AE( fo| Fn-1) = Afn_1. O

In a number of special cases, the conditional expectation has an explicit formula, which is
sometimes useful. A particularly simple case occurs when the g-algebra & is finite; then there is
a unique collection bs &, the basis of &, of G € & \ {#} such that no proper subset of any such G
isin &. Then

E(fle)w)= Y 1 /f )dP(w /f

Gebs & Gebs@i

1
FG) — 12 (w,w)dP(w'), (5.3)
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i.e, E(:| ®) is an integral operator with symmetric kernel. (The first equality above can easily be
verified by checking that the function on the right of this equality satisfies the properties required
of E( f]8).)

We conclude this section with a simple geometric characterization of the conditional expecta-
tion of an L? random variable on a Hilbert space.

Lemma 5.14. If 3 is a Hilbert space, f € L*(;H) and & C T is a o-algebra, then E( f| &) is
the orthogonal projection of f onto L*(®;H), i.e., f —E( f|®) L L*(&;K).

L?(F; H) has implicitly been endowed with the inner product

(f:9)pazne) = / (f(@), 9(w)) g dP(w),
which makes it a Hilbert space, too.

Proof. Since L?(®; %) is complete, it is in particular a closed subspace of L?(F; ). Thus there
exists an (essentially unique) orthogonal projection of f € L?(g; ) onto L?(&;H); we denote it

by g.
Now f — g L L?(®;XH); in particular, f — g L z1g for all z € H and G € &. Thus

0= (f = 9.016) 00 = | (1) = 9(0) )5 dP(e) = ( | 5= g(w)dmm,x)

H

Since this holds for all z € H, we conclude that [, (f — g)dP = 0 for each G € &, and this means
that g = E( f| ®) (a.s.). O

Corollary 5.15. If H is a Hilbert space and f = {fi}32, € L*(Q;H)%+ is a martingale adapted
to {8k}, then the differences o fi are orthogonal.

P’I"OOf. By Lemma 5.14, 5fk = fk — fk—l = fk — E( fk|gk—1) 1 L2(3'k_1;X) =) (Sf] fOI‘j < k. O

5.3 Maximal operator and Doob’s inequalities

Now that Definition 5.1 of martingales makes sense also in the vector-valued setting, we can
explore some further properties of these objects. We are particularly interested in martingales
f=A{fx}2,, for which the norm

Flew @iz @i)) 1= SUP il

is finite. Such martingales are said to be bounded in LP, and they are conveniently characterized
by the maximal function, to be defined next.

Definition 5.16. The mazimal operator (-)* is defined, for martingales f = {fe}2, €
LY (Q; X) 2+, by f*(w) := SUP,ez, | fa(w)lx- The function f* is called the mazimal function of
the martingale f.

Observe that (-)* takes L'(Q; X)%+ to [0,00], whatever the X. The maximal operator on
martingales possesses characteristics similar to those of other operators in analysis bearing the
same name. In martingale theory, the results characterizing this operator are known as Doob’s
inequalities, the first one of which is given below.

Lemma 5.17 (Doob’s L' inequality). The following inequalities hold:
1. If g = {9}, € LY (Q)%+ is a non-negative submartingale adapted to {&;}3°,, then

1P (maxgk zt> </ G (@)AB() < [galq) - (5.4
k<n {maxks" gkzt}

for each t > 0.
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2. If f = {fi}32, € L' (2 X)?+ is a martingale, then (5.4) holds with |f,(w)|yx in place of
gk (w).
3. If f € 4°(Zy; L' (Q; X)) is a martingale, then

tP(f" 2 1) <[ flpeoznr (%)) -

Proof. The sets G, := {w € @ : max;j<; gj(w) <t < gr(w)} € G are disjoint, and {maxz<n gr >
t} = Up_,Gj. Furthermore, tP(Gy) < ka grdP < ka gndP, since gy < E(g,|®g) for k < n
follows by iteration from the definition of submartingale, which states this inequality for k = n—1.
The assertion 1 follows after summing these inequalities for k =1,... n.

The assertion 2 is a direct consequence, since {|fx(-)|x}52, € L' (2)%+ is a nonnegative sub-
martingale by Corollary 5.11.

For assertion 3, we use part 2 to deduce tP(supy<,, > ) < [falp1(0,x) < [flree 2,01 (05x)): 2nd
then take the limit as n — oo. O

Lemma 5.17(3) is a familiar weak-type inequality for the maximal operator. One might guess
that, for p > 1, we should have the corresponding strong type inequality, i.e., that the maximal
operator is bounded from £*°(Z; LP(Q; X)) to LP(€). This is indeed the case. We require one
preliminary lemma.

Lemma 5.18. If the random variables f,g > 0 satisfy tP(f > t) < ffztngP’ for all t > 0, then
|flLo@) S PI9lpeq) for all p € (1,00].
Proof. Take first p < oo. This is a straightforward computation using distribution functions, with
one application of Hélder’s inequality.

any = [ o B 20 s [~ (/f s@)ap@) ) at

0

=

= [ | " g = | 5 @)ape) <5 (Br07) (B}

1 1
= 1_3|f|£p(9) |g|£p(g) .
The identity (p — 1)p = p was occasionally used, and of course Fubini’s theorem to change the
order of integration, all integrands being non-negative. If | f| Lr() < 00, the assertion follows after
division by this quantity raised to the power of %. Otherwise, the assertion is true for fAn € LP(2),
and the conclusion follows after taking the limit n — oo and applying the monotone convergence
theorem.

For p = oo, assume |f|Lm(Q) > t, in which case P(f > t) > 0. If s := |9|L°<>(Q) < t, then
f{f>t} gdP < sP(f > t) < tP(f > t), a contradiction. If |f|Loo(Q) < oo, the previous argument
shows that [g]eq) > [f|pe(q) — € for all € > 0, whence |g| o) > [l (@) I [flLeo@) = o0,
we deduce |g]pw(q) > ¢ for all ¢, thus |g]; e q) = 0, too. O

Lemma 5.19 (Doob’s L? inequality). If f € {*(Z; LP(2; X)), 1 < p < oo, is a martingale,
or a non-negative submartingale with X = R, then

[flew @ sinri@ixy) S 1 eni@) S P lemz im0y
The first inequality holds also for p = 1.

Proof. The first inequality follows directly by integrating both sides of | fr(w)|y < f*(w) in the
power of p over 2 and taking the supremum on the left-hand side. For the second inequality, let first
[ be a non-negative sub-martingale. By Lemma 5.17(1), tP(maxg<y, fr > t) < f{maXKn sty fndP.
It then follows from Lemma 5.18 that |maxg<y, fk|Lp(Q) <P |fn|Lp(Q) < p?|f|loo(Z+;Lp(Q)), and the
assertion follows by taking the limit as n — oo. The assertion for f € ¢*°(Z; LP(Q2; X)) follows

from the result for non-negative sub-martingales applied to {|fi(-)| x }32,, recalling Corollary 5.11.
O
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5.4 Notes and comments

The construction of the conditional expectation follows Neveu [16]; Doob’s inequalities are taken
from Williams [27].

The proof of the vector-valued Jensen’s inequality here is possibly new. Less powerful ma-
chinery can be used to establish its corollaries, see e.g. Diestel and Uhl [6], page 123. The proof
differs from the hyperplane argument usually used in proving the scalar-version of this inequality.
A main ingredient of our reasoning is the approximation result in Lemma A.1, which is motivated
by a similar result in Neveu [16].

Lemma 5.14 is essentially an adaptation of the scalar-valued result in Williams [27]. There
the construction of E( f|®) for f € L*(3) as the orthogonal projection is exploited to show
the existence of the conditional expectation without relying on the Radon-Nikodym theorem.
(Williams actually proves the Radon—-Nikodym theorem using the conditional expectations via
martingales.) Of course, a further approximation argument is required for f € L' ().

In our (or Neveu’s [16]) proof of Lemma 5.4 we only applied the scalar-valued existence result
for random variables which were indicators of measurable sets. Since each indicator is in L?(g),
the existence of conditional expectations is covered by the L? result of Lemma 5.14. Combining
this with Lemma 5.4, we have another existence proof, which does not need the Radon—Nikodym
theorem.



Chapter 6

UMD-Spaces

6.1 Introduction

It is now time to formulate the celebrated UMD property. Exploring its meaning will employ our
efforts in this chapter.

Definition 6.1. A Banach space X is said to have unconditional martingale differences in
L?, p € (1,00), for short, the property UMD-p, if the inequality

> erdfi > ok
k=1

k=1
is satisfied, for some constant M, by each martingale f € LP(Q; X)%+ and each € € {—1,1}2+.

< M,
LP(9Q;X)

= Mp | fnlrr.x) (6.1)
L (Q;X)

The equality on the right is of course a tautology, and not part of the definition of UMD.
(Observe that the € here are simply scalars, not random variables. Recall from Section 3.2 that
we use ¢ for scalars equal to £1 and g; for symmetric random variables with this range.)

It is often useful to observe that the UMD-inequality is automatically two-sided: this follows
by substituting €0 fr in place of §fj (it is easy to see that this is another martingale difference
sequence) and using €; = 1.

The UMD-condition turns out to be equivalent to several important properties of certain
Banach spaces. The relation of some of these is not at all obvious at the first sight, but several
equivalent forms to (6.1) of minor depth follow more readily. For instance, we could instead of
(6.1) use the condition

n
> exdgi
k=1

which of course follows from (6.1), since |gnlroo.x) = E(9I86)lrrix) < 19l0ox) by the
contractivity of E(-|§x) (Corollary 5.9). To see the converse, take g := fp.

The smallest constant M), in (6.1) for given p and a Banach space X is denoted by M,(X). If
X does not have the property UMD-p, then M,(X) = co. Note that M,(X) must be independent
of m, i.e., we require in the property UMD-p that (6.1) hold for all n. The smallest constant for
which (6.1) holds for a fixed n is denoted by M}(X). Then obviously M (X) 1 M,(X) as n — oc.
(We can always take some 0 fr = 0 to deduce M,"(X) < M} (X) for m < n.)

Lemma 6.2. The constants M} (X) are finite; M} (X) < 2n.

< M, |§|LP(Q;X) for gr =E(g|8k),
LP (X))

Proof. This is a simple and crude estimate:

n

Zék(fk = fr-1)

k=1

n

<y (|fk|LP(Q;X) + |fk71|LP(Q;X)) .

Lr(;X) k=1
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and each of the 2n terms can be estimated by |filrmq.x) = [E(fal §6)lrsax) < [falrsix)-
Thus (6.1) always holds for fixed n with M, = 2n. O

To immediately see that UMD is not a fancy characterization of the null set, we observe the
following simple example:

Example 6.3. Every Hilbert space has UMD-2.
In particular, C and R with absolute value norm have UMD-2.

Proof. By Corollary 5.15, the martingale differences §f; are orthogonal. It follows from the
Pythagoras theorem that the square of the left-hand side of the inequality in (6.1) with p = 2 is
just Y27 [0 fk]%, but so is the square of the right-hand side, if we take My = 1. O

In the sequel, we will be working a lot with the definition of UMD-p. To facilitate the work,
it will be convenient to make some of observations and notational conventions. So far we have
regarded a martingale f as a countably infinite sequence {f;}72, adapted to an infinite sequence
{81}, of o-algebras. However, the definition of UMD-p only involves a finite number of random
variables fi, £ = 1,...,n, and the corresponding o-algebras. Below, we will also call {fz}}_; a
martingale adapted to {§x}}_,, if the usual martingale properties are satisfied for k = 1,...,n.
Such a finite martingale can always be viewed as a sequence of the n first members of an infinite
martingale {fi}72;; indeed, take §j := §, and fi := f,, for k > n.

6.2 Martingale transforms

The UMD-p condition asserts a certain type of uniform boundedness of the operators f — e x f
defined by (ex f), := > ,_, €0 fi. A direct generalization of these operators leads to the definition
of martingale transforms.

Definition 6.4. Let f = {fx}3, € LY(Q; X)%+ be a martingale adapted to {Fr}52,. A sequence
v={up}2, € L°(Zy; L>®(Q)) is called {Fi}72-predictable if each vy, is Fi_1-measurable (and
v1 is §1-measurable). For such f and v, the martingale transform is v+ f := {(v* e}, €
LY (9 X)2+ given by

k
(’U *f)k = kaéfk.

=1

It follows that v % f is also a martingale adapted to {§x};2,; indeed,

E(0(v* i Fr—1) = E(vrd fr] Sk—1) = vr E( 0 fx| Fr—1) = 0.

It is also easy to see that vx- takes LP martingales into L martingales. The sequence of o-algebras
with respect to which a predictable sequence is predictable will usually be clear from the context
and will not be referred to explicitly.

In analogy to the UMD-p, it is natural to ask when, if ever, do the operators v -, satisfy a
uniform bound

|0 * fnlLeca;x) < Mp [ fanlre@ix)

for all v with |v|jee (7, .10y < 1 (say). (The UMD-p condition is clearly a special case with
v=€={€e}72; asequence of constants is certainly predictable.)

The answer, which is not at all obvious, is that the above condition is equivalent to UMD-p.
Furthermore, the best constants M,(X) and M,(X) are the same. We now set out to verify this
claim. We will refer to this new condition as the property MT-p, shorthand for the martingale
transform property of order p. If MT-p, as stated above, is satisfied by X, then clearly

|(v*f)n|LP(Q;X) < M, |v|£°°(Z+;L°°(Q)) |fn|LP(Q;X) J
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for all predictable v € £°°(Z; L>°(f2)), and conversely. For simplicity of notion we can consider,
without loss of generality, v with norm bounded by 1. We take the freedom not to always state
this explicitly below.

The original conditions UMD-p and MT-p involving arbitrary martingales on arbitrary proba-
bility spaces appear overwhelming to work with. Therefore, we first wish to make some reductions.
These are established in a series of steps, in each of which we show that a formally weaker condition
implies something stronger. The converse implications will be obvious, and we do not always state
them explicitly. We begin by showing that it is sufficient to consider nicely divisible probability
spaces. These are defined by requiring that each set A of positive probability P(A) has a subset
of probability c¢P(A) for every ¢ € (0,1).

Lemma 6.5. If a Banach space X satisfies the property UMD-p or MT-p for all martingales f
on a nicely divisible probability space, then it satisfies the same property for all martingales on any
probability space, with the same constant.

Once this lemma is proved, the assumption that the probability space with which we work is
nicely divisible will be assumed throughout this section and the following without explicit reference.
When this assumption holds, we can cut sets into appropriate pieces just the way we like. This is
clearly a nice property.

Proof. Let (2,F,P) be an arbitrary (not necessarily nicely divisible) probability space, and let
{8r}i_, be an increasing sequence of sub-o-algebras of §. Consider the product space ({2 x
[0,1],F x 9, P x m) and the o-algebras & := {F x [0,1]: F € Fx} C F x M.

The reason for this construction is the fact that the product space is nicely divisible, whether
or not (2,3, P) is. Indeed, for A € F x M, we know that

Pxm(A) = /0 P({w: (w,t) € A})dm(t).

Now g(z) := [§ P({w : (w,t) € A})dm(t) is an increasing continuous function of = with g(0) = 0,
g(1) = P x m(A). Thus g attains every positive r < P x m(A) for some z € (0,1). Now
AD A = An{(w,t) : t < 2} € Fx M, and m(A;) = g(z) = r, for any given positive
r<Px m(A) Since the choice of A was quite arbitrary, we see that (2 x [0,1],F x M, P x m) is
nicely divisible.
Now, if f = {fr}r_, is a martingale adapted to {Fj}7_,, we define gi(w,t) := fr(w), w € Q,
€ [0,1]. To see that {gx}}_, is also a martingale, it suffices to show that gy = E( g,| ®x). This
is true, since, for G = F x [0,1] € &, (F € ),

/qug (w, )d(P x m)(w, t) // gr(w, t)dm(t)dP(w /fk )dP(w

~ [ o) = [ / (om0 ) = [ oy DI ) 1),

The vector valued Fubini’s theorem was applied in the first and last steps.

Similarly, if v = {vg}}_; € L®(Q)" is {Fk}}_,-predictable and w = {wy}}_; is defined by
wi(w, t) := vg(w), then w is clearly {&}}_,-predictable.

If we denote by m,; (X) the constant defined like M;(X ), but requiring that the condition MT-
p (similarly with UMD-p) need only hold for martingales on nicely divisible probability spaces, it
is now straightforward to compute

/ kaéfk = / Zwkégk d P x m)
Q15 x[0,1] .=
n p n
< (Wn(X))? / S Gg| d(P xm) = AR(X)? / dP.
x[0,1] |—; ¥ Q=1 X
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(Here we only needed a scalar version of Fubini’s theorem.) The special case v = w = € is certainly
included in the above computation. We thus see that M (X) < mp(X), M}(X) < my(X). The
reversed inequalities are obvious. O

Our next goal is reduction to martingales adapted to a sequence of finite subalgebras. Recall
that a finite algebra is automatically a o-algebra.

Lemma 6.6. The property UMD-p or MT-p is satisfied by X, with the same constant, if it holds
for all martingales adapted to finite subalgebras.

Proof. Let {fr}7_; € LP(€; X)" be a martingale adapted to {§x}}_;. The proof essentially relies
on the density of simple functions on LP(Fj; X) and the fact that the o-algebra generated by a
simple function, i.e., the smallest o-algebra on which it is measurable, is finite.

For each k, we choose a simple s € LP(§x; X) such that [sk — 6 fk|1.q.x) < € and a simple
ty € L®°(Fk—1) such that |t — fuk|Loo(Q) < € and |tk|Loo(Q) < |fuk|Loo(Q) (where (vx)52, is a given
predictable sequence). (Note that although our general density result (Lemma A.3) does not
cover L it is certainly possible to choose the desired t; in the scalar valued case; for instance,
we could take t; := )", milvgl(mi’xﬁe), where the z; are points placed at intervals of length e from
one another so as to cover the interval between =+ |vg|} .« ().) Let & be the algebra generated
by $1,...,8kst1,.-.,tk+1, i-e., by the E; in the canonical representations Z:L x;1g, of the above
mentioned s; and ¢;. It is then clear that {&;}}_, is an increasing sequence of finite algebras
and that {t;}}_, is {®&;}}_,-predictable. Since s is §r-measurable, &, C §; and consequently
E(0fk41]Gr) = E(E(6frt1|8k)| &r) = 0.

We define a new martingale g by dgr := E(Jfi| Bx). To see that this is a proper difference
sequence of a martingale adapted to {®,}}_,, compute

E(6gk| &x—1) =E(E(3fr| 1) Gr—1) = E( fx| Gx-1) = 0.

Now the rest is just approximation:

> wibfi > tdgr
k=1 k=1

<

L (4 X) LP(Q;X)

n
+ Z (|tk(5fk - Sk)|LP(Q;X) + [tk (s — 6gk)|LP(Q;X) + |tk = vk)(sfk|LP(Q;X))
k=1

Here |6 fi, — sk|Lp(Q;X) < eand |t — vk|Lm(Q) < € by the choice of the s; and t;, and
|sk — 6gk|LP(Q;X) = |E( sk — 0fil ®k)|LP(Q;X) <|6fk — 5k|Lp(Q;X) <6
since E(-| &) is contractive on LP(Q); X). Then it is clear how to estimate the LP norms of

products of L> and LP? functions. If we again use m' as a temporary notation, this time for the
best constant in MT-p for martingales f adapted to ﬁnite algebras, we have

ka5fk ka5gk
=1

k=1

<
LP(Q;X)

+n (2 + |f|LP(Q;X)) €
LP(;X)

> g
k=1

< W (X) +1 (24 |fl o)) €

LP(;X)

n

+ Z (|59k - Sk|LP(Q;X) + |sk — 5fk|LP(Q;X))) +n (2 + |-f|LP(Q;X)) €

Lp(;X) k=1

D _f

k=1

s%(X)(

D>t

k=1

< my (X)

+n (27%;(X) +2+ |f|LP(Q;X)) €.
LP(Q;X)
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(Recall that we restrict ourselves (without loss of generality) to the case |vg|je(q) < 1.) Since
the inequality obtained holds for all € > 0, as well as for all martingales {f}}_,, we deduce that
My (X) <my(X), and also M;'(X) < mj(X) as a special case of the same computations. O

From finite algebras we proceed to so called Haar systems of algebras, where the size of the
algebras in the sequence {F;}7>, grows in a controlled manner. More precisely, we have the
definition below. Recall that a basis of a finite algebra § on 2 is a partitioning of 2 into disjoint sets
F; €§,i=1,...,m, which generate §, i.e., each F' € § is a union U;cr F; for some I C {1,...,n}.
It is easy to see that the basis of a finite algebra is unique and, in fact, uniquely determines the
algebra. It is thus justified to speak of the basis and denote it by bs §. The sets F; are sometimes
called the atoms of §.

Definition 6.7. An increasing sequence {9, }7_, of finite algebras is called o Haar system if
91 has a basis consisting of k + 1 sets of positive probability.

On a nicely divisible probability space, the two conditions in the definition, the size of each
9, and the requirement that the sequence be increasing, are easily seen to be equivalent to a
more constructive definition of a Haar system: §)o is the trivial algebra {#,Q} with basis {Q}.
If 9. (or equivalently, bs ) is constructed, then the basis of ;41 is obtained by taking some
H € bs $;, and dividing it into two parts H; and H» of positive probability each. Then bs 541 =
{Hl,HQ} U be_)k \ {H}

Now we can formulate the next reduction.

Lemma 6.8. In the definition of UMD-p or MT-p, it is sufficient to consider all martingales
adapted to Haar systems.

Proof. From the previous results we already know that martingales f on a nicely divisible proba-
bility space (12, §,P) adapted to finite algebras {F1}}_, are fully representative of all martingales
in view of the property UMD-p.

For a given sequence {§:}72, of finite algebras, we will construct an auxiliary Haar system
{.‘?jk}kN;‘O sothat Ho CH1 C...CHN, =81 C HNy+1 C ... C HN, = Fn. If we can do this, then
the lemma is easily proved: If f = {f;}?2, is a martingale adapted to {§x}?_,, we define a new
martingale h by h,. := E( f,.| 9,). Then clearly hy, = fr and dfr = fr — fr—1 = ZNk—1<7'<Nk oh,.
Also, if v = {vg}2_, is {§x}52,-predictable, then w defined by wn, ,41 := ... := wx, = vg €
L®(Fk—1) = L®(HnN,_,) is {f’)r}ﬁl—predictable. Thus

n Nnp, Nnp, n
> kb fi =1 w.dh, < mp(X) | oh, = my(X) (D dfw ,
k=1 Le(2;x)  Ir=l LP(Q;X) r=1 LP(2;X) k=1 LP(0;X)

where we once again used m,(X) analogously with the proofs of the previous lemmas.

To complete the proof, it suffices to show that the auxiliary Haar system can be constructed.
This is done inductively as follows: Let $o := o := {0, 2} C F1. Then assume for induction that
we have constructed a Haar system {§);}}_; so that

HC...CHN, =8 C...CH C Fit1 (6.2)

for some i. For the construction of $,41, choose F' € bsF;11 \ bs$,. Such an F must exist,
since otherwise §), C §i4+1 could not hold. Now each element of §;+1 D ., in particular, each
H € bs$,, is a union of some atoms of §; 1. On the other hand, bs §, covers all of Q2. Thus
F C H for some H € §,. Now define bs 9,41 :=bsH, U{F,H\F}\{H}. Here H\ F # } is a
union of some atoms of §;11, thus of positive probability. Hence {ﬁk},’;g is a Haar system. Also,
$),41 satisfies either (6.2) with 7+ 1 in place of r, or 9,41 = Fit1, but if the latter condition holds,
then the first one holds for a larger i, unless we already had i + 1 = n, but then the construction

is complete; so is the proof. O
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After legitimating these restrictions on the class of martingales we need to consider in the
definitions of the properties UMD-p and MT-p, the verification of the equivalence of these two
conditions requires almost no effort at all. This was not at all obvious in the beginning, so we
nevertheless state the promised result.

Proposition 6.9. The conditions UMD-p and MT-p are equivalent, with the same constants.
Thus, we can (and will) henceforth abandon the symbol MP(X ) and only use M,(X).

Proof. According to Lemma 6.8, both of these properties reduce to martingales on Haar systems,
so all we need to do is to deduce MT-p for Haar systems from UMD-p for Haar systems. We need
one simple observation: If h = {h;}}_, is a martingale adapted to a Haar system {§;}}_, and
v = {v }32, is a predictable sequence, then vy dhy = A 0hy for some A € R, [Ag] < |vk|Lm(Q) <1
Indeed, if bs §)j, is obtained from bs ;1 by splitting H € bs ;1 into H; and Ho, then it is clear
that the values of fi and fr—1 only differ on H, and the $);_;-measurable v, attains a constant
value Ay on this set, which is an atom of $;_1. Then we compute

k=1 k=1

k=1
where M,(X) denotes the constant in the condition UMD-p; by this computation this same
constant is also appropriate in MT-p. (We used Lemma 2.3 to obtain the first inequality above.)
O

n

ZEkéfk

k=1

< max
ee{—1,1}m
LP(9;X)

= < MP(X)

)

LP(Q;X)

LP(Q;X) LP(Q;X)

6.3 Reduction to Paley—Walsh martingales

In the previous section we already saw that a rather restricted class of martingales is fully repre-
sentative in view of verifying whether or not a given Banach space X has the property UMD-p
(or MT-p). This reduction can be continued even further. In this section we show that the UMD-
property is equivalent to merely requiring that the condition (6.1) hold for one special class of
martingales, namely those bearing the names of Paley and Walsh. (By Proposition 6.9, the same
is true for MT-p. Owing to this lemma, we can concentrate only on the property UMD-p in the
following results, without any loss of generality.) The Paley—Walsh martingales are defined as
follows:

Definition 6.10. Let Dy, k € Zy, be the finite algebra generated the partition of [0,1] into
2% intervals of equal length. The sequence {D,}32, is called the Paley—Walsh system, and a
martingale f € L'([0,1]; X)?+ adapted to {D}2°, is called a Paley—Walsh martingale.

We always consider the interval [0, 1] with the Lebesgue measure m, which is clearly a prob-
ability measure on this space. The collection of Lebesgue measurable sets is denoted by 9. For
definiteness, in the definition above, we could take Dy := {[0,27%),[27% 2. 27F) ... [1—27* 1]},
say, but since the set of points {r-27% € [0,1] : r,k € Z,} is only countable and thus of measure
zero, the way we define the openness or closedness of the intervals is quite irrelevant.

The next step toward Paley—Walsh martingales is to replace the Haar systems with arbitrary

bases by dyadic systems, where the ratio ]I;({II;)) of the probability of the new basis element

H, € $,41 to to the probability of H € §,, H D H;, is always of the form r2=™, 6 m € Z,
r € {1,...,2™ — 1}. Since such dyadic fractions are dense in (0,1), one might guess that the
reduction to dyadic Haar systems is a matter of approximation.

Lemma 6.11. The inequality (6.1) holds for all f adapted to Haar systems if it holds for all f
adapted to dyadic Haar systems. The best constants My(X) are the same.

Proof. For a Haar system {95 }}_,, let bs 9, = {H;}_;. On a nicely divisible probability space,
we can clearly construct a partitioning {G;}7_, of €, so that the probability of each G is an
integral multiple of 2~™ for some m € Zy and P(H;AG;) < € for a given € > 0. (We first fix e and
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then a suitably large m. A denotes the symmetric difference AAB := (A\ B)U(B\ A).) We then
define &, k =1,...,n, by letting &, consist of U;crG; for I C {0,...,n} such that U;c1H; € .
Then clearly {&;}7_, is a dyadic Haar system.

Our intention is to approximate a martingale h = {h;}}_, adapted to the original Haar system
{Hr}i_, (thus hy = E(hy| $Hr)) by a martingale g, defined by gy := E( hy,| &), which is adapted
to the dyadic Haar system {®;}}_,. If we can show that each hj can be approximated by
the corresponding g arbitrarily well in the LP norm, then the desired result follows by similar
computations as in the earlier lemmas:

n
+ ) |0k — Sgi|< my(X)
Lr(Q;X) k=1

+ 2nn
LP(Q;X)

zn: Ekéhk
k=1

n
<D erdo
k=1

Z g
k=1

LP(Q:;X)

+ 2n (mZ(X) + 1) 7,
LP(Q:X)

where 17 > maxy, |hy — g |y is a small positive parameter under our control (hence we now pass it
to zero), and m (X) is used as in previous lemmas.

To complete the proof, we only need to show the desired approximation properties of g. Let
us, for the shake of convenience, denote f := h,. The conditional expectation with respect to a
finite algebra has a simple explicit form, and thus we can write

E( f[$9x) = ZfHlek ge =E(f| &) = Zkale

Where bs 9 == {H}}_o, bs @, := {G¥}%_, and we have adopted the shorthand notation fs :=
P( Y / 4 JdP for the average of f on a set A of positive probability.

The goal is to show that the difference of hy and g in L? can be controlled by the parameter
€ introduced above. We first show that f4 and fp are close, if A and B differ only little. To this
end, we estimate the terms on the right-hand side of the identity

For the first term we have
[ e [ 5] < [P < g (PASENF <[l

where Holder’s inequality was applied, and % > 0, since p > 1. Since |P(4A) — P(B)| < P(AAB), it
follows that |f4 — felx <P(4) " |fl1r(0,x) €7 + (P(A)P(B))~ | £l e (a;x) € We can still estimate
P(B)~! < (P(A) — €)~! to get an estimate only in terms of A, f and e, and this is a decreasing
function r(e) of € > 0 small enough for fixed f and A, and r(¢) } 0 as € | 0.

Finally, |fala — felglx < |fa— fBlx1anB + |falx V |fBlx Laap. The first term was
already bounded in terms of e above, and the LP norm of the second term is bounded by
|fleo(o,x) B(A4) 1V P(B)~})P(AAB)¥, and this also decreases to 0 as e | 0. Since hy and
gr are combinations of finitely many functions of the form f41 4, we see that the LP norm of their
difference is at our disposal. Since there are only finitely many k = 1,... n, it is clear that we can
even control all the differences [k — gkp»(q,x) simultaneously by adjusting the parameter e. [

To facilitate the statement of the following lemma, which will essentially complete our mission
in this section, we make some observations concerning functions f measurable with respect to a
finite algebra § on ;. Since f attains a constant value on each F' € bsg, it can be identified
with a function with domain bs§ in an obvious manner. Below, we will consider a probability



6.3. REDUCTION TO PALEY-WALSH MARTINGALES 61

preserving Boolean isomorphism b : § — &, where & is another finite algebra on another
probability space Q5. (Probability preserving simply means Py (F) = Po(b(F)) for all F' € §, where
Py and Py are probabilities on the two spaces; a necessary and sufficient condition for this is that
Py (F) = Pyo(b(F)) for all F' € bs§. A Boolean homomorphism is a mapping that commutes with
finite set operations, and an isomorphism is in addition a bijection, as usual.) When we have such
a b, and an F-measurable f : Q; — X is identified with a function (still denoted by f) taking
bs § into X, then we can define g on bs® by g := f o b~!, and this can again be identified with
a B-measurable function on 2,. It is clear that g defined this way has the same distribution as
f, and also that joint distributions of sets of random variables are invariant under the mapping
frsfob L.

Note that “ fob~!” is actually misuse of notation, when f : Q; — X and b : § — &. Without the
identifications of domains used above, the definition of g would be the following: g(ws) := f(w1)
whenever wy € b(F) and w; € F € bsF. This is somewhat cumbersome, and we hence prefer the
shorthand notion introduced, which is literally incorrect, but logically sound, when interpreted as
explained.

Lemma 6.12. If {§,}}_, is a dyadic Haar system on (Q,§,P), and {Dy}72, is the Paley-Walsh
system, then there exists a dyadic Haar system {®}7_, on ([0,1],99t,m) such that

1. there is a probability preserving Boolean isomorphism b: 9, — &,,, and

2. there are numbers Ny, k =1,...,n, such that &, C Dy, and
E(f|9:) =E(fob™"'|&;) =E(fob™"|Dn,) (6.3)
for all f € L'($H;X).

Note that the conditions imply that b is a probability preserving Boolean homomorphism from
9, into Dy, .

Proof. The construction is similar in spirit to that one in the reduction from systems of finite
algebras to Haar systems in Lemma 6.8. We can always set Dg := &¢ := {0,[0,1]}, H0 = {0, Q}.
Suppose &1, ..., B, are constructed, so that the conditions of the lemma are satisfied. Note that
then the atoms of &, are unions of intervals whose endpoints are integral multiples of 2=, (All
this is obvious for the initial step ¥ = 0.) If bs 9541 is obtained from bs §);, by splitting H € bs ;.41

into H; and Hs with % = r27™, then we construct &1 as follows: Set Njpi1 := Ny + m.

b(H) € &} is a union of a finite number of intervals with end points i2~"* and (i + 1)2~ ™, with
integral i. For each such interval, let G consist of the r first subintervals of length 2~ V&+1 and
let G5 consist of the remaining 2™ — r subintervals. Then let bs &4 := bs &, U{G1, G2} \ {b(H)}
and extend b to a probability preserving Boolean isomorphism from $;1 to &g41 by defining
b(H;) == G4 1 = 1,2. (The rest of the values of b are uniquely determined by the Boolean
homomorphism property.)

This construction clearly gives {®;}}_, such that the property 1 holds. To finish the proof,
we must show that the property 2, too, is satisfied. Observe that the first equality in (6.3) is
immediate from the construction of &; = b();) and f o b~1. All that remains is the second
equality, and we can further denote g := fo b~ ! € L'(®,; X) for convenience.

We first show that E( g| &5_1) = E(g|Dx_1) if g € L'(6; X). Indeed, since {&;}7_, is a Haar
system, g has the form g = go+z11g, +721g,, where go € L' (8 _1; X) and G1,Gs € bs B\ By,
G1 UG, € bs®,_1 and gg = 0 on G; UGy, Then obviously

m(Gl)ml + m(GQ)l‘Q
m(G1 U GQ)

E(g|®k—1) =90+ 1c,uG,-

Since &;_1 C Dn,_,, we also have E(g0| DNk_l) = go. Furthermore, in the construction of &y
from ®_; above, each of the intervals A € bsDn, ,, A C G1 UG, was divided between G and
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G> in the ratio m(Gy) : m(G2). Thus, for t € A C G1 U Gs, E (311, + 2216, DN, _,) (t) =
m(G’l)z1+m(G2)z2
m(G1UG2)

Now the asserted property 2 follows by induction. Obviously E(g|®,) = E(g|D,) for g €

LY(®,; X) C L'(D,; X). Assume then that the property 2 is verified for some k < n, and deduce

. But this exactly agrees with E( g| &;_1) above.

E(g|&k-1)=E(E(g|®;)| S 1) =E(E(g|Dr)|Dr-1) =E(g|Dg-1).

In the second step we used the induction assumption, and the previous part of the proof applied
to E(g| &) € L' (&y; X).
The proof is complete. O

Finally, it is time to collect the pieces together.

Lemma 6.13. A Banach space X satisfies the property UMD-p if and only if it satisfies that
property for all Paley—Walsh martingales. The best constants M,(X) are the same.

Proof. By Lemma 6.11, it is sufficient to check the condition UMD-p for all martingales adapted
to dyadic Haar systems. If f = {fx}7_, € L'(Q;X)" is one such martingale adapted {Fx}7_;,
Lemma 6.12 provides us with numbers Ny, £ = 1,...,n and a probability preserving Boolean
homomorphism b : §, — Dy, such that the following computation holds (f, o b~! is to be
interpreted as discussed before the statement of Lemma 6.12):

[ @150 ~E(flge)| @
2 k=1 X
1 n D
:/ S (B (faob | Dn,) —E(faob ! |Dn,,))| dm
0 k=1 X
1| Nn P
:/ S k(B (faob D)) —E(faob [D;1))| dm
o |5z
1| Nn Xp
<mp(X) [ [SE(fe07|2) =B (fuob | D) dm
j=1
1| n XP
:mp(x)/ SE(faob | Dm) —E(faob ™ [Dr,_,))| dm
0 k=1 X
=y () [ 3Bl §) ~E (Sl 3u))| P
Q| k=1 X

Here m,(X) denoted the smallest constant for which the property UMD-p holds when restricted to
Paley—Walsh martingales, and the computation above shows that M,(X) < m,(X). a

Remark 6.14. The Paley—Walsh system is not a Haar system. By repeating the argument in
the proof of Lemma 6.8, it nevertheless follows that we can even restrict ourselves to martingales
adapted to the standard Haar system {$;}7>, with

bs Ham p := {[0,27 ™) L [(2r — 1)27 D 2027 (MDY [p9m ™ (4 1)27™) L1 — 27, 1],

form € Zy, 0<r <2™m. Clearly $Hrm =Dy, where {Dy}7°, is the Paley-Walsh system.

6.4 Gundy decomposition and weak-UMD property

So far we have considered the UMD property for martingales on L? with p > 1. Using the notion
of martingale transforms, this condition can be given the compact formulation

|(€*f)n|Lp(Q;X) < Mp(X) |fn|LP(Q;X) :
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This can be put in yet another form; taking the supremum over n € Z, it is clear that the above
condition implies
€% flee 24 zr(2ix0)) S Mp(X) [ flg 2420 (20 -
Conversely, if the latter inequality holds for all martingales, it holds in particular for {fx}}_,, and
we deduce the earlier inequality. (Recall that |fi|;»q.x) = [E(fal §8)l1r0.x) < [falpr.x) for
k<n.)
It turns out to be useful to formulate on L' a similar weak-type condition.

Definition 6.15. A Banach space X is said to have the property weak- UMD if the inequality
AP((e* f)* > A) < My [flpee (z,.11(0:%))

holds for some constant M,,, for all martingales f € L'(Q; X )2+ and all sequences € = {e;x}32, C
{—1,1}%+. The property weak-MT is defined similarly.

Recall that (-)* denotes the maximal operator, defined in Definition 5.16.

Our goal in this section is to show that each of the conditions MT-p, 1 < p < oo, implies the
weak-MT condition, thus justifying the name. (This result then implies that UMD-p implies weak-
UMD, since MT-p follows from UMD-p by Proposition 6.9 and weak-UMD is clearly a special case
of weak-MT. Observe, however, that even though we know that UMD-p and MT-p are equivalent,
we cannot immediately say the same about the corresponding weak-type conditions.)

In fact, the converse statements are also true and will be examined later on. (And once
we do this, it immediately follows (UMD-p = weak-UMD = UMD-q) that all the uncountably
many UMD-p conditions are in fact equivalent, something that is so far not at all obvious. The
deduction of this fact will, as indicated, go through the weak-type condition; this should give
sufficient motivation for the definition of the new property weak-UMD.) For the moment, we
concentrate on the first mentioned implication MT-p = weak-MT. The essential tool to establish
this will be the Gundy decomposition, which allows us to break arbitrary martingales into pieces
with convenient properties. Some preliminary results are first in order.

Lemma 6.16. If f € (>°(Z4; L*(Q; X)) is a martingale adapted to {F,}52, and T is a stopping
time, then

/ |frlx dP < |flpee 2, 01(0;%)) -
{r<oc}

Proof. Using the basic properties of martingales and stopping times we compute

fily dP < / E(|fal | 81) d = / ful x dP
;/T:k} kX kz:; {r=k} X g kz:; {r=k} X

<|falpr@x) S fleezyr1@x)) -

The first step follows from the fact that {|fx(-)|x}32, is a submartingale whenever f is a mar-
tingale, the second is a consequence of the definition of conditional expectation and the fact that
{r = k} € 3 for a stopping time 7, and the remaining steps are quite obvious, Taking the limit
n — oo and observing that U2 {7 = k} = {7 < o0} we arrive at the claim of the lemma. O

Lemma 6.17. Let f € (*(Z4; L' (Q; X)) be a martingale adapted to {F};>, and X > 0. Let the
stopping time T be defined by

T(w) :==inf{n > 1:|f,(w)|x > A}
and let o be another stopping time. Then |anA(T,1) |L1(Q,X) <2 |f|lm(Z+;L1(Q;X)) and

nAo—1

Z E( Lir—k4+130frta | 3k) <2 |f|£°°(Z+;L1(Q;X)) .
k=1 L1 (;X)
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Proof. For the first assertion, we first observe that, on the set {r < oo}, we have the estimate
|fn/\M(T,1)|X < A < |f-|x by the very definition of 7. On {7 = oo}, we clearly have n Ao AT =
n A 0. Combining these two simple observations and integrating over () we find that

|.fn/\o'/\(r—1)|L1(Q;X) < /{ <oo} |f‘r|X dP+A o} |fn/\a'|X dP < |f|[oo(Z+;L1(Q;X)) + |f|£oo(Z+;L1(Q;X)) .
The last step used Lemma, 6.16: the first integral is explicitly of the form considered in that
lemma, whereas the second involves the stopping time n A o, which is everywhere finite, in fact,
bounded by n.
For the second assertion, we clearly have

nAo—1 nAo—1
> E(mi0fint|8e) | < 30 E(Lrmpiny 0fesl x| §1) X
k=1 X k=1

by Jensen’s inequality applied to the norm function. Integrating over 2 and estimating n Ao <n
we obtain

nAoc—1 n—1
‘ Z E(1gr=pt130frs1|Sk) < Z/ 10 frt1]x dP
k=1 L1(Q;X) k=1 {r=k+1}

n—1 n
322/ |fk+1|XdIP’s2Z/ E(|falx| k) dP
{T:k+1} k:z {T:k}

k=1
n
= 22/ 0 |fnlx dP < 2{falpr.x) < 2| fliez 00 (25x)) -
k=271T=

The first step simply used the earlier inequality and the fact that the integral of a conditional
expectation of a random variable over 2 coincides with the integral of the original random variable.
In the second step we estimated |0 fy+1|y by the triangle inequality, and observed that | fi(w)|x <
A < |feg1(w)|x for w € {r = k + 1}. The third step used the fact that the norm sequence of a
martingale is a submartingale, and we also changed the indexing in the summation. The fourth
step employed the definition of conditional expectation on {r = k} € §, and the rest is obvious.
Both assertions have now been verified. O

Now we come to the Gundy decomposition.

Lemma 6.18 (Gundy decomposition). Let f € (*°(Z ;L' (Q; X)) be a martingale adapted to
{Z1}52, and X\ > 0. Then there exists a decomposition f = g+ h+ b, where g,h,b € L*(; X)%+
are martingales, which satisfy the following estimates:

L glee @ in1(25x)) < Alflezpipr@ixy) 004 19l 2,400 (0:x)) < 20
2. Y= |5hk|L1(Q;X) < 4|f|£°°(Z+;L1(Q;X)); and
8. AB(5* > 0) < 3] 2.0 ()

The numerical constants appearing in this lemma are not necessarily the best possible, and
their value is actually quite irrelevant for our purposes. The given constants are the ones that
naturally follow from the method of proof.

Proof. The proof will in fact present a construction of the desired decomposition and then show
that it satisfies the asserted properties. We define the auxiliary stopping time random variables 7
and o: 7 is defined as in Lemma 6.17 and ¢ is given by

o(w):=inf{n >1: ZE( 10 frt1] x 1{r:k+1}|§k) > A}
k=1
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Observe that >;_ B ([0 fe+1]x 1ir=rt1}| Sk) is Fn-measurable, so that {o < n} € §, and o
actually is a stopping time. We will soon exploit the fact that {o > n} = {o < n —1}° € Fp_1.
The usefulness of the stopping times 7 and o lies in the fact that “prior to” these moments of
(discrete) time, the martingale f remains appropriately bounded.

We now define the martingales g, h and b by giving the corresponding difference sequences,
starting from g:

dg1 = 15130 f1
5gr = 11y (Lirsiy0fn — B (Lo fe| Se-1)) k> 1.

Note that we could also have 1;,>1} as an additional factor in dg;, but this is unnecessary, since
o > 1on all of Q. {dgr}32, is a proper martingale difference sequence, as is easily verified
by considering the conditional expectation E(dgx| Fx—1) and “taking out” the §;_i-measurable
1{5>k}- Observe how we have used the stopping time 7 to ensure that fi and fr—1 appearing
in the formula for dg; are bounded in norm by A, since the indicators differ from zero only on
{r > k}. g represents the part of f that is bounded in L relative to the parameter \, as we
wanted. More precisely, we have

90 =Y 00k =Y Loomy Lironydfi = D Loz E (Lo fi| 3u)
k=2

k=1 k=1
nAcA(T—1) nAo
= Z 6fk+Z]E(1{T:k}5fk|%'k—1) )
k=1 k=2

where in the last step we converted the indicator involving {7 > k} into one with {7 = k} by the
identity

E(1ir—i30fn|Sr-1) + E(Lirony0fn| -1) =E (Liroiy0fn| a-1) = Loy E(8f2| Sx-1) =0, (6.4)
which holds since 1;,>4} is Fr—1-measurable. |gn| x can now be estimated, using the triangle

inequality, by the sum of |faon(r—1) |X and ‘ZZQ;’A E(1{r=k+130 frt1| k) ‘X, and by the defi-

nitions of the stopping times 7 and o, both of these are bounded by A; thus g satisfies the asserted
L> bound. Furthermore, estimating the L' norm of g,, similarly and recalling Lemma 6.17 we
also deduce the desired L' bound.

While g was the part of f corresponding to the “moments of time” k < 7, when f remains
bounded by the parameter A, we define h to be the part of f related to the time 7, when f just
exceeds this bound:

Ohy == 142136 f1
by, = Lioopy (Lir—k)0fi —E (=110 k| Fr-1)) k> 1.

We add g and h making use of the equation (6.4) to find that dgi + 0he = l{e>pilir>pydfr =
Lionr>ky0fe- Thus, if we want to define the remaining martingale b so as to produce a proper
decomposition of f, we must set

Oby == 0fr — 6gr — Ohg = Lioar<i)O fr-

Observe that b; = 0.
It remains to show that h and b satisfy the asserted estimates. For A we have:

D16kl g a,x) < Z/Q (Lr=ry 0l x + E(Lirmiy [6fk]x | St—1)) dP
k=1 k=1

SZ/ 4|fk|XdHD:4/ |fT|XdIPS4|f|£°°(Z+,L1(Q,X))
=1/ {T=Fk} {r<o0}
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The first inequality was a simple norm estimate (where we can interpret the conditional expectation

with respect to §o to be zero). In the second step we have used the identity [ E(:|§)dP = [ -dP

to remove the conditional expectation, and we have also estimated [0fi|y < 2]fk|y, since on

{r =k} we have |fr—1]x <X <|fi|x. The last step is a direct application of Lemma 6.16.
Finally, we must estimate the probability of the event {b* > 0}. Since

n n n
b, = Z&bk = Z 1{(;/\7—<k}6fk = Z 6fr =0 for n<oAT,
k=1 k=1 k=oAT+1
it is clear that b and thus b* can only differ from zero if 7 A 0 < co. Thus P(b* > 0) < P(r <
00) +P(0 < 00), and P(T < 00) = P(f* > A) < 1 | fleoe (24:01 (;x)) 8lves an estimate of the desired
form. Similarly, using the definition of o, we find that

{o <oo}= {ZE(I{T:kJrl} 10 frrilx | k) > )\} ; (6.5)

k=1

and to estimate the probability of a set on which a function exceeds a given value it is sufficient
to estimate the L' norm, as is well known. Thus we compute

Z/ E(Lfr=ki1y 0fws1x | Sr) dP = Z/ |0 fr41] x dP
=179 k=1 J{7=k+1}

< 2/ | frlx AP < 21 flpee 2500 (0:x)) >
{r<oo}

where in the second step we once again estimated | fx|y < A <|fiy1|x on {7 = k+1}, and the last
step was again Lemma 6.16. It then follows, recalling (6.5), that P(0 < 00) < x2|fljee (2,11 (0:x))
and this combined with the estimate for P(7 < oc) gives the asserted bound for P(b* > 0). All
the asserted properties of the Gundy decomposition have now been verified. O

The Gundy decomposition in our tool box, the derivation of the property weak-MT from MT-p
is a straightforward computation.

Proposition 6.19. FEach of the properties MT-p implies weak-MT.

Proof. Let X satisfy the condition MT-p for a certain p, which will be fixed from now on.
Also fix A > 0. Let f € £°°(Z;L'(Q; X)) be a martingale, and v be a predictable sequence,
V] g (2 4;10(x)) < 1. We must prove that f satisfies the inequality AP((v x f)* > A) <
M, |f|£°°(Z+;L1(Q;X)) for some M,, independent of f, A and v. We do this by establishing separately
a similar inequality for each of the three martingales in the Gundy decomposition of f. More pre-
cisely, let f = g+h+b be the Gundy decomposition of f relative to \. Then vxf = vxg+vxh+v*b
and

P((vx f)* > X)) <P((vxg)* > %) +P((vxh)* > %) +P((vxb)* > g).

The last of these is easily estimated by observing that (v x b)* can only differ from zero if b*
does, and thus

LA . 3
P((vxb)* > g) <PO">0) < by | flese 24501 (%))

by the properties of the Gundy decomposition.
It is also immediate that

el A
P((v*h)* > g) < Y1 x bl iz 01 0ix))

> w

by Doob’s inequality, and

n o0
[(v* h)nlp1(q.x) < Z |k oo (05 100k L1 (0. x) < Z 16hk| L1 0.x) < 4 flese (2,00 @)
k=1 k=1
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(again by the properties of the Gundy decomposition), and taking the supremum over n € Z we
obtain the same inequality for |v x h/ (o (7411 (2:x))- Combining this with the previous inequality
yields a bound of the desired form.

So far we have not used the assumption MT-p, but only the properties of the martingales h
and b in the Gundy decomposition. One might guess that the real work is to be done on v * g.
The basic difficulty with the proof is clearly the fact that we should deduce a result covering all
L'-bounded martingales from an assumption concerning only LP martingales for some p > 1. Now
the g in the Gundy decomposition is not only bounded in L* but also in L>°, and the boundedness
in LP 1 < p < oo follows by interpolation. This is the idea of the proof, now for the detail:

L3\ 3 " 3 )
Pwxg)"> 1) < 5 10x0) |0x) < 5P 10 % 9lie 24,00 x))
3rpP 3rp” 1
< = Mp(X)? |90t (2 :10 (0 x)) < - Mp(X)? |96 (2.4 (@:x)) 1916 (2 221 (0:3))

31)’71) p (qp—1yp—1 1 PP p
< P M, (X) (4 A ) (4|f|£°°(Z+;L1(Q;X))) = XIQ P’ Mp(X) |f|l°°(Z+;L1(Q;X))'

The first step is a simple standard estimate and the second is Doob’s LP inequality. The third step
employs the assumption of UMD-p, and the fourth inequality is obtained by taking the supremum
over n on both sides of the inequality

[ laulied = [ 1,57 laul 4B < lau iy [ Lol P

The fifth step uses the properties of the martingale g in the Gundy decomposition, and the last
step is just rearrangement. The proof is complete. O

6.5 Weak equals strong

As a last task in this chapter, we will show the converse of Proposition 6.19. Once this is done,
we have rather good picture of various characterizations of the UMD property; in fact, we have
the following:

Theorem 6.20 (Burkholder 1981). In a Banach space X, the following conditions are equiv-
alent:

1. X has UMD-p for all p € (1,00).
2. X has MT-p for all p € (1,00).

X has UMD-p for some p € (1,00).
X has MT-p for some p € (1,00).
X has weak-UMD.

S St

X has weak-MT.

Proof. By Proposition 6.9 the conditions 1 and 2, respectively 3 and 4, are equivalent.
1,2 = 3,4 is obvious.
4 = 6 was just proved in Proposition 6.19.
6 = 5 is obvious.
5 = 1 will be proved in this section, Proposition 6.24. O

So far we have talked of a Banach space X having the property UMD-p etc., and not really
given a meaning for the concept UMD-space appearing in the heading of this chapter. We have
done so in order not to place any one of the conditions in Theorem 6.20 above others, but to
emphasize the equivalence of all of them. Thus we state:
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Definition 6.21. A Banach space X which has any one, and thus all, of the properties enumerated
in Theorem 6.20 is called a UMD-space.

Having celebrated a result whose proof we have not yet finished, we now calm down and return
to work. We first require a couple of lemmas.

Lemma 6.22. Let B,p > 1 and v, > 0 so that Py < 1. If the positive measurable functions f
and g satisfy
P(g > Bt, f < dt) <yP(g > 1)

_1
for allt >0, then |9|Lp(9) <(1—=pry) ¥ % |f|LP(Q)'

Proof. If g satisfies the conditions, so does g An. (This essentially depends on the fact that § > 1.)
Thus, if the lemma is verified for g € LP(2), the general case follows by the monotone convergence
theorem. For g € LP(Q; X), this is a straightforward computation using distribution functions. O

Lemma 6.23. Let X be a Banach space with weak-UMD and f = (fr)72, a martingale. If there
is a predictable sequence w = (wy)7>, which dominates the differences of f, i.e., [0fi|y < wy
(a.s.), then
)
P(ex )" > 20, f* vt <0 < 1My (XB((ex f)* > )
for all X >0, § € (0,1) and all sequences of signs € € {—1,1}%+.

Proof. Fix A > 0 and € € {—1,1}%+, and define the auxiliary stopping time random variables

7j(w) ==inf{k: [(ex flr(w)ly >JA} =12,
A(w) :=inf{k : | fr(w)| x V wit1(w) > A}

Also denote

Ty ={nn <k<mAA}={w:A< max [(ex f)j(w)|x < 2, max (1fi (@)l x Vwjs1(w)) <A}
i<k~ i<k~

Then T}, € §r—1 and u := (ug)52, = (17,)72, is a predictable sequence.
We first claim that

{(ex )" > 20 F V' <A} C {(ukexf)* > (1— A} (6.6)

Observe that the left-hand side appears in the assertion of the lemma, whereas the right-hand side
is something that we can estimate by the assumption of weak-UMD); indeed

My (X
P((exux f)* > (1—)A) < ﬁ [ PArp—— 6.7)

We have written u x € x f for ux (e x f) (and similarly ¢ x u x f), whose nth member is given by

(wk (ex fn =Y urdlex fli =D uperdfi.

k=1 k=1

This last form shows that u % (e x f) = € x (u x f), making the estimate (6.7) useful once the
claim (6.6) is proved. We have left out the parentheses for convenience.

To prove (6.6), we will in fact show that (uxex* f),, > (1 — )\ for each point on the left-hand
side of (6.6); observe that (e x f)* > 2\ implies 75 < co. On the other hand, f* VvV w* < §\ implies
A = 0.

Tt is always true that 71 < 75. On the set on the left-hand side of (6.6), we have 11 < 7» strictly;
indeed, from (€ x f);, = (e x f)r,—1 + €,0 fr, we get, for each point on the left-hand side of (6.6),

|(€*f)T2—1|X 2 |(€*f)T2|X - |6f72|X > 2\ — |wT2|X > (2_6))‘ > )‘a
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and this means 7 < 75 — 1 by the very definition of 7.
We then compute (still considering a point in the left-hand side of (6.6), whence A = o)

(U*G*f)m = Z]-Tl<k§T2/\A6(€*f)k = Z 6(6*f)k = (e*f)‘rz - (E*f)na

k=1 T1<k<To
and thus
(uxex flrly 2 [(€x flrmly —1(€x flrlx >2X=|(ex f)r-1lx —[0fr|x 22X = A —wr > XA =0

This verifies the claim (6.6).

Looking at the inequality (6.7), it now seems natural to start working on u x f. There are
two exclusive possibilities (for each point w of the probability space 2): either 71 > 79 A A, or
71 < 72 A A. In the first case, we clearly have w ¢ T}, = {11 < k < 7 A A} for any k, thus
ug(w) = 17, (w) = 0, and (u* f)g(w) = 0 for all k € Z,. In the second case, w € T} for some
(possibly many) k € Z . For such w and k, 1 < k < 719 A A, we have

k

k
(Wx Pk =Y Vrcjcranntdfi= > 0fj= fr = fr-

j=1 Jj=11+1

A similar computation for k < 7 gives (uxf); = 0, and for k > mAA we have (uxf)r = froaa—fr,-
Thus [(u* f)i|x < |fearanalx + | fri]lx- Now we restrict the considerations to the set {r; <

T AA} (recall that outside this set, uxf = 0); thus | f,, | y < 6\ by the definition of A. Furthermore,

| fenranalx < | fearana—ilx +10fearnalx < OA+ Wraraa < 20,

where we again used the definition of the stopping time A. These estimates combine to give
[(u* flr|xy < 30X forall k € Z, on {m < ™ AA}, and u* f = 0 outside this set, in particular,
uxf=0on {r = oo} = {(ex f)* > A}. Thus we conclude that

|(U*f)*|X S 35)‘1{(6*f)*>)\}
and thus
[ux flosez 1 @ix)) S NW* ) 11 q.x) < 30AP((ex f)" > A).

(The first step used the easy part of Doob’s inequality.)
To complete the proof, it suffices to combine (6.6), (6.7) and the inequality above with the
assumption of weak-UMD to yield

M, (X) 39 .
T=0A |uk flooezim1(@ix)) < me(X)P((G* fr>A).

The proof is finished. O

P((ex f)* > 2\, f* Vw* < 0A) <

Now we obtain the desired result.
Proposition 6.24. If a Banach space X has weak-UMD, then it has UMD-p for all p € (1,00).

Proof. By Remark 6.14, it suffices to prove the property UMD-p for all martingales adapted to
the standard Haar system. If f is such a martingale, then § f; is non-zero only on one interval
I, = I} UIZ, m(I}) = m(I}), I}, I} € bs 9y, Iy € bsH_1. From the condition E§ fr = 0 it now
follows that d f, = mklli —xkllf for some x, € X. Define wy, := |0 fx|x = |zk| x 11, € L (Hr—1).
Then obviously [0fx|y < wg, and w = {wy}52, is predictable. Furthermore, wy < |fi|y +
frotly < 2f% thus w* < 2f7.

Now we are in a position to apply Lemmas 6.22 and 6.23. The latter one guarantees that

36

P((E*f)* > 2t,f* VvV w* S (St) S m

My(X)P((ex f)* > 1)



70 CHAPTER 6. UMD-SPACES

for all § € (0,1) and all ¢ > 0. For a fixed p > 1, choose 6 = §(p) € (0,1) small enough so that
2p %Mw (X) < 1. Then Lemma 6.22 applied to the positive measurable functions (e x f)* and
f*Vw* says that

1
* 36 T 2 * * * *
[(ex £)*| () (1—2pmM (X)> 5|f VW' o) =t My [f*V 0| o) -

Bearing in mind that w* < 2f*, we further compute

[(ex f)*| o) < M, (|f*|LP(Q) + |W*|Lp(9)) <3My 1 1o -
and finally
|€*f|zo<> (Z LX) S [(ex f)* |Lp < 3M'p|f|£oo (Z43LP(Q:X)) *
where we again used Doob’s inequalities. The assertion now follows with M,(X) < 3M,p. O
Now that this proposition, and thus Theorem 6.20, is proved we can we can legitimately explore

some immediate consequences. First of all, we can restate Example 6.3 at the beginning of the
chapter:

Example 6.25. Every Hilbert space is UMD; in particular, C and R are UMD.

We will see in Chapter 7 that there are other UMD-spaces, too. At this point, we present
another close relative of the UMD-inequality, the square function estimate, which is satisfied by
every LP-martingale on a Hilbert space, as the example will show.

Example 6.26. For o martingale f = (fr)52; C {°(Z4; LP(Q;H)), p € (1,00), H Hilbert, the
square function Sf, defined by

satisfies
$p [ fleoo (24300 @s90)) S SF Loy < Splflese@ysmr(0i90))

Proof. The result follows quite immediately from the UMD-inequality, which is valid, since every
Hilbert space is UMD, and the Hilbert space version of the Khintchine-Kahane inequality. Indeed,
let e be Rademacher functions on 2, as usual, and ¢}, be Rademacher functions on another
probability space 2’ with probability measure P’. First observe that

-/ (kz |6fk<w>|3c) ' o /

which is easily seen by writing the norm on the right-hand side in terms of the inner product of
H and using the orthonormality of the Rademacher functions.

By the Khintchine-Kahane inequality (applied pointwise inside the integral), this quantity can
be estimated by

p

10 (w dP(w),

LQ(Q’ H)

ST 1655
k=1

Lr(Q)

n p P
<A [ D eldfilw) dP( Z eh (W) dP' (")
¢ lk=1 Lo(953¢) LP(2:90)
< APMP(H Z(ka dP'(w') = AP MP(H Z 6fk ,
Lr (Q;5) Lr(Q;3)
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where the first equality follows from Fubini’s theorem. The reverse inequality follows similarly,
since both inequalities above can be reversed: for the Khintchine—-Kahane estimate this is in the
very statement of Corollary 3.13, and for the UMD-estimate we observe that e x (e x f) = f (since
(£1)? = 1), from which it is obvious how to reverse the inequality |e * flrex) < floe@x)-

We now have the inequalities

ap M, (30) | fl o me) < [ 4] D2 16FC)]gc < ApMy(30) | Ful Lo cac) -
k=1

Lr(Q)
The assertion follows by taking the supremum over n € Z. O

The previous proof showed a beautiful interplay of the UMD-condition and the inequality of
Khintchine and Kahane, another place where the exponent p becomes irrelevant. We emphasize
the obvious fact that neither of the two results, Burkholder’s theorem (if we restrict for a while
to the equivalence of the various UMD-p) or the Khintchine-Kahane inequality is covered by
the other; they are about two different phenomena: in the Khintchine-Kahane inequality, the
random variables are the scalar valued Rademacher functions, which are multiplied by constant
vectors; in Burkholder’s theorem, the random variables are the vector valued martingales, which
are multiplied by constant signs. It is nevertheless interesting to note the similarity of the results,
although there is no clear connection.

6.6 Notes and comments

This chapter follows the seminar notes of de Pagter [5]. There exist more direct proofs of the
UMD-condition on R or C, but since we work in the vector-valued setting, it is natural to derive
these results as special cases of the general theory.

The name of the UMD-property is related to the fact that, by Lemma 2.12(4) and Remark 7.1
in the chapter, the UMD-inequality in fact requires the unconditionality of the Schauder decom-
position

{EC18k) —E(|Sk-1) 1}z,

of LP(F; X), whenever §, 1 §.

The original result on the unconditionality of the martingale differences in the scalar-valued
setting is also due to Burkholder (in 1966; see Diestel and Uhl [6], page 143). The vector-valued
results where not yet known when [6] was written, but the potential significance of such extensions
was nevertheless noted there.

It is easy to see that the square function estimate, if satisfied by the martingales on a space
Y, again implies the UMD-condition; indeed,

€% flooo(ziiri@yy) < 55 1S(ex Py = 55 1SFl@y) < 55 Splflis @m0 @iv)) -

for it is clear that the square functions of f and € x f coincide. In the scalar-valued, or even in a
Hilbert-space setting, it is sometimes more convenient to work with the square functions instead
of the UMD-inequality (6.1); however, while the UMD-property is satisfied by a large class of
important spaces, as we will see in Chapter 7, the square function estimate actually characterizes
spaces isomorphic to a Hilbert space. This is a result of Kwapien (1972; see Rubio de Francia [18]).

One can show that the UMD-constants of every Hilbert space are the same, usually stated as
Mp(H) = M,(C); see Section A.9.



Chapter 7

Properties of UMD-Spaces

7.1 Introduction

In this chapter, we discover some of the basic properties of the UMD-spaces, i.e., some consequences
of the uniform boundedness of martingale transforms in a Banach space. These properties are
essential tools in the analysis of multipliers in UMD-spaces in the following chapters. We also
obtain new examples of UMD-spaces, as well as counter-examples showing that not every Banach
space is UMD.

More precisely, our goal is to establish the following results: If X is UMD, so are X* and
LP(T'; X), where T is any o-finite measure space, and p € (1,00). Furthermore, every UMD-space
is reflexive.

7.2 New UMD-spaces from known ones

The purpose of this section is to demonstrate that some close relatives of a UMD-space share
the UMD-property. The results follow from general principles of extensions of linear operators
(presented in the Appendix, Section A.4), once we observe the following useful formulation of the
UMD-condition in terms of boundedness of operators:

Remark 7.1. X has UMD-p if and only if, for every probability space (2, §,P), all operators

n

> en B(I3k) —E(] Fr-1)), (7.1)

k=1

where €, = £1, (Fr)72, is an increasing sequence of sub-o-algebras of § and E( | §o) is interpreted
as the zero operator, are uniformly bounded on LP(F; X).

Now we can verify the UMD-property of a large number of spaces.

Lemma 7.2. If X is UMD and I is a measure space equipped with a o-finite measure p, then
LP(T; X), p€ (1,00), are also UMD, and M,(LP(T'; X)) = M,(X).

Proof. By Remark 7.1, the property UMD-p is about uniform boundedness of the operators (7.1)
consisting of linear combinations of conditional expectations. Now the X-valued and LP(T; X)-
valued conditional expectations are vector-valued extensions of the scalar-valued conditional ex-
pectation (see Section A.4). Furthermore, the LP-extension result (Lemma A.15) says that the
L?(T; X )-valued extension is no larger in norm than the X-valued extension. The uniform bound-
edness in LP(Q; LP(T; X)) of the operators (7.1) thus follows from the uniform boundedness in
LP(Q); X), with the same bound. O

Lemma 7.3. If X is UMD, then X* is also UMD.

72
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Proof. For scalar-valued functions, we have LP(Q)* = LP(Q) for p € [1, 00). Furthermore, since

/ngmdub:/QE<gh|s)dP=/QE<g|s>th

for h € L?(Q), g € LP(Q) by Lemma 5.12, we see that the dual operator of E(-|F) € B(LP(2))
is E(-|§) € B( P(Q)). Since E(-|F) € B(LP(Q; X)) is the X-valued extension of E(-|F) €
B(LP(Q)), and E(-|F) € B(LP(Q; X*)) is the X *-valued extension of E(:| ) € B(LP(2)), and the
same is true of the operators

Z (| 8k) —E([Sr=1)) (7.2)

by linearity, Lemma A.16 guarantees that the operator (7.2) acting on LP({); X*) is no larger in
norm than the corresponding operator on LP(£2; X). Since the UMD-condition is the requirement
of the uniform boundedness of these operators, we find that X* is also UMD whenever X is. In
fact, Mz(X*) < My(X). O

7.3 Unbounded martingale transforms

To show that UMD-spaces are reflexive, i.e., that non-reflexivity makes the UMD-condition im-
possible, we must understand why a certain Banach space may fail to be UMD. It is the purpose
of this section to construct a prototype of a martingale failing the UMD-inequality, and to see in
what kind of spaces we can have such a martingale.

Lemma 7.4. Let ¢j, j € Z4, be Rademacher functions on ), and let Ty be the finite algebra
generated by {Ej};?:l (i.e., the smallest algebra on which these functions are measurable). Let the
stopping times T, : Q = Z U {0}, k > 1, be defined by

n
T :=inf{n € Z4 : Zsj >k}, (7.3)
j=1
and 19 := 0. Then
1. 7, <0 a.s.,
{Te — =112, is a sequence of independent identically distributed random variables,
e€n = 1 at a given sample point w € Q if and only if n = 1, for some k at that point,
Up_ {mi—1 <n <71} =0

{kal <n< Tk} c Snfl; and

S & o

given any m € Z ., it is almost certain that, for some k € Z,, we have 1, — Tp_1 > m.

Proof. The random variables 5}-’“ :=¢; V 0 are independent, identically distributed and symmetri-
cally {0, 1}-valued. Tt is illustrative to think of n € Z, as (discrete) time; then 2?21 E;r gives the
number of 1’s in n independent experiments with equally likely outcomes 0 and 1, and 73 is the
time (i.e., number of experiments) it takes to get k 1’s.

The probability to have r positive results in n experiments is clearly (?)2’” < ’;—:2’”, and
this certainly tends to O for fixed r as n — oo. Thus it is clear that the probability that we only
have less than k positive outcomes in a series of infinite experiments is zero.

Then 7, — 74,—1 (k > 1) is well defined, and represents the time it takes to get the kth 1 after
the (k — 1)th. Due to the independence of the experiments, this is the same as the time, counted
from the beginning of the process, it takes to get the first 1; i.e. 7, — 71 has the same distribution
as 1, = 1, — 79. The fact that the various 74 — 71 are independent for different values of k also
follows from the independence of the &}
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Item 3 is immediate from the definition. The assertions 4 and 5 are also consequences of simple
observations: Since 7, = >3, 1> 3778 ] =k, wehave U}_{m—1 <n <7} ={n<n} =0

From the definition of 7, we have {1 <n} = {375 5+ >k—1} € §p1 and {n < 7} =

{ijl ef <k} €Fn
For 6, note first that

P(ri — Thy >m) =P(ry >m) = Zs =Pf=...=¢t =0) = —.

Thus 2, P(1—7,—1 > m) = oo, and it follows from the Borel-Cantelli lemma [27] that infinitely
many of the independent events {1, — 7,—1 > m} take place with probability one. Thus, almost
certainly, at least one such event occurs. O

We next exploit the stopping times 73 to construct a convenient martingale in view of some
counterexamples.

Lemma 7.5. The martingale f € L*(Q;co)%+, adapted to (§,)°2,, whose difference sequence is
defined by

00
6fn = (_l)ngn Z l{Tk_1<n§Tk}6k7
k=1

where eg := (0r,j)721 € co, satisfies |f] oo (7, 1o (:00)) < 2-

Observe that only the n first terms in the summation are non-zero by Lemma 7.4(4); thus
fr(w) € cg = {A € £%° : lim; 00 A; = 0} as asserted.

By the monotonicity of LP norms on probability spaces, it follows that f is also bounded in
02°(Z4; LP(Q; o)) with the same bound 2. This boundedness essentially depends on the factor
(—=1)™, which becomes apparent in the proof.

Proof. The kth component of f; = 2221 d f is given by

4
Z(_l)nsnl{m—1<n§7’k} = Z (_l)ngn'
n=1

Tr—1<N<TRNL

By Lemma 7.4(3), e, = —1 for all the terms with 7,1 < n < 7 above. Since these are multiplied
by alternating sings (—1)", it follows that 37 .., 1ja/(=1)"en € {0, £1}. If £ < 7, then
this is all there is in the sum, and in the opposite case we only get one more term (—1)™e,, of
absolute value 1. Thus, by the triangle inequality, the absolute value of the kth component of f,
is at most 2, and the assertion follows, since this is true for all £,¢ € Z . O

While the f above was such a well-behaving martingale, the transform e x f, with ¢ :=
((=1)™)2,, exhibits quite different properties. Indeed, the kth component of (e x f), is given
by

l
Zgnl{‘rk_1<n§ﬁc} = Z En = Z (=) 4+ epnr, = (1) (1 — =1 — 1) £ 15

n=1 Tr—1<nN<TEAN Th—1<N<TR AN

the absolute value of this no less than 7, — 7,—1 — 2; thus on {7, — 7,—1 > m + 1}, we have
(€% f)el., > m. Since at least one of the differences 7, — 7,1 exceeds m—+1 a.s. (by Lemma 7.4(6)),
it follows that |(e* f)el., = m (as.) for all £ € Z.

Fatou’s lemma then ylelds for p € (1, 00),

liminf/ [(ex fe(w)|? dtZ/liminf|(e*f)g(w)|p dt > mP.
{—00 Q co [¢) £— 00 co

This being valid for arbitrary m € Z ., it follows that lim_, o, |(€ * f)g|Lp(Q_CO) =
The following conclusions are now immediate.



7.4. CHARACTERIZATION OF REFLEXIVITY 75

Lemma 7.6. The following limit holds: lim,_,o M,(C",|-|_ ) = occ.
Consequently, co is not UMD.

Proof. Observe that the subspace of ¢y spanned by {e;};; is naturally identified with (C",|-|).
Furthermore, for any Banach space X, we have, by definition,

|(ex f)n |LpQX

|fn|LP(Q;X)

)

Mp(X) >

whenever f is an X-valued LP-martingale. The assertions then follow, taking as f the martingale
f constructed in Lemma 7.5, and observing that {f;}7_, takes values in span{e;};, so it can
also be interpreted as a C"-valued martingale. O

The sequence space ¢g gives one example of a non-UMD Banach space. To find others, we
should know how the UMD-constants of embedded spaces are related. This is done in the following:

Lemma 7.7. Let X,Y be Banach spaces and assume that A € B(Y; X) has a bounded inverse
A7 € B(ran A; X). Then

MP(Y) < |A_1|‘B(ranA;Y) MP(X) |A|3(Y;X) )

Proof. Given any martingale f € LP(2;Y)?+, we have, using the fact that Af € LP(Q; X)%+ is
also a martingale (Lemma 5.13),
|(f*f)n|Lp(n;y) = |A71(5*Af |LP(Q Yy) = |A 1|B(ranA Y) (e % Af)n |LP(9 Y)
< |A71|‘B(X;Y) M, (X )|Af"|LP(9 X)) = |A 1|’B(ranA;Y) Mp(X )|A|TS(Y;X) |f"|LP(O;X)'

O

7.4 Characterization of reflexivity

We will give here some equivalent conditions to the reflexivity of a Banach space, which are
easier to relate to the UMD-concept. We start with an auxiliary criterion concerning solvability
of abstract linear equations. Observe that reflexivity is about solving, given any z** € X** for
x € X the uncountable number of equations (z*, z) = (z*,x**), * € X*. The next criterion only
involves a finite system.

Lemma 7.8 (Helly’s condition). Let X be a complex normed linear space, zi € X*, ¢; € C,
i=1,...,n, M > 0. Then the system of equations (z},z) = c¢;, i =1,...,n, has, for every e > 0,
a solution x (possibly depending on €) with |x|y < M + €, if and only if

Va; €C, i=1,....,n. (7.4)

X*
The same is true with C replaced by R at every occurrence, if X is a real normed linear space.

In the proof, we only consider the complex case. A proof for real scalars is the same, with C
simply replaced by R, as in the assertion.

Observe, for later use, that we can always normalize one of the a;, say a;, to unity and vary
the others, yielding an equivalent Helly’s condition. Indeed, all possible combinations with a; # 0
are obtained by multiplying the normalized inequality by |a;| and then varying the other scalars,
if necessary. The case a; = 0 can be dealt with by taking Ka; in place of a;, diving by K, and
considering the limit as K — oo.

A constant M > 0 for which Helly’s condition holds, will be called Helly’s constant.
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Proof. The necessity of (7.4) for the solvability of the system is immediate, since then

n n n
Zaim;‘ <Zaix;~*,x>‘ = Zaici
=1 =1 =1
and (7.4) follows as € — 0.

Assume then that (7.4) is satisfied, and also for the moment that the z} are linearly inde-
pendent. Consider the mapping T : X — C* : x — ({z},z))",, which is obviously linear
and continuous (since each of the components are). Then the image under T of the convex set
B(x; M + ¢€) C X is a convex non-empty subset S of C".

We now make the counterassumption that our linear system is not solvable for certain € > 0.
This is equivalent to saying that the point ¢ = (¢;)7_; € C" is not in the convex set S. But then we
can find a separating hyperplane through ¢ having the whole of .S on its one side, i.e., for certain
p # 0 (tangent to the hyperplane) we have p-y < Rp - ¢ for all y € S. Using the definition of
S, this means that R >, pi (z},2) <R, pic; for all 2 € B(0; M +€) C X. Since this holds
equally well with (z, |(| = 1, in place of z, we actually have an inequality for the absolute values.

But then
n n n n
> pi; < DiT;, $> > pici > piay
i=1 =1 =1 =1

This can only be the case if Z?Zl pix; = 0, which is impossible, since p # 0 and the z} are
independent. This completes the proof with the additional assumption of independence of the ;.

For general 2}, =1,...,n, we can first extract a maximal linearly independent subcollection.
Setting some a; to 0 in (7.4), it is obvious that this subcollection satisfies Helly’s condition as well.
The previous part of the proof then gives us an & € X, so that the equations (z},z) = ¢; are
satisfied for z; in the independent collection chosen. Due to dependence, these conditions already
determine (z},z) for the rest of the zF. To see that this yields correct values, express any one
of the remaining dependent functionals as zj = }_; a;z}, in which case (z},z) =}, a;c;, and

C; — Zj ajcj‘ S

(M +¢) >

b

X*

(M +e¢) = sup < <M

zEB(x;M+e)

X* X*

x — Zj a;T; = 0, so (x},z) = ¢; is satisfied for all i = 1,...,n. O
With the help of Helly’s condition, we now establish the following characterizations of reflex-
ivity:
Lemma 7.9 (James 1964). For a Banach space X, the following conditions are equivalent:
1. X is not reflexive.
2. For some 9 € (0,1), there are z; € B(0;1) C X and x} € B(0;1) C X*, i,j € Z, such that

LY ifi<

3. For some ¥ > 0, there exists a bounded sequence {x}7> | C X with the property that
d(conv{zy }y_y,conv{zs i, 1) >V, (7.6)

foralln € Z,.

Proof. 1 = 2. Assume that X is not reflexive. Then X is a proper closed subspace of X** and
we can thus pick an z** € X™** at positive distance from X; for definiteness, fix ** € X** with
|z**| .. <1 and also fix a ¥ > 0 such that d(z**, X) > 9. Observe that this implies, since 0 € X,
that |2**| .. > V.

We construct a sequence as in condition 2 inductively; in fact, the sequence will in addition
have the property (z**,z}) = ¥ for all i € Z. For the initial step, since |z**| .. > ¥, there is
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an ¢ € X* with norm at most 1 such that [(z**,z7)| = ¢¥; multiplying x} with an appropriate
¢ € S(0;1) C C if necessary, we obtain the same equality without the absolute values. Since
|2**] .. < 1, we must then have |27|y. > ¥, and we can repeat the argument just given to get
x; € B(0;1) C X such that (z},z;) = 9. This completes the initial step.

Now assume that we have found z; € X and z; € X*, 4,5 =1,...,n— 1 so that the properties
required in condition 2 of the lemma are satisfied for this range of indices. We should now find
an z; € B(0;1) C X* so that (z**,z%) = ¢ and (z;,27) = 0 for i = 1,...,n. The existence of
solution of this linear system of equatlon follows from Helly’s condition (now applied to X* and
X** in place of X and X*, and using the observation that one of the scalars can be normalized

to unity): Since ‘x** + 30 1 a x,‘ > d(z*%,X) > 0, we have
X**

19+Za10—’l9§d(x7 **+Za,z,
i=1 X **
for all choices of the scalars a;. Since Helly’s constant here is M := d(w*’i X < 1, we can choose

€ > 0 such that M + € <1 to deduce the existence of an appropriate z7,.
We still need to find an z, € B(0;1) C X, which satisfies (},2,) = ¢ for j =1,...,n. The
existence again follows from Helly’s condition, using <a:**, a:j) =9 and |[2**| .. <1

n

n n
_ * % * ** *
E a; 9| =|(z ,E a;z; )| < |77 e E a;x;|
=1 i=1

j=1 X*

so Helly’s condition is satisfied again, with Helly’s constant |2**|y.. < 1. This completes the
induction step, and with it the proof of the implication.

2 = 3. Assume the existence of the sequences {z;}3°, and {z}}?2, as in condition 2. Then
{z;}32, is an appropriate sequence also for condition 3, with the same ). Indeed, let S PPV
E;‘;m_l p; =1, with A;, u; > 0 and only finitely many of the p; non-zero. Then

Z/\jl‘j— Z H;Tj Z<$Z+1,Z)\jl‘j— Z /,I,jilfj> Z/\ -0+ Z /1]0—0
Jj=1 j=1

j=n+1 x j=n+1 j=n+l

ie., d(conv{z;}}_, conv{z;}2, 1) > V.

3 = 1. Assume there is a bounded sequence in X with the property (7.6). Then, given
any ¥ € X, we claim that, for a large enough n € Z, d(z,conv{z}32, ;) > %19. Indeed, if
d(z, conv{z;}32,, 1) < 39, then |z —y|y < ¥ for some finite convex combination y of the zy,
k > n + 1. Due to the finiteness, we can actually find an m > n such that y € conv{z;}}",, and
this implies d(y, conv{zy}3<,, 1) > 9. But then d(x,conv{zs}3, 1) > d(y,conv{zi}e, ) —
|z —y|x >V — 19 =10, and this shows the claim.

Fix for the moment an z € X and C := conv{z;}32,,,,, Where n is large enough, as above, so
that d(z,C) > 9. Now {z} is compact and C'is closed, and both sets a convex. Then a version
of the Hahn—Banach theorem (see [19]) implies that there exists a linear functional z* € X* such
that R (z*, z1) < a < R(z*,z) for all ¥ > n and some a € R.

Now consider 2** € X** defined by R (z**,y*) := AR (v*, 21))52,, where A € B({*;R) is a
Banach limit, i.e., a linear functional on bounded real sequences with the property liminf;_, ., Ax <
AX <limsupj_,. Ar. (For the existence of such a functional, see [19]. Recall that it is legitimate
to define a linear functional in terms of its real part, for every real-linear functional is the real part
of a unique complex-linear functional.) From the definition it is immediate that the z** € X**
satisfies & (z**, y*) < limsupy_, .. ¥ (¥*, zx). This property makes it impossible that z** € X, as
we will see.

Given any = € X, let z* be the linear functional with the property R (z*,z;) < a < R (z*,z)
for all k greater than some n, as above. But then clearly ® (z**,2*) < limsup, R (z*,2;) < a <
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R (z*,x), and this means that z** # x. Since this holds for arbitrary z € X, we have constructed
an element z** € X** \ X, and this shows explicitly that X is not reflexive. O

Corollary 7.10. If X is a non-reflexive Banach space, then for every 9 € (0, %), there exists a
Paley—Walsh martingale (fi)?_o € L®([0,1]; X)" ! satisfying pointwise

|fk|X§1 and |6fk|X279

Proof. The martingale is constructed with the aid of the sequence {z; }?2, provided by Lemma 7.9.
Indeed, take the sequence satisfying the condition (7.6) with 2¢ € (0,1) in place of ¥, and set
fn = Zi:l T 1[(p—1)2-n k2-»)- Then obviously f, is D,-measurable, and we obtain a martingale
adapted to (Dy)32, by defining fi, := E( f,| D). The estimate |fi|y < 1is obvious for £ = n (in
fact with equality), since z € S(0;1), and for k < n, the point values are obtained by averaging,
so the estimate follows from the triangle inequality.

The value of fr on [(j — 1)27%,727%) is the average of the values Tom—k(j_1)41s -« -5 Tan—kj,
which f,, attains on this interval, i.e. the it is in COnV{:L‘i}Q(n—k)(j_1)<is2n—k]’. It follows from the
choice of the x;, that the values of f; on two distinct basis intervals of @, differ at least by 2.

Now the value of fr_1 = E( fi|Dr_1) at any I € bs®y is obtained by averaging two distinct
values of fi, say y1 := fi|, and y» (attained on a neighbouring interval). Thus, at this arbitrarily
chosen point, |fr—1 — filx = |31 +¥2) —41|x = 5 |y1 —y2lx > @ This completes the proof.

O

Proposition 7.11. FEvery UMD-space is reflexive.

Proof. Let X, contrary to the claim, be a non-reflexive UMD-space. Let p € (1, 00) and 9 € (0, %)
be fixed. For n € Z,, let f := (fx)f_, be a Paley-Walsh martingale satisfying the conditions
in Corollary 7.10. The idea is to show, using the existence of this special martingale, that the
spaces (C",|-|.,) are embedded in L?([0, 1]; X) (which is also UMD) in a manner which leads to
contradiction by Lemmas 7.6 and 7.7.

We consider the operator A, : C* — L([0, 1]; X) defined by Apa := (a* f),. Since X is UMD,
and since f is pointwise bounded in norm by unity, we have

|Ana|Lp([0,1};X) = |(ax f)n|Lp([0,1};X) < My(X) lal |fn|Lp([071];X) = My(X)lal, -
On the other hand, by the pointwise boundedness of f from below, we have
Dak| <lardfilpooay,x) < 1@x Frlreox) + 1@* fe—tlreqoy;x)
<2 |(a*f)n|LP([0,1];X) =2 |Ana|LP([O,1];X) :

From Lemma 7.7 it follows that

v m
_Mp((c ) ||oo)7

My (L0015 X)) > 3 5

but the right-hand side tends to infinity as n — oo by Lemma 7.6. This is a contradiction; hence
non-reflexive UMD-spaces do not exist. O

Corollary 7.12. A Banach space X is UMD if and only if its dual X* is UMD.

Proof. We already saw the necessity of the condition in Lemma 7.3. For the sufficiency, if X* is
UMD, then X* is reflexive by Proposition 7.11 and X** is UMD by Lemma 7.3. But if X* is
reflexive, so is X, and hence X = X** is UMD. O
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7.5 Notes and comments

This chapter follows de Pagter [5], except for the auxiliary results related to the characteriza-
tion of reflexivity: Helly’s condition (Lemma 7.8) is from Hille and Phillips [9], Theorem 2.7.8,
and Lemma 7.9 comes from James [10]; this paper contains a remarkable total of 38 different
characterizations of reflexivity.

In fact, UMD-spaces even have a property called super-reflexivity. On the other hand, there
are reflexive, even super-reflexive, Banach spaces, which are not UMD [5].

Lemma 7.2 is not a direct consequence of the vector-valued Fubini’s theorem, since it is not
obvious in general that the point evaluations dfi(v,-), v € I, should constitute a martingale
difference sequence in LP(Q; X)), even if {6 fz}72, was such a sequence in LP(Q; LP(T'; X)).



Chapter 8

Hilbert and Riesz Transforms

8.1 Introduction

The Hilbert transform is one of the basic operators in harmonic analysis. It is defined (several
equivalent definitions exist), for trigonometric polynomials on the torus T by the conjugation

" el - : Lk k#0

k=—n k=—n

and for ¢ = fix;o a(f)eﬁ”gtdf € $(R; X) by the analogous expression

Ho = [ —isgn(€)(e)emEl de.

The question is now whether these extend to bounded operators on LP(T;X) and LP(R; X),
respectively. For X = C, the L? case is immediate from Plancherel’s formula, and a theorem of
F. Riesz gives an affirmative answer for all p € (1, 00) (see e.g. [7] for the transform on LP(R)).

It is obvious from the formulae above that the Hilbert transform has a particularly simple
multiplier structure when viewed in the Fourier domain; in fact, it corresponds to multiplication
of the Fourier coefficients, respectively the Fourier transform, by i-1(_ 0) — 1 1(g,00)- This also
gives an indication of the significance of this operator in connection with the multiplier theorems.

A close variant of the Hilbert transform is the Riesz projection R, whose multiplier is 1[g o)
(interpreted as 1y in the periodic case). This also extends conveniently to the d-dimensional
setting, where we simply define R to be the operator whose multiplier is the characteristic function
of the positive cone [0, 00)%.

It is easy to express the Riesz projection in terms of the Hilbert transform; indeed, since the
relation between operators and their multipliers is linear, we find that %(id +iH) has the multiplier
1(0,00)- On R, it is clear that open and closed intervals yield equal operators, so this is the Riesz
projection. On Z, we can perform a simple shift with the help of the pointwise multipliers of
the form €27 which are unitary operators on L?. Conversely, in the non-periodic case we have
H = —iR 4+ iRRR, where R is the reflection, Rf(t) := f(—t), which is also unitary on L? and
commutes with the Fourier transform F. Appropriate modifications for the periodic case are easy
to make.

The point of these observations is the fact that the boundedness of the Hilbert and Riesz trans-
forms are equivalent. The Hilbert transform is sometimes more convenient in the one-dimensional
setting, owing to the form of the conjugation, when written in terms of the trigonometric func-
tions sin and cos instead of the imaginary exponentials above. The main result of this chapter
concerning the boundedness of these operators will be shown for the Hilbert transform, but when
extending this to the multidimensional context, we will change to the Riesz projection, and R will
be our main tool also in the following chapters.

80
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8.2 Random walk on the complex plane

Our goal is to deduce the boundedness of the Hilbert transform from the UMD-property. We first
consider the transform for functions on the unit circle. The idea will be to consider an appropriate
martingale representing random walk, starting from the origin and eventually (almost surely)
crossing the unit circle. The bounds for the operator norm of the Hilbert transform will then be
deduced from the estimates available for the auxiliary martingale due to the UMD-assumption.

We start with a lemma, in which we define the martingale to be used throughout this section
and describe some of its properties.

Lemma 8.1. Let ¢, be Rademacher functions, and §,, be the o-algebra generated by {e;}7_,. Let
n € (0,1). Then the complex martingale f7 (adapted to (F2x)72 ;) and the stopping time T defined
by

Of) == n(ean—1 +ieap) T:=inf{n € Z4:|f]| > 1}
(and f :=0) satisfy n |\/F|LP(Q) <Cp, and T < 0 (a.s.), as well as 1 < |f1 <1+ 2n (a.s.).

Thus the martingale f" represents random walk in the complex plane, starting from the origin
and (a.s.) crossing the unit circle T at some point. The last estimate guarantees that f7 is pretty
close to the unit circle right after the first moment of crossing; this is useful in view of getting
estimates of the behaviour of functions on T. We will eventually pass to the limit  — 0 to obtain
the final estimates.

The symbols introduced in the assertion of the lemma will be used throughout this section.

Proof. Since {1 > k} = {|f;c7_1| < 1} is §y(p—1)-measurable, wy, := 1¢, >4} defines a predictable
sequence. It is easily seen that (w x f7), = fJ,. This is a bounded martingale: If 7 = oc, then
|f1’TL]/\T| = |fr7Z| < 1 for all n, and if 7 < 00, then |f1’TL]/\T| S |fr7Z/\‘r - 1| + |6fr73/\r| S 1+ 277 S 2.

The square function of w x f" is

Swx 1) = |3 wid 117 = (| D Lrmry20® = V21
k=1 k=1

By the square function estimate we then have
V2n |\/;|Lp(g) = |S(w* ) o) < Splw* [ ez, 10(0)) < 25p

since |(w * f),| < 2 pointwise. This was the first claim. It follows from this estimate that 7
is a.s. finite; thus the estimate |f7] < |f;771| + |01 <1+ 2n, valid on {7 < oo}, holds almost
everywhere. O
i1 (zj cos(2mkt) +y; sin(2mjt)), x;,y; €
X, which will be kept fixed through this section. The conjugate polynomial of u is v(e'?™?) :=
E;nzl (—yj cos(2mjt) +x; sin(2mjt)); this is easily seen to agree with the definition of the conjugate
using exponential functions. The aim is to show that |v];, . x) < C'lufp, (1, x) With the bound C
depending only on p and X and not on u and v.

If we manage to do so, then the density of the trigonometric polynomials in LP(T; X), p €
[1,00), allows us to deduce the boundedness of the conjugation for all LP functions with zero
average (since we omitted the constant term from wu). The general case then follows as a simple
application of the properties of Schauder decompositions: By Lemma 2.8, the norm |ju +¢||,, :=
|u| o Alu+ |, (for [udt =0, ¢ constant) is equivalent to the original norm ||, ; in particular,
[l < K |-|» Thus, if H, the Hilbert transform or conjugation, is bounded on functions of zero
average, then |H(u+c¢)|;, = |Hu|;, < Clu|;, < CK|u+¢|;,, and H is bounded on L?. (We
used the fact that H maps constants to zero in the first step, but a slight modification of the
argument shows that this property is not crucial.)

We consider a trigonometric polynomial u(ef?™) := 3~
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We extend u and v to harmonic C'*° functions on C in the standard way:

u(re'?™) = Z 7 (x; cos(2mjt) + y; sin(2mjt)) (8.1)
j=1

and similarly for v. We take the freedom to regard these functions of the complex variable

z = rei?™ also as functions of two real variables, $z and Sz, and partial derivatives of u and

v will always refer to this interpretation. One easily verifies the harmonicity conditions (D? +
D2)u = (D? + D3)v = 0, and the Cauchy-Riemann type coupling between the two: Diu = Dav,
Dyu = —Dqv. (If z; and y; were real (rather than vectors of X), then v+ iv would be a complex
analytic function.) Also note that «(0) = v(0) = 0.

We already observed that f7 is (a.s.) in the vicinity of the unit circle. In order to estimate u
on T, we will estimate u(f") (and similarly v); for this purpose, we write this quantity as a sum
of a difference sequence:

NnAT

u(finn) = u(fnn) —u(fd) =D (u(f]) = u(f{_))- (8.2)

k=1

This is not yet a martingale difference sequence, but Taylor’s theorem will show that it is not too
far away from one:

Lemma 8.2. On {|f,?_1| < 1} = {7 > k}, we have the estimate, for harmonic u: C — X and f
as in Lemma 8.1:

|(u(f) = u(fi_1)) — (me2n—1Dru(fi_,) + nearDou(fi_,) + 20 D1 au(fi_,)) |X < Cu)n?®,
where C(u) depends on the size of the derivatives of u in B(0;2).

Proof. Taylor’s theorem gives
u(z 4+ h) = u(2) + h- Du(z) + (h- D)*u(2) + R(z, h),
with

|R(z,h)|x < o sup |(—— - D)3u(z + Ah)
3! A€[0,1] |h|oo X
The assertion follows now from simple observations: Since f;! = f;! | +h with h := neaj_1 +ineay,
we have (h - D)*u = n*(D? + D3} + 2eax_162x D1 2)u = 2n’eag_162x D1 ou by harmonicity. For
|f,2771| < 1, we have |f,?71 +)\h| < 1+42n < 2 (recall € (0, %)), and X-norms of the partial
derivatives of u of order three, each continuous on the compact set B(0;2), attain a maximum on
this set. For C'(u) we can then take the sum of these maxima (times a universal constant). O

We are getting closer to estimating u on T in terms of martingales. The following lemma will
settle this matter:

Lemma 8.3. For harmonic u: C — X, the sequence

n

Uy = an{‘er} (Dru(fi_)eak—1 + Dau(fi_ )eaw) n € Ly,
k=1

defines a martingale, adapted to (Fax)3>,, which satisfies |u(finn) — ﬂn|LP(Q;X) < C(p,u)n, for
p € (1,00), where the C(p,u) depends on the size of derivatives of u in B(0;2).

Proof. To see that @ is a martingale, observe that 1;;>,y and f' ; (thus Dyu(f; ,)) are Fox_1)-
measurable; hence

E(1i>n Diulfiy)ean-s| S2-1)) = LromyDiu(fil)E (25-5 Fox-1)) = 0,
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since ea;—5, 0 = 0,1, has zero average and is independent of €1, . ..,€5(;_1), thus of 1), which
is generated by the 2(k — 1) Rademacher functions enumerated. This shows that (6@,)%2, is a
martingale difference sequence; thus @ is a martingale.

Using (8.2) and Lemma 8.2, we have

nAT
w(fine) = tin — 20 25%—1521@1)1,2“(]‘1?71)
k=1 X
nAT
= Z (u(f) —u(fi_)) — Diu(fi_))ear—1 — Dou(fi_)ear — 2n*ean 1626 D1 2u(f{_,))
k=1 X
nAT
<Y Clwm’ < Cun’r. (8.3)
k=1

1

From Lemma 8.1 we know that ([, 72dP)” < Cpn~', and substituting 2p in place of p yields
I7];» < (Cpn~')2. Thus the LP norm of the right-hand side of (8.3) is bounded by C(p,u)n, and
to estimate the LP norm of u(f,.,), we need to estimate the summation on the left-hand side
of (8.3) involving mixed second derivatives of u. An appropriate bound follows from the square
function estimate, once we recall that Dy pu(fy_,) = 352, (zj0;(fi_1) +yjei(fi_)), where the
¢; and p; are the appropriate partial derivatives of 7 cos(2mjt) and r’ sin(27jt), respectively.
Now (I{Tzk}sgk,lsgkgzﬁ(fg_l)),;“;1 is a martingale difference sequence adapted to (Fox)72; (which
is seen essentially in the same way as for 1, above), and we can compute

nAT nAT
2 Z ear—182kP(fr_1) <5, (R) Z (277252k—152kD1,2¢(f2_1))2
k=1 Lr(Q) k=1

Lr(Q)

< 2°s;, ' (R) |8l Lo (B(0:1)) < 205, (R)C(u) |\/;|LP(Q) < C(p,u)n,

L2 (Q)

where the last inequality was part of Lemma 8.1. Since EZQI 217252k,152ku(f,?_1) is a linear

combination of a finite (fixed) number of terms of the form just estimated, multiplied by constant
vectors z;, y;, an estimate of the similar form (with possibly larger C(p,u)) also follows for this
sum, and the proof is complete. O

Lemma 8.3 at our hands, it now seems reasonable to try to bound the martingale ¢ in terms
of u. We should note that it is only now that we invoke the UMD-property. The first result is of
technical nature.

Lemma 8.4. Let X be a UMD-space, and ry, : Q@ — X be §r_1 measurable for k € Z . Then
S k1 EkTk, 1 € Ly, defines a martingale on Q satisfying

n n
E EkTk < / E ErTh
k=1 a2 k=1

LP(Q;X)
Proof. The fact that (exrk)3>, is a martingale difference sequence is immediate. By Fubini’s
theorem, the double integral in the assertion can be evaluated as
D er(wa)er(wi)ry(ws)

/Q dP(w) /Q dP(w:) - /QdP(W) /Q w2,

— [ e [ apten)

p p

M;?(X) dP* (w1, ws) < MP(X)

> ek(wi)ri(ws)
k=1

b's LP(9;X)

Z sk(wl)rk(wQ)

k=1

X

Zek(wl)fk(UJ2)Tk(W2)
k=1

)
X
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where the first equality used the equidistributedness property of (ex)7_, and (exex)}_,, €x €
{-=1,1}; above we had €}, = e (w2).
Since X is UMD, the inner integral in this last expression can be estimated from above by
ME(X) [o 12 4=y er(w2)rk(w2)| x dP(w2) and from below by a similar expression with M, ?(X) in
place of MP(X). (Recall that the UMD-inequality is always two-sided.) O

It is now straightforward to estimate |v,|,, by |tn|;,:

Lemma 8.5. Let X be a UMD-space, u,v : C — X conjugate polynomials and u,v corresponding
martingales as in Lemma 8.3. Then [vn|ps(q.x) < M} (X) |Unl o) -

Proof. Recall that @, = > ,_, Nlir>ky (52k,1D1u(f,?_1) + EQk_DzU(f]:;]_l)) and

Up = an{‘er} (e2k—1D1v(f} 1) + e2xDav(f} 1))
k=1

n
= Zﬁl{rzk} (—eak—1Dau(fy! ) +eawDrv(fy ),
k=1

where the last equality follows from the Cauchy—Riemann equations.
Observe that 1>k Diu(f,_;) and 91> Dou(f)! ) are Fp—1)-measurable, so that iy,

written in the form Zzzl ek is a sum to which Lemma 8.4 applies; the same is also true of o,,.
Thus

p

n
Z nlir>k (_52k71D2U(f;c7,1) + aszw(f,Z,l))
k=1 LP(Q;X)

<) [ avG) [ apc)

[0n |2 0ix) =

P

D nlr@)zay (—e2k-1 (W) Dau(fi 1 (@) + ear(w) Dro( £ (@)))
k=1

X
p

> M@z ey (26 (@) Dou(fi_y (@) + 251 (@) D1v(fi_, (@)))
k=1

= (%) [ ap(@) [ ap)

X

In the last equality we used the invariance of the joint distribution of the Rademacher functions
with respect to changes of signs to remove the minus, and also the invariance with respect to permu-
tations. The last expression in the inequality above can now be estimated by M2P(X) |ﬂn|ip(Q;X)
by applying the other side of Lemma 8.4.

This completes the proof. O

Now it is time to combine the estimates, and complete our random walk towards the unit
circle.

Proposition 8.6. The conjugation of trigonometric polynomials extends to a bounded linear trans-
formation, the Hilbert transform, on LP(T; X), p € (1,00), whenever X is a UMD-space.

Proof. As noted above, it suffices to show that [v[;, . x) < C'lulp,r,x) for u as in (8.1) and v
the harmonic conjugate, C' only depending on p and X. Combining Lemmas 8.3 and 8.5 we know
that

[(fine) Lr(0:x) < 10nloaix) + C0,0)n < Mp(X) [in] oo, x) + C 0, 0)1
< MF(X) lu(frine)l o oix) + (M (X)C(p,u) + C(p,v)) 1.

Asn — o0, filrr — f7 (a.s.); since |fia,| < 1+ 27 < 2, and u and v are bounded in B(0;2), it
follows from the dominated convergence theorem that we can drop the n’s from the two sides of
the above inequality, to deduce [v(f7)]1»0,x) < M, X) [u(f7)| 10 (0,x) + C(p,u, X)n, where we
dropped the dependence of the constant on v, since v is anyway determined by u.
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For ¢ € T (the unit circle), it is easy to see that u¢(z) := u({z) and v, defined similarly satisfy
the same properties as u and v, so that we also have the inequalities

|v(f77'7<)|Lp(Q;X) S M(an) |u(f77-7C)|LP(Q;X) + C(p:U;X)U: C € T.

Observe that we have the same constant C(p, u, X) here, whatever (, since the factor C(p,u, X) =
M3(X)C(p,u) 4+ C(p,v) only depends on the size of the derivatives of u on B(0;2) (Lemma 8.3),
and the u¢ are just rotations of v around the origin.

Raising the previous inequality to the power of p and using (1 (a +b))” < (a? +b?), we have
(with new constants)

/Q o(f2(@)O) s dP(w) < M (p, X) / (@O dPW) + Cp,u, X)n,  CE€T.  (8.4)

We can clearly integrate this inequality over ¢ € T (with normalized Lebesgue measure); the two
double integrals appearing can then be written as

/Qd]P’(w)/qufu(fﬁ(w)C)g( :AdP(w)AdCIv(Ifﬁ(w)IC)ﬁ,

where the equality follows from the fact that f7(w)¢ and |f"(w)| ¢, where ¢ ranges over T, just
give two different parametrizations of the circle centered at the origin, one point of which is f7(w).

Recall from Lemma 8.1 that 1 < |f7(w)| < 1+ 27 for almost all w € 2, where 77 € (0, §) is the
parameter adjusting the size of each step in our random walk, described by the martingale f. We
now consider the limit as this parameter tends to zero: Then |f7(w)| — 1 for almost all w, and
the continuity of v implies that v(|f7(w)| ) = v(¢). Since v is bounded in B(0;2), the dominated
convergence theorem says that

[ ) [ o2l O = [ WO dC= ot e

A similar result clearly holds for « in place of v. Thus the inequality (8.4) (integrated over T) and
the convergence just established yield

|’U|ip(’]1';X) S M(p:X) |U|LP('JI';X) + hmj(l]lp C(P;U:X)U;
n

and obviously this last limit is zero, so we get the desired estimate with a factor only depending
on p and (the UMD-constant of) X as asserted. O

The extension from the unit-circle to the d-dimensional torus T? follows from the general
extension result of Lemma A.15.

Lemma 8.7. If the Riesz projection R is bounded on LP(T; X), X a Banach space, then it is also
bounded on LP(T% X), and |R| 1 (pa.x) < IR0 (rix)-

Proof. The Riesz transform on LP(T; X) is obviously an X-valued extension of the scalar-valued
Riesz transform on LP(T). By Lemma A.15, R then also has an LP(T¢~!; X)-valued extension
R4 which is bounded in the operator norm by |R| Lo(T;x)- Lhis extension is, by definition, an

operator on LP(T; LP(T4~'; X)) with multiplier 1y. Alternatively, it can be viewed as an operator
on LP(T¢; X), whose multiplier is the indicator of the positive half-space Z?~! x N. The operators
R; whose multipliers are indicators of other similar half-spaces Zi~'x Nx Z*J are obtained from
R4 by rotations (which are unitary on every LP). The assertion follows, since the Riesz projection
R on LP(T% X) is the product R = []}_, R;. O
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8.3 From torus to R?

To establish the boundedness of the Hilbert transform on LP(R?; X), we will exploit the result
already obtained for the torus, and the Poisson summation formula (Lemma A.47)

STt +Ak) =AY A kel R

kezd kezd

valid for ¢ € §(R?; X), A € R\ {0} and t € R?.

The following result, from which we readily derive the desired boundedness of the Hilbert
transform, is useful in other estimates, too. It gives the possibility to examine LP properties of
¢ € 8(R%; X)) by means of a sequence of functions on the torus, defined by

—4 ~ —7\ i27k-(-
TPo:=2"7 Y G(k277)e ™). (8.5)
kezd
Recalling the Fourier inversion formula (¢ fRd P(&)e?™Etd¢, it seems reasonable to regard Tf %)

as a discrete approximation of ¢. The followmg result gives this interpretation more quantitative
content.

Lemma 8.8. For ¢ € §(R%; X) and p € [1,00), we have
|80|Lp(mzd;x) = Jlggo |Tf90|Lp(1rd;X)

Proof. It is here convenient to take our fundamental domain (see Section 1.2) to be [-3,3)%, a
symmetric region around the origin. Making first a change of variable and then applying the

Poisson summation formula, we find that

p p

_1 1ya
33" |kezd x 27[-3:2)? |seza x
p
:/ 9N p(t+27k)| 277t
2l-3.2) | feza X

and the powers of two give a total of 204(r=1); hence, after taking the pth root and multiplying by

9% the exponent is (jd)(1 — 5 - 5) =0, explalnlng the choice of the factor in (8.5). Thus

|TJP(‘0|LP(TL1;X) - Z ot +2'k)
KEZY
LP(29] - §,3);X)

Considering only the term in the summation with x = 0, it is clear that

/QJ[ 7)d| POk dt — 1¢l7smax) -

2’2

It remains to show that the rest of the summation vanishes in the limit. This seems reasonable,
since ¢ € 8 decreases rapidly away from the origin, e.g., we may estimate |¢(t)|y < C(1 +

t] )"N <C |t|0O K where N can be taken as large as desired, with an appropriate choice of C.
Then fOr te 2‘7 —5, §)d,
. . C P
[ 5 e 5 (oo
29[-3.2)" seza\ {0} wenavgoy N (Kl = 3))

‘ foa
— 9i(n—Np) I —
2 T =B

KEZN{0} o
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For Np > n, the summation converges to a finite limit, whereas the factor 2/(*=N?) 5 0 as j — .

This completes the proof. O
Now the boundedness of the Riesz projection in the non-periodic case is almost immediate:

Corollary 8.9. If the Riesz projection is bounded on LP(T%; X), where X is a Banach space, then
it is also bounded on LP(R?; X), and 1Rl 10 x) < 1Bl poerax)-

Proof. Consider ¢ € D(R%; X). Then T} is a trigonometric polynomial, and

-4 —J\ pi2mwk-(- -4 —J\ pi2mk-(-
RT}p:=2"7 Z Fo(r29)e?™ () = 277 Z F(Ry)(k277)el2™ () = T (Ry),
KENd KEZZ

i.e., the operators Tf “commute” with the Riesz projection. (Strictly speaking, the operator R
means two different things on the two sides of the above equality, but the point is nevertheless
clear.) Thus

|R30|LP(]RL1;X) = Jllfgo |T‘7?)R30|Lp(’[‘d;x) = ]11)1'20 |RT]P(10|LP(Td;X)
<RI e rapx) im0 [T70] 1 pa ) = | Rlzoqrax) loloamax)

This shows the assertion. O

8.4 Notes and comments

Section 8.2 follows de Pagter [5]. The proof given for the boundedness of the Hilbert transform
is originally due to Burkholder (1983). The transference result of Lemma 8.8 is from Zimmer-
mann [29].

McConnell’s [14] results on multiplier transformations lead to another proof of the boundedness
of the Hilbert transform in UMD-spaces, which works directly for the non-periodic case. The proof
is similar in spirit to the one given here in that it uses Brownian motion in the upper half-space
R? x R, to deduce properties of functions on R?; however, this proof needs some fairly deep results
from the theory of stochastic processes falling beyond the level of our treatment.

The facts that the boundedness of the Riesz projection on T implies its boundedness on T¢
and on R? are special cases of a more general theorem: If R is bounded on the unit-circle for some
Banach space X, then it is also bounded on any ordered locally compact group with respect to an
appropriate positive cone (Ben de Pagter, personal communication).

Proposition 8.6 has a converse of equal significance: The boundedness of the Hilbert transform
or the Riesz projection also implies the UMD-condition, so the boundedness of these transfor-
mations actually characterizes UMD-spaces. This converse result is proved by Bourgain (see
Burkholder [2]). We have omitted this proposition due to limited space; the implication we es-
tablished is sufficient to obtain multiplier theorems in UMD-spaces, but it is good to observe that
the UMD-condition is actually necessary for the boundedness of the Hilbert transform.

Because of the equivalence, the name “spaces of class H7T” is also used for UMD, e.g. by Hieber
and Priiss [§].

There are other characterizations of these spaces, and in somewhat older literature, one finds
the name (-convex, which also means the same thing. The condition of (-convexity simply requires
the existence of a biconvex function ¢ : X x X — R satisfying

¢(0,0) >0 and C(z,y) < |$+y|X if |$|X:|y|X:1-

Equivalence proofs are found in Burkholder [2].

The condition of (-convexity appears simpler than the UMD-condition; however, this simplicity
is somewhat misleading. Even if we know that a certain Banach space is (-convex, it is in practice
almost impossible to actually find an appropriate function ( explicitly. For this reason, this notion,
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which gives an oversimplified idea of the subject, should perhaps be avoided (Jan Priiss, personal
communication).

Usually the Hilbert transform is known as the (principal value) integral operator (see Duoandi-
koetxea [7] for equivalence proofs)

ft=s)

S

Hft) := llim/ - ds.

T €l0

One can show ([7], Theorem 5.17), for a general Banach space X, that a class of Calderon—
Zygmund integral operators, which includes the Hilbert transform, are bounded on all LP(R; X),

€ (1,00), if they are bounded on one. This shows that the boundedness of the Hilbert transform
is also independent of the exponent p, just like the UMD-condition. In fact, the proof in [7] for
the assertion concerning the Calderén-Zygmund operators also goes via a weak-type L' estimate.



Chapter 9

Multipliers in UMD-Spaces

9.1 Introduction

We know by now that the UMD-property implies the boundedness of the Riesz projection R, whose
multiplier is the characteristic function of the positive cone N¢ or Ri. From this, our intention is
to deduce the boundedness of several other multiplier operators. The present chapter deals with
scalar-valued Fourier multipliers acting on functions whose range is in a UMD-space. These results
were developed prior to the recognition of the significance of R-boundedness, but the abstract
framework perhaps streamlines the theory (see also Section 9.5). Furthermore, these results pave
the way for the study of operator-valued multipliers, where the notion of R-boundedness becomes
essential.

9.2 Simple multipliers

For a while, we simultaneously analyze some multiplier operators on both the periodic and non-
periodic cases. The elementary results are similar in both cases, and the proofs also follow the
same lines.

We immediately get the boundedness of all multipliers related to the translates of the positive
cone; in fact, we even have R-boundedness as a direct consequence of Example 4.11 and the product
rule of R-bounds, since ¢27'() Re=127"'(") is the operator whose multiplier is the characteristic
function of the positive cone translated from the origin to v.

In the periodic case, similarly as before, Ty, A € (CZd, denotes the linear operator acting
on trigonometric polynomials, the action of which on monomials is given by Ty (2™ ()g) :=
€27 () Tt is easy to see, as in the proof of Corollary 2.14, that a necessary requirement for the
boundedness of T} is that A € £°(Z%), but the converse need not be true in general. In the non-
periodic case, Ty, g € Llloc(Rd), denotes the operator 3*myJ, where m, is simply multiplication by
g. The action of such an operator is well defined at least on the class F~D(R?; X), which is dense
in LP(R¢; X), p € [1,00) (Lemma A.39). Indeed, for 1) € F~1D, 1) € D by definition; in particular,
12 and thus gzz have compact support, so the local integrability of g implies 912 € L'(R%; X), and
the transform 3* can be taken even in the ordinary L' sense.

The set of multipliers A giving rise to bounded operators on LP(T?; X) is denoted by MP(T¢; X),
and we define |A[yerax) = |TAlg(ze(rax))- In the non-periodic case, MP(R"; X) is defined
similarly in the obvious way. Because of the fundamental role of the cones, we denote by p the
sequence with g, = 1ya(k). Furthermore, let ¢” be the cone translated to v € Z%, i.e., 0% := 0.
(When dealing with sequences indexed by vectors as here, we try to avoid ambiguity by using “the
kth term of A for \., and “the ith coordinate of k” for k;.) It should cause no confusion to use
the same symbol ¢” also for the function 14>, on R?, since anyway the values of this ¢” agree
with the previous one in the lattice points x € Z1.

89
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From the R-boundedness of the translated Riesz projectors, we can deduce the boundedness
of any multiplier with finitely many non-zero terms, and we actually obtain a rather satisfying
quantitative bound. Consider first the multiplier corresponding to a box [a; ) = {{:a < £ < 8}.

Lemma 9.1. The expression
Z (=1)0l go+0(B=e) (9.1)
fe{0,1}4
coincides with the indicator of the box [c; 3).

Observe that the assertion is simultaneously stated in Z? and in R¢. In the discrete case, it
is usually more convenient to consider “closed” boxes, but the present form of the lemma allows
unified treatment most easily. Of course, in the discrete case, [a; ) = [o; 8 —¢], ¢ := (1,1,...,1).

For simplicity, we give the proof with the discrete case terminology. The modifications for the
case of R are obvious and only notational.

Proof. The assertion follows from a simple inclusion—-exclusion argument. Indeed, for x # «a,
the kth term is clearly 0, since all the terms in the summation vanish. For k£ > «, assume for
definiteness that exactly r coordinates of x satisfy a; < k; < ;. Then among those 6 for which
atbi=e) — 1 14

0|, = k, there are (*,") for which these r coordinates are 0, i.e., for which o

follows that the xth coordinate is given by
d—r
_ d—
Z (_1)|0\1g:+6 :Z(_l)k <dk7"> _ {0 ’r‘iO’
9e{0,1}4 k=0 1 d-r=0

i.e., the only non-zero terms of 9.1 are those, all coordinates of which (i.e., d of them) are bounded
by the corresponding coordinates of a and f3; these non-zero terms are all 1. But this is just what
we claimed. O

Corollary 9.2. For X a UMD-space, the set of all multiplier operators whose multipliers are
indicators of bozes [a; 8], a, B € 7Y, is R-bounded on LP(U; X), U = T4 R and p € (1,00), with
R-bound at most 8 - 2¢ 1Rl 5101 x))-

Proof. From the representation of an arbitrary box as (9.1), and
TQV — ei27ﬂ/-(-)Refi2m/-(-)’ (92)
it follows that every operator T' corresponding to a multiplier of a box satisfies
T € 2% abco{mgyRmy, : Dl oo (Tay 5 [ poo (pay < 1}

Now Lemma 4.12(2) together with Example 4.11 and the product rule for R-bounds give the
desired bound for the set of operators considered. O

We now concentrate for a while on the periodic case, and turn to somewhat more general
multipliers. Above we considered indicators of boxes, of which a particular example is a single

point. Using (9.1) we can thus represent the naturals basis e”, with e := d,,, in terms of the
cones by
e” = Z (_1)‘0‘101’4_0‘
fe{0,1}4

Since each sequence A has the natural expression A = . A e”, we obtain, at least formally,
the following alternative representation:

A=A D Dt = 3L YT ()l | et (9.3)

v€EZ? 0e{0,1}4 veZd \0€{0,1}4

If A has only finitely many non-zero terms, then the summations above are finite, the manipulations
are valid, and the expression on the right is correct.
This representation motivates the following definition:
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Definition 9.3. For \ € (>°(Z%), the variation is defined by

var A := Z Z (=D, _g].

veZ?|0e{0,1}4
With the help of the preceding considerations, we can easily prove the following result:

Lemma 9.4. Let A C (*(Z%) be of uniformly bounded variation, and each \ € A consist of only
finitely many non-zero terms. Then

Rp({Tx}ren) < 8|R|g(ro(ra x)) ilelg var A

Proof. Using (9.2) with (9.3), we have

T\ = Z Z (_1)|9‘1)\V_0 eiQﬂ'V'(')Re_mﬂ""(')

veZ® \0e{o,1}4
€ var A - abco{mgRm, : |¢|L°°(11'd) ) |1/’|L°°(1rd) <1}, (94)

where var A can further be estimated by the supremum of the relevant variations, and the rest
follows by the same results as in the proof of Corollary 9.2. O

These results were rather straightforward consequences of the boundedness of the Riesz projec-
tion. They nevertheless serve as a starting point for a more thorough study of multiplier theorems
valid in the UMD setting. In particular, we would like to allow for more general multipliers than
only those with finitely many non-zero components.

9.3 Kernels and convolutions

To exploit the UMD-property, it is convenient to consider the fundamental domain [0, 1)¢ of the
torus T¢ decomposed by means of products of the dyadic algebras ®, k € N, on [0,1). For
n=rd+j,reN, je{l,...,d}, wedenote B, :=D7,, xD¥J, and for n = 0, P, := {0,[0,1)7}.

The kernel related to the expression (5.3) of the conditional expectation as an integral operator
will be of interest here. Due to the product nature of the algebra 9, the kernel from (5.3) also
factors into components depending on one coordinate only:

d 2rtuje_q
E(f|mn)(t):/wf(s) [[2vo 3 1, s | ds=: [ 7@kt
(=1 =0

Here wj; := 1 for j > ¢ and 0 otherwise, and I,.; := [127", (i +1)2""). Note that this same formula
even applies to Py, with r = -1, j =d.

We will actually need a slightly different version of this kernel. To motivate the modification
to be given below, recall from Chapter 1 that the notion of multipliers emerged from the study of
translation invariant bounded operators. The conditional expectation E( | B,,) does not commute
with translations (except for n = 0), but the modified operator below will.

Lemma 9.5. The operator
f — / ThE(T,hf|q3n) dh
Td
admits the convolution representation f — f x g,, where

J d
gn(k) = H sinc? (27 k) - H sinc? (27" wky).
=1 l=j5+1
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Here sinc(t) := Szt

n € Z\ {0}.

) for ¢ # 0 and sinc(0) := 1. This is a C* functions whose zeros are at nm,

Proof. Using the kernel representation for the conditional expectation, this is a straightforward
computation:

/Th]E(T_hf|‘I3n #)dh = /dh dsf(s + h)kn(t — h, s)
Td

:/ dh | ds'f(t—s)kp(t—h,t—s —h)= [ ds'f(t—s") | dhkn(h—t,h—t+35")
Td Td Td T4
= [ ds'f(t—5") | dhkn,(=Hh,s —H).
T4 Td
In the second to last equality we used the even symmetry ky(t,s) = k,(—t, —s), which follows
from the symmetry of the dyadic algebras ®j. The last form in the above chain of equalities is
clearly the convolution of f, evaluated at ¢, with

ortuje g

9n(s) ;:/T ko (—h, s + h)dh = H2T+uﬂ Z /lmw (—he)Ls,,,. (s¢ — he)dh

= H 4rtuge /Td 1,Ir+uﬂ‘0 (hl)lhﬂﬂ;o (s¢ — he)dh = H 4rtuge 1,Ir+uﬂ;0 * 11r+uﬂ;0 (se),
=1

where a change of variable was performed to get the second equality; we also moved the minus
sign from the argument of the indicator function to the parameter set. It is easy to compute
/l\ilr;o (k) = #e*i”kzﬂ sin(rk2~"), and since the Fourier coefficient of a convolution is the product
of the individual coefficients, we have

d

Qe —us d
~ . 27Tt . .
gn(k) = H gruge S ( CE mhit) = H sinc? (27" Yt wry),
TKy
=1 (=1

as we claimed. O

We will establish multiplier theorems related to the following dyadic decomposition of Z%
DO = {0} and

Digyj o= (=271 27 7 s [(=27 T —2" U 27, 27T} x (=27,27)" 7, reN, je{l,...d}.
(9.5)
Later on, a decomposition of R? (strictly, of R? \ {0}) will be considered, given by the same
equation (9.5), but allowing r € Z. (When considering intervals of integers above, £[27,271)
contains no integers for r < 0.)
It is easy to see that

U Dy = (=27 2041y x (=27, 27y, (9.6)
k<rd+j

when the decomposition of Z? is considered. For the decomposition of R?, we must subtract {0}
from the right-hand side.

We denote by Sy, the Fourier multiplier operator whose multiplier is 1p, . Again, it should not
cause confusion to use this same notation in both the periodic and the non-periodic case. The
following result deals with both cases simultaneously, and it is the main reason for introducing
the Dy and Sy.

Lemma 9.6. (S;,)° is a Schauder decomposition of LP(T4; X), and (Sp, S—p)%%, of LP(RY; X),
p € (1,00).
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Proof. We must verify the criteria given in Lemma 2.6. Since Dy N Dy = § for k # £, and
the square of an indicator is the indicator itself, it is clear that S;S; = dx¢Sk. In the discrete
case, ran(Sy )5, consists of the trigonometric polynomials, which are dense in L(T%; X). In the
case of R?, ran(S,,S_,)Y_, consists of ¢ € §(R?; X) whose Fourier transform vanishes outside
Uk<n Dy, and inside Up<_nDj. As N — oo, we find that ran(S,, S_,)5> consists of those ¢ €
F~ID(R?; X), which satisfy 0 ¢ supp T, and such functions are dense in LP(R?; X), p € (1,00),
by Lemma A.39. All that remains to show is the uniform boundedness of the partial sums EkK:(] Sk,
respectively Zg:_ ~ Sn, but this follows from Lemma 9.2, since the ), _; Sk is the multiplier
operator corresponding to a box like the one in (9.6), and > _ ., < n Sn is the difference of the
indicators of two such boxes. O

The decompositions are actually unconditional, but establishing this fact requires some more
effort. Once this is done, the abstract machinery of Chapter 2 can be applied. The following result
gives us convenient auxiliary functions to work with these decompositions, based on the kernels
studied above.

Corollary 9.7. For X a UMD-space and p € (1,00), the functions hy,, n € N, characterized by
ho =1 and

i1
hn(k) = H sinc?(27 " rky) - (sin - sinc)? (2~ H sinc?(27 " wky), n=rd+ j,
=1 l=j5+1

withr €N, j =1,...,d, satisfy the inequality

n

Zek(hk * f)

k=0

< MP(X) |f|LP('][‘d;X) 3
LP(T4;X)

for all e, = £1 and all f € LP(T%; X).

Note that, for K € Dyp_q = D, _1)41j, we have |kg| < 2"~ for £ > j, and thus 27 "7k, €
(—im, i7), so that sinc of this quantity is strictly away from zero. The same argument holds for
€ < j, with r replaced by r+1. For £ = j we have |r;| € [277",2"), so that |2~V 7k;| € [3m, In),
and sin is strictly away from zero on this interval, thus also sin - sinc. This property, together with
the inequality in the assertion of the lemma, is the main reason for introducing the functions h,,.

Proof. Taking the difference of two operators of the kind considered in Lemma 9.5 we find that
[ Jramh B(T—nf]Br) —E(7—nf|Br-1)), where n = rd + j, is a convolution operator with

kernel h, = g, — gn—1- The Fourier coefficients are then given by En(h}) = gn(k) — Gn-1(k), i.e.,

j-1 209 (r+1), .. (r+1)
2o (1 sin”(2 mk;)  sin?(2-27 TK;j
Hsmc (2= Vg, - < @0 rn,)? 4. (20 s H sinc?(27 " Tky).
=1 J f=j+1

Applying the trigonometric identities sin” t— 1 sin®(2¢t) = sin® t—sin® t-cos® t = sin® ¢, the difference

term can be written as sin® (27" k) (2~ (’"H)mi )72 = (sin-sinc)2(2- "+ 7k;), so that h,, here
coincides with the one in the assertion.
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The asserted inequality then follows from the UMD-property:

Z ex(hg * f)

k=0

n
colgox )+ Y exlgr —gr 1) * f
k=1

LP(T4X)

‘/ Th (601E (7—nf|PBo) +26k{E (T-nfIBr) — (Thf|‘43k1)}> dh

).

Lr(T4X)

LP(T4X)

dh
L?(T4;X)

< M,(X) / -t flpe g dh = My(X) || o rax) -

0B (T-nfIBo) + Y ex {E(Tonf|Be) — E(7—nf|Bi-1)}

The second equality simply re-expressed the convolutions with the conditional expectation opera-
tors, and the last inequality was a consequence of the UMD-property (Remark 7.1). The proof is
then complete. O

We have now translated the UMD-inequality concerning conditional expectation to one involv-
ing convolutions. Bearing in mind that convolution means multiplication in the domain of Fourier
coefficients, and recalling the observation following the statement of Corollary 9.7 that the Fourier
coefficients h, (k) are away from zero for k € D,,_4 for all n > d, we find that it is possible to define
convolution operators whose kernels have Fourier coefficients lALTj 1(k), which can be used to invert
conditional expectations in a certain limited sense. If we can do so, we should be able to break
functions into appropriate pieces by taking conditional expectations, then use the UMD-estimates
available, and collect the pieces with the aid of the inverse operations. The ultimate goal is to
deduce the unconditionality of the Schauder decomposition (S;)$2,, which then yields multiplier
theorems.

We now turn to the details. Define the inverse kernels h,, by

By = Z 7ot (k)e2m () n>d.

KED, _g

Observe in particular that the xth Fourier coefficient of h,, * h,, * f is given by h, T - ]?(/-c) =

]?(n)an_d(n) for n > d.
What we need is boundedness, in fact, R-boundedness, of the convolution operators whose

kernels are h,,, or equivalently, of the multiplier operators T},, related to the multipliers A = hy, (k).
For this purpose we invoke Lemma 9.4; however, we first need to estimate the variation of the
multiplier sequences. A tool for doing so is provided in the following:

Lemma 9.8. Let A € (>°(Z%) be given, on a certain box [o; 3] :== {v: a < v < B}, by a function
@ with continuous partial derivatives of order 6, |8|. <1, so that A\, = (k) for k € [o; 5], and
Ax =0 for k ¢ [o;8]. Then

var A < Z max |D9 )|(ﬂ—a)9

pefoye €A

Proof. Each single term appearing in the definition of variation can be written, by the fundamental
theorem of calculus, in the form

3 (—1)I9I1¢(u—a):/ Dio@)dt, 1= (1,1,...,1).

6e{0,1}4 [v—u;7]

On the boundary, where v — 6 falls outside [«; 5] for some 6, it is convenient first to drop the zero
terms from the summation and only then apply the fundamental theorem. If, for definiteness,
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Ic{1,...,n}, #I = r, contains the coordinate directions to which we can move from v a step of
—1 staying inside [a, (], then (see Section A.5, in particular around Lemma A.21, for notation)

> =) ew-0= > (—1)‘9“@(1/1—9;1/):/ Drer(t;v)dt < max |Dre(t)].

GG{O,I}d 6e{o,1}7 [vr—irivy] t€lasB

Here D; = D?, where 6; := 1if i € I and 0 otherwise.

Now we need to count the total contribution from all the terms in the expression of variation,
observing different contributions from the boundary of the box [a;8]. The set of those lattice
points in the box from which we can move a step of —1 exactly to each direction of i € I, #I =,
consists of the points, whose ith coordinate is between a; + 1 and 3; for ¢ € I, and equals «; for
i € I°. Thus the total number of such points is [];c;(8; — a;) = (8 — «)?, where §; := 1 for i € I
and 0 otherwise.

Therefore, for each § € {0,1}?, the expression of variation contains (8 — a)? terms, which
can be estimated by max; |D9g0(t) , and no other terms. The assertion follows by summing the
estimates for different values of 6. O

Corollary 9.9. The multiplier sequences corresponding to the convolution operators hp * - are
of uniformly bounded variation. Thus Rp({hyn * -}720) < C|R|pp(pa.x), where C is a universal
constant.

Proof. The second assertion is immediate from Lemma 9.4, with C the supremum of the variations
of the multiplier sequences times 4, once we prove that the supremum is finite. B
The multiplier sequence of hy * -, which consists of the Fourier coefficients of h,, vanishes

outside Dy,_g = D(;,_1)a4;, and is given in the dyadic block by hn(k) = @n(K), where

j—1 d
on(t) := H sinc™2(27 D xt,) - (sin - sinc) "2 (27 xt) - H sinc™2(27"wty).

(=1 L=j+1
It is easy to see that the variation operator satisfies the triangle inequality. Since each dyadic
block D(,_1)44+; defined in (9.5) is a union of two boxes (=27 + 1,27)i71 x (£[2"71,2")) x
(—27=1,2r=1)4=Ji and since ¢, has even symmetry, we only need to consider the variation of
the multiplier sequence in one of the boxes, say the one with plus sign above. We then in-
voke Lemma 9.8 to estimate this variation. We first estimate Zee{o,l}d by 2¢ maXgeg,1}d =
2d maxXg, 0,1} * " MaXg,cfo,1}- Since ¢ also factors into components, each depending on a single
coordinate only, we need to estimate separately the quantities

max (sinc*2(2_(’"+“”)7rtg) Y {(sinc’Q)’(Q_(’"Jr“ﬂ)wtg) Lot g g 9T }) ,
tee[2"T " 27T ]

for £ # j, and

max (((sin -sinc) 72)" (27t v {((sin -sinc) 72)" (27 xg;) 27 H 2’"’1}) .
tye[27—1,2"
After a change of variable these reduce to

max__(sinc™(t) V (sinc™?)'() - 7) and  max ((sin -sinc)"2(t) V ((sin - sinc) %)’ (¢) - ﬁ) ,

te[-%,%] telF.5] 4

which are finite quantities, since the functions sinc and sin - sinc are non-vanishing C°*° mappings
on the compact intervals considered. Since we no longer have dependence on n in these last
estimates, the assertion is established. O

Now we are ready to prove the result which gives us access to various multiplier theorems.

Lemma 9.10. Let X be a UMD-space. Then (Si)52, is an unconditional Schauder decomposition
of LP(T% X), p € (1,00).
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Proof. We already know (by Lemma 9.6) that (Si)72, is a Schauder decomposition. According
to Lemma 3.7, we must then show that both (Si)32, and (S;)3, are random unconditionals
(Definition 3.3) on LP(T9; X) and its dual, respectively.

Since X is UMD, thus reflexive, we know that (LP(T%; X))* = LP(T?; X*). Furthermore, from
the orthogonality of the trigonometric monomials it follows that

(051l ey = [ (a0, 5ufO) it = [ (Sig(0). 51 (0)

Td

= <Skgﬂ‘5kf>LP(Td;X) = <Skgaf>Lp('JI‘d;X)

for all trigonometric polynomial g € LP(T%; X*), f € L?(T% X), and, by density and the continuity
of Sy, for all g, f in these spaces. Thus S} = Si, and since X* is UMD whenever X is, and
D € (1,00) whenever p is, all we have to prove is the random unconditionality of (Si)3>, on
LP(T4; X), for X UMD and p € (1,00).

Recall from the definition that the action of S,, on trigonometric monomials is given by
Sh (eiQ’”"(')m) = e2™()1p (k)z. Then, by the definition of the inverse kernels h,, we have
hp % hy % f = S,_af for n > d, and Sof = [rafdm =1xf=1x1xf. Thus

n p %
|| erwses dP(w)
@ lk=0 L?(T4X)
n » v
= / 1*1*f+25k(w)7lk+d*hk+d*f dP(w)
¢ k=1 LP(T%X)
d+n P %
< C|Rlg(rr(rax)) / 1xf+ Z ex(W)hg * f dP(w)
Q k=d+1 Lp('l‘rd;X)

< ClBlypo(raxy) - 3Mp(X) £l (rax) -

The first inequality follows from Corollary 9.9 (recalling that we can add a single bounded operator,
in this case 1% -, to an R-bounded collection, preserving the R-boundedness with possibly larger
R-bound) and the second from Lemma 9.7 (after setting e := e4(w) in the conclusion of that
lemma, integrating over €2, and applying the triangle inequality to Sp 55, | = S ptd — 34, and
also to estimate 1x* f as a separate quantity). The inequality obtained is recognized as that in the
definition of a random unconditional, once we substitute > ,_, Sk f in place of f. O

The multiplier theorems then follow with almost no effort at all.

Corollary 9.11 (Littlewood—Paley-type multiplier theorem, Zimmermann 1989). Let
X be a UMD-space. Then \ € £>°(Z%) is in MP(T?; X), p € (1,00), whenever \ attains a constant
value on each of the dyadic blocks Dy, k € N.

Proof. The assertion is immediate from the unconditionality of the dyadic decomposition shown
in Lemma 9.10 and the abstract multiplier result of Corollary 2.14. O

While the previous result was a direct consequence of the very general abstract theory, the
following one, which allows for a wider variety of multipliers, combines this with the estimate for
R-bounds of the finitely non-zero multipliers studied above. For A € (*(Z%) and Q C Z9, we
denote by A| o the sequence whose th term is A, whenever £ € @, and 0 otherwise. With this
notion, we have the following result:

Theorem 9.12 (Marcinkiewicz-type multiplier theorem, Zimmermann 1989). Let X be
a UMD-space and p € (1,00). Then there is a constant C = C(X, p,d) such that

| Alnee (ra;x) < C'supvar Al p,
keN
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for all X € £°(Z%) of uniformly bounded variation on the dyadic blocks Dy,.

Proof. For any trigonometric polynomial f € LP(T% X), we have Thf = > 1 Ty, Skf (where
k
the sum is actually finite). Thus

s =

e8] P
ITxflreerax) = ZTMDk Sif <Gy / ZEk w)Tx|, Skf dP(w)
k=0 L (T4X) “ Lr(T4:X)
P »
< Cp - 8|R|g(po(ra;x)) SUP var Al p, / Zsk )Skf dP(w)
keN o
LP(T4X)

< Cp -8R 5 Lp (14, x)) sup var Alp,  CplflLr e x) »

where the first and last inequalities exploited the unconditionality of (Sk)52, via Lemma 3.2, and
the second inequality follows from Lemma 9.4. O

9.4 Non-periodic case

We now turn to the study of multiplier transformations acting on functions on R?. In this section,
our goal is to establish analogues on L?(RP; X) of the multiplier theorems of the previous section,
and to prove the unconditionality of the Schauder decomposition (Sy,)necz. This last result will be
used in Chapter 10 in the study of operator-valued Fourier multipliers.

We start by showing that rapidly decreasing functions give rise to multiplier operators.

Theorem 9.13 (Mikhlin-type multiplier theorem, Zimmermann 1989). Let X be UMD
and p € (1,00). Then $(RY) C MP(R?; X), and there is a constant C = C(X,p,d) such that

[
[laerx) < C sup sup |1 [DO4(t)]
6] <1teRd

Observe that the right-hand side of the asserted inequality is certainly finite for ¢ € §(R?).

Proof. For ¢ € 8§(R?) and ¢ € 8(R?; X), products and Fourier transforms of these functions are
also rapidly decreasing, the inversion formula is valid, and Lemma 8.8 can be applied to give

F Lo = lim |T?(F ‘(o
‘ ) i) w (T (V9)) Lo(rx)
. in ny —n\ i27k(+)
= lim 275 ) (k2 ")(k2")e

- d
wez L#(T4:X)

The expression inside the norm on the right-hand side is now recognized as the discrete multiplier
transform by the sequence (1(k27")),cza of the function

S Gaz e = 174,
KEZ4
Thus we find that
57 )

/\

Lr(R4X) | Nezd|7‘/[1’ TdX) hm |T ¢|LP(’11'(1;X)5

and |T£¢|LP('JT‘1-X) — |0l rp Rd; x) AS T — OO by Lemma 8.8. It is thus required to find an appropriate
bound for the discrete muitiplier norm appearing above.
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Using Theorem 9.12 and Lemma 9.8, we have

| (1/)(R2_n))li€zd|Mp(’ﬂ'd;X) <C ilelg var(P(k27")) ke py,

< (' sup max |D9¢(-2_" 2rlfly

rd+jEN 0] <1 )|L°°(D'“d+f)

Lemma 9.8 actually deals with simple boxes, but it can also be applied to Dy, which is a union of
two boxes, after first estimating the variation by the triangle inequality. It is immediate from the
definition of the dyadic decomposition (9.5) that each side of the two parts of D4 ; is proportional
to 2" (with the constant of proportionality between 1 and 4, these are taken into account when
replacing C' by C'); this gives rise to the factor 2*? in the last expression, since in Lemma 9.8 we
have the factor (8 — a)?, with a, 3 the corners of the box in question.

Using the chain rule, we are lead to estimate the maximum of |D9(t2’”)| 2(r=m)lly for ¢ €
D,q4;. For such t, we have |t| > |t;] > 27, so that we can estimate

|D9(t27n)| 2(r=mlfly < |D9(t2*”)| |t27n|‘9|1 ’

but this last quantity, after making the change of variable ¢’ := t27" and estimating by the
supremum over ¢’ € R, is of the form appearing in the assertion. This proves the proposition. [J

We need some simple observations concerning the dyadic blocks. The continuous linear one-
to-one mapping Lyqyj, 7 € Z,j = 1,...,d, defined on t = (#',¢;,t") e B! x R x R"J by

t— 270Dy g7y o= (r gy,
takes
Dygyj = (=271 27T s (U [27,2771)) x (=27,27)"7 omto Do :=(-1,1)" ' xU+ [%,1).
Furthermore, it takes

Dy = (_2r+1+P’ 2'r+1+10)j x (_2r+p’ 2r+p)d—j onto U Dy, = (—27, 2p)d. (9.7)
k<(r+p)d+j k<pd

With the help of the mappings L,q;, we can construct the following auxiliary functions:
Lemma 9.14. There ezist o, € D(RY), n € 7, with the following properties:

1. 90n|Dn =1,

2. supp ¢, C Un_2d<k§n+d Dy, and

3. Supjg| <1 SUPscpa |t||0‘1 |D930n(t)| < C for some C' < oo, for alln € Z.

The ¢, provide smoothed approximations of the multipliers 1p,.

Proof. From (9.7) it is clear that Up<_2¢Dy CC Do CC supy«4. Thus there exists a ¢ € D such
that o =1 on Dy and 0 outside U_sg4<r<q. We then define an := g o L,,. By the properties of
the mappings L,, above, ¢,, equals 1 and vanishes in the appropriate sets. To deduce the uniform
bound in item 3, observe that Dogordﬂ- = Da((po oL,qyj) = 232_(’"+1)|9|1D0¢0, where s is between
0 and d, and thus

161
11 1D ()] < 222708 | D00 (L )] < 24| Eraegt] " [ D7 00(Era 1)

After the change of variable t' := L,q4;t, the boundedness of this last quantity for ¢ € R? is
obvious, since pg € D C 8. O
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Lemma 9.15. (S,)nez is an unconditional Schauder decomposition of LP(R?; X), p € (1,00).

Proof. As in the proof of Lemma 9.10, we verify that both (S,)nez and (S} )nez are random
unconditionals, and again, it suffices to do this for one of them, since S}, is the operator S,
acting on the space LP(R?; X*). The proof exploits the smoothed approximations Ty, of the
Sy provided by Lemma 9.14. Observe in particular that S,T,, = S,. Furthermore, since the
functions ¢ € F1D(R?; X) with 0 ¢ supp F¢ are dense in LP(R¢; X) (by Lemma A.39), it suffices
to study the action of the operators S;, on such . Then all the sums in the following are actually

finite:
/ S en()Suth i) | = / S en(@)SuTy dP(w)
@ Inez Lr(R%X) ¢ Inez Lr(R%X)
» ®
<C / an(w)T%z/) dP(w) | < Csup an(w)gon [l Lo, x) -
Q2 |nez Lr(R%X) weR nez Mr (R4 X)

The first inequality, where C' = 16 - 2¢ |R|Lp(Rd;X), followed from the R-boundedness of the mul-
tipliers of boxes (Lemma 9.2, recall that D,, consists of two boxes), and the second inequality
simply uses the definition of the multiplier norm. To estimate this norm, we invoke Theorem 9.13
and Lemma 9.14 to give

< (C sup sup |t||€|1
6] <1 tcRd

D’ Z en(W)pn(t)

neEZ

< C-3d- sup sup sup|t|w‘1 |D9g0n(t)| <,
6] <1teRdneZ

Z en(W)pn

neZ

Mr (R X)

where the first inequality was a direct application of Theorem 9.13, and the second used the fact,
following from Lemma 9.14(2), that any point lies in the support of at most 3d of the ¢,. Then
the third inequality is simply Lemma 9.14(3). This completes the proof. O

A Littlewood—Paley-type multiplier result is now as immediate as in the discrete case, Corol-
lary 9.11.

Corollary 9.16. Let X be a UMD-space. Then g € L®(R%; X) is in MP(R?; X), p € (1,00),
whenever g attains a constant value on each of the dyadic blocks Dy, n € 7.

Proof. This follows from Lemma 9.15 and Corollary 2.14. O

We could also obtain a non-periodic version of Theorem 9.12 involving similar variation esti-
mates. Instead, we decide to proceed to the operator-valued theorems in the next chapter.

9.5 Notes and comments

This chapter is based on the results of Zimmermann [29], a paper which appeared before the
significance of R-boundedness was widely recognized. The UMD theory is older, and the results
are stated and proved in this same setting in [29]. In the non-periodic case, we have not treated
the full strength of the results in [29] to avoid some technical points.

Instead of R-boundedness, Zimmermann defines another special notion of boundedness, for
which one can establish similar properties as the ones for R-bounds used in this chapter. This
boundedness involves the norm

T = |R|3(L,,(Td;x)) inf{c>0:T€c: conv{m¢Rm¢}|¢‘Lm"¢‘Lm51} , (9.8)
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where R is the Riesz projection. One should observe the striking similarity between this expression
and equation (9.4).

Today, Zimmermann’s results can neatly be set in the general framework of the theory of R-
boundedness and unconditional Schauder decompositions, as we have done here. (A somewhat
similar translation work is also found in Witvliet [28], chapter 3.) The methods of proof in [29]
are essentially the same as here, the main difference being the fact that the lemmas are proved in
the concrete setting instead of using the abstract versions.

It is an interesting typographical point that the “R” also appears explicitly in Zimmermann’s
norm (9.8), referring to the operator R. Independently of this, we should note that R-boundedness
was originally referred to as the Riesz property, and it was only later that the R was reinterpreted
as “randomized” (see Weis [26]).



Chapter 10

Operator-Valued Multipliers

10.1 Introduction

The characterization of operator-valued Fourier multipliers is a place where the notion of R-
boundedness shows its power. In Chapter 9, it provided a convenient framework for results origi-
nally obtained without this notion, but in the present setting, it becomes necessary. This chapter
is a short introduction to the state of art in the field of multipliers.

For a function G € L} (RY;B(X;Y)), the multiplier operator Tg is defined by Tgtp :=
fr'”_l(M(;@Z), where Mg denotes pointwise action of the operator G, i.e., (Maf)(t) := G(t)f(¥).
For ¢ € T 1D(RY; X) (a dense subset of §(RY; X), thus of LP(R?; X) for p € [1,0¢)), we
have (by definition) @ € D(R?; X), and thus G@Z has compact support, and hence belongs to
L'(R?;Y). Thus we can evaluate the transform F* in the ordinary L' sense; alternatively, we
have L' (R;Y) € 8*(R?; X) and we can then take the inverse Fourier transform ! in the distri-
bution sense. If the mapping T so defined satisfies |TG‘/)|L4(R4;Y) <cC |1/)|LP(R(,;X) for some C' < o0
independent of 1) € D(R?; X), then T extends to a bounded linear mapping from LP(R?; X) to
L4(R?;Y). Whenever this is the case, G is called a Fourier multiplier, and we define

|Glawa®ex,y) = 1T6ls@r@ox)a@ay)) -

We mostly study the case ¢ = p, in which case we omit the double superscript, and simply
write MP, as earlier. Also, the main result of the following proposition is the case ¢ = p, but it is
instructive to observe the byproduct in the case ¢ > p, which is obtained at the same strike.

10.2 Recent theorems

We begin with a proposition showing the necessity of R-boundedness.

Proposition 10.1. Let X,Y be Banach spaces, p,q € (1,00). Let G € L. (R} B(X;Y)) be a
Fourier multiplier: G € MP4(R%; X,Y). Then, if p = q, {G(t)}iesc C B(X;Y) is R-bounded
with

Ry({G(B) hiesa) < C1Glomaxy: (10.1)
where £G denoted the set of Lebesgue points of G and C is a universal constant. In particular,

G € L= (R?; B(X;Y)), with the norm bounded by the right-hand side of (10.1).
If ¢ > p, then G = 0.

Observe that this result does not require the UMD-property of either of the spaces. Henceforth,
in the study of L? multipliers, we can restrict to multiplier functions G € L>(R?; B(X;Y)) without
loss of generality.

101
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Proof. The idea is to estimate G(t) at the Lebesgue points by an integral expression, and apply
the convergence theorems. We pick a ¢ € D(R?), rant C [0,1], which is symmetric, so that
Y =1, and [,,4*dm = 1. Then, from Lemma A.38, applied to 2, it follows that

G(t) = Jim ded¢2(k(s —1)G(s)ds, te€ £aG,

where convergence takes place in the norm of B(X;Y). It is convenient to write the kernel of
the integral operator above in a different form, using k%) (k-) = F((k~"-)). Since ) € D C §
is symmetric, we further have ¢ = F(¢) = 1), so that k%2 (k-) = F(p(k~1-))(k-). We use this
expression to estimate the R-bound of {G(t)}+eeq from the definition:

p

/ S &5 (@)Gt)z;| dP(w)
Qi Y
- / lim j}ﬂj 5(w) / GETBE )5 — 1) k(s — 1)ds de.

Fatou’s lemma can be applied to take out the limit, converting it to liminf and yielding an
upper bound for the quantity above. Inside the integral, observe that F(¢(k='-))(s — t;) =

F (27 (h(k~1.))(s), and G(s) applied to this quantity times z; is the same as
FTg, (ei27rtj-(-)12;(k71‘)xj)

evaluated at s, by the definition of T¢; := 7' MgF. Furthermore, using [ Ff-gdm = [ f-Fgdm
with basic properties of the Fourier transform, we have

[ 576 (7 Od0 2, ) (99 (h(s — t)ds
Rd
— / Te (eiQﬁt]-~(~),$(k,—1_)$j) (s) - e_iQﬁtj'sk_d’(Z(k'_ls)ds.
Rd

We can then use Holder’s inequality to estimate

/Rd zn: £ (w)e—iQﬂ't]"STG (€i27rt]-.(.),$(k—1_)$j) (s) - k_dg/l;(k_ls)ds
i=1

< /Rd jz:;Ej(w)methGmetj (@(kfl-)mj) Yds- </Rd k~

i2mt-(- )

Y

slis

dﬂﬁ (kls)ds> ,

; the
L7(RY)’

L? norm here is some finite quantity, since 1/1 € 8 C LP. For the first term we exploit the assumed
boundedness of Tg : LY(R?; X) — LP(R%;Y) via the resulting R-boundedness of the family of
operators {m._,Tgme, };cre (by Example 4.11 and the product rule of R-bounds; also observe
Remark 4.2 on different exponents p, ¢ on the two sides of the R-boundedness inequality). Thus

A change of variable shows that the latter factor equals k¢ ‘1/)

where e¢; := e

p P
/ ZEJ (w)me—tj Tame, (@Z(k_l )wj) dP(w)
=t Lp(REY)
q q
< 4|TG|‘B(L‘1(]Rd X) p ]RdY / ZE] .’I," d]P(OJ)
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The integrand in the last expression factors into parts depending only on w € Q and on t € R?,
respectively, so that we have

a 1

) - ([ lespmslt ape) [

|ty

La(rd)’
La(R4;X)
~ q ~
and a change of variable shows that ‘@Zj(k_l-)‘ =k "QZJ . Combining all the estimates,
La(R4) La(R9)

we find that

. P

[ E @) aw

Q=

J Y

1

. d_d |~ -~ a
< Alelsqunan - Jim 6423 [3] ([ lespslt ap) "
If ¢ = p, the factor containing k equals unity, whatever k, and the asserted R-boundedness follows.
If ¢ > p, then ; — > < 0, and the limit expression is 0; then the R-bound is zero, and G(t) = 0 at

every Lebesgue point, so the operator vanishes (a.e.). O

LP

The following proposition gives a criterion of convergence for multipliers.

Proposition 10.2. Let G, € L®(R?; B(X;Y)), n € Z, be uniformly bounded multipliers, i.e.,
|Gn|Mp(Rd;X’Y) < K foralln € Z. Let the Banach space Y be reflexive. If G, (t) — G(t) strongly

for almost all t € R as n — oo, then G is also a multiplier, and
|G|MP(Rd;X,Y) < limsup |Gn|MP(Rd;X,Y) :
n— o0

Since UMD-spaces are reflexive, the conclusion holds in particular for X, Y UMD.

Proof. By (10.1) in Proposition 10.1, the functions G,, are also uniformly bounded in the norm of
L®(RY;B(X;Y)). For ¢ € 8(RY; X) and 4 € $(R?) we then have, denoting by (-, )5 the pairing
of 8*(R4;Y) and $(R?),

(Ta, = Te)o, v)s| = [((Ma, — Ma)d,¥) | =

/ (G —G)Mdm‘ 5/ Guf— GB|_|4] dm.
R4 R4 Y
For fixed ¢ and 1, the integrand is dominated by C' K ‘a‘L (R4 |@ZJ| € L'(R?), since also (Z and ¢

~ o~

are rapidly decreasing. Furthermore, the integrand tends to zero (a.e.), since G, (t)o(t) — G(t)o(t)
for almost every ¢. The dominated convergence theorem then shows that (T, ¢,v)s = (Tad, V)
as n — oo, and this being true for arbitrary ¢ € §(R¢; X), we find that T, ¢ — Tg¢ as tempered
distributions, i.e., in the topology of §*(R?;Y").

On the other hand, since ¢ € 8(R*; X) C LP(R*; X) and |7, |s(1rmax);1rmayy < K, we
find that {Tg, ¢}, is a bounded sequence in LP(R?;Y). Since Y is reflexive, LP(R?;Y) =
(LP(R?;Y*))*, and the Banach—Alaoglu theorem [19] provides us with a subsequence {Ta., 1
which converges weakly* to some g € LP(R?;Y).

Consider then a test function ¢y*, with ¢ € §(R?) and y* € Y*. Obviously y* € LP(R?; Y*).
We have, on the one hand,

(T, 6" — 00 Durma = [ O D08 )y

LF(REY*) k—oo

_ < / dg(t)¢(t)dt,y*>w = (9, 6)5 )y
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and on the other

T 00" may = [ o600}y at = ( [ TGH¢<t)«/)<t>dt,y*>Y*

= <<TGTL¢7¢)S 7y*>y* n::o <<TG¢a'¢)>S ;y*>y* .

d

Since the limit is unique, and since these computations are valid for all y* € Y* and all ¢ € §(R?),
we must necessarily have Tg¢ = g, i.e., T, ¢ A Teé in (LP(R?;Y*))* as n — oc. But then, for
an appropriate f € LP(R?;Y*) of unit norm we have

|TG¢|LP(]Rd;Y) = <TG¢; f)LF(Rd;y*) = klil"{)lo ‘<TGnk ¢;f>

LF(RLY+)

<limsup|Ta, ¢l (way) < Hmsup |G|y rax vy 1€l 0erax) -
n—00 n—00
This shows the claim. O

Finally, we give a Mikhlin-type theorem with sufficient conditions for an operator-valued
Fourier-multiplier. We here restrict ourselves to the one-dimensional domain R; the reason for
this is the fact that the dyadic decomposition {D,}nen introduced in Chapter 9 is only fine
enough for a Mikhlin-type theorem in this setting; see Section 10.3.

Theorem 10.3 (Mikhlin-type multiplier theorem, Weis 2000). Let X and Y be UMD-
spaces and p € (1,00). Let G € C1(R\ {0}; B(X;Y)) be an operator-valued function for which

{G(t)}eerr\ioy  and  {tG'(t) }ier\ {0}

are R-bounded. Then G is a Fourier multiplier, and |G|MP(R;X’Y) is bounded by a constant C =
C(p, X,Y) times the sum of the R-bounds of the two above mentioned sets.

Proof. We may assume that the support of G lies in [0,00), since a general operator can be
obtained from two such functions with reflection applied to the other. We then consider discretized
approximations of G of the following kind:

2k

Gy = Z G(2)) 1[4 2i+1) + Z 217FG" (27 + (£ - 1)2j_k)1[2j+£21‘—k,2j+1)
JEZ =1

Observe that the jth term of the summation is non-zero only on the interval [27,2/%1) so there
is no convergence problem in the definition. Furthermore, since G’ is continuous on every dyadic
interval [27,27F1) it follows that the evaluation in ¢ € [27,2771) of summation in £ above, easily
recognized as a Riemann sum, tends to

t
G'(s)ds = G(t) — G(29),
23
thus Gi(t) — G(t) for every t € Ry. By Proposition 10.2, it now suffices to show that the
discretized approximations give rise to uniformly bounded multiplier operators.
Denote by S; the operator whose multiplier is 1[5 2i+1) and by S} k¢ the one corresponding to
(95 4425+ 25+1). Then {S;}52, is an unconditional Schauder decomposition of the LP(Ry; X), as
one easily sees from Lemma 9.15, and

{Sj,k,f}jel,keZ+71§£§2k C {m¢Rm¢ : |¢|Loo a|1/)|Loo <1}

is R-bounded. (R again denotes the Riesz projection.)
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For the operator

2k
To, =Y G@)S;+Y | 278 Y YG(2 + (- 1)27")S;00 | 5
=1

JEZ JEZ

the boundedness of the first part then follows from Theorem 4.13, since S; is an unconditional
Schauder decomposition of both LP(R;; X) and LP(R;;Y), the set {G(27)};ez is certainly R-
bounded by the assumption, and since it consists of constant operators, it is also {S;} jez-invariant
between the two LP-spaces. For the second part, we observe that

272G (@ + (6~ 1)2F) € conv([0, 1{tG' (1) }e>0),
(=1

an R-bounded set by Lemmas 4.10 and 4.12(2). Since {Sj r,¢}; k¢ is also R-bounded, we deduce
the R-boundedness of the operators multiplying .S; from the product rule, and we can again apply
Theorem 4.13. The {S,}ez-invariance is again clear, since the multipliers S, x ¢ and S; obviously
commute.

By the boundedness of the approximations and their convergence to the original operator, the
assertion is established. O

10.3 Notes and comments

Propositions 10.1 and 10.2 are taken from Hieber and Priiss [8]. A multiplier convergence result
similar to Proposition 10.2 is stated for scalar-valued multipliers (without proof) in Zimmer-
mann [29].

Theorem 10.3 was first proved by Weis [26]. Another proof is given in Hieber and Priiss [8].
The proof given above has some elements from both of the two.

As mentioned before the statement of Theorem 10.3, the dyadic decompositions introduced
in Chapter 9 are not fine enough for a Mikhlin-type theorem with domain R?, d > 1. The
reason is roughly the following: The natural generalization of the Mikhlin-type condition on the
(R-)boundedness of G’ (t) would in higher dimension involve expressions of the form t’ DG (%),
6 € {0,1}%. In the one dimensional case, the derivative G’ is allowed to blow up at one point, the
origin, but on R¢, d > 1, the Mikhlin-type condition allows such behaviour on all the coordinate
axes. The dyadic decomposition {D,(zl)}nez of R leaves out the origin in a convenient manner,

but the blocks D,(zd) of the d-dimensional decompositions do intersect with coordinate axes. For a
d-dimensional Mikhlin-type theorem, a refined decomposition would be needed, say, the product
decomposition

{A}eza A, =DM x ... x DY

Unfortunately, the UMD-condition is insufficient to deduce the unconditionality of this refined
decomposition. To obtain improved theorems related to the decomposition {A,}, 74, additional
assumptions on the underlying Banach space are required; Witvliet [28] studies UMD-spaces
with property (a) and Zimmermann [29] those with local unconditional structure.

We should emphasize that this chapter is only a very brief introduction to the modern theory
of multipliers. Out of the many important results that have been obtained recently, we have only
presented a very minimal collection to give an idea of the techniques involved.

Both [8] and [26] contain other multiplier results related to Theorem 10.3, and also applications
to maximal LP-regularity. A discrete analogue of Theorem 10.3 is contained in Arendt and Bu [1]:

Theorem 10.4 (Marcinkiewicz-type multiplier theorem, Arendt—Bu 2000). Let X and
Y be UMD-spaces, p € (1,00), and (Gy)rez € B(X;Y)?2. If

{Gr}rez and {k(Gr+1 — Gi) }rez

are R-bounded, then (Gy)rez is an LP Fourier multiplier.
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Witvliet’s thesis [28] contains an extensive treatment of modern multiplier theorems and ap-
plications. Some of the results have also appeared in Clément et al. [3].

A versatile overview of the modern theory of R-boundedness and Fourier-multipliers, from the
point of view of applications to maximal LP-regularity, is given in Weis [25].



Chapter 11

Summary

In this work, we have studied the modern extensions of the classical theory of Fourier multiplier
transformations, setting emphasis on the techniques and ideas behind the recent developments.
We have explained the emergence of the notion of multipliers in the classical context, its vector-
valued generalizations, and the use of R-boundedness to characterize operator-valued multiplier
transformations. Furthermore, we have introduced the UMD-spaces and proved the main theorems
related to them. Finally, we have given examples of the modern multiplier results, which combine
the UMD-theory and the notion of R-boundedness.

The notion of multipliers naturally emerged from the structure of bounded linear translation
invariant operators between LP-spaces when viewed in the Fourier domain. A complete character-
ization was available for the multipliers on L', L? and L*°.

In order to view the problem from an abstract point of view, the LP-spaces were replaced
by a general Banach space X, and the decomposition of a function f € LP into its harmonic
components by a general Schauder decomposition z = 21311 Ty, T € Xj. A particularly simple
characterization of multiplier operators was obtained when the underlying decomposition was
unconditional.

The multiplier problem in any concrete setting is then related to finding appropriate uncon-
ditional decompositions. On the usual LP-spaces, the division of a function into its harmonic
components is a Schauder decomposition, but unconditional only on L2. However, grouping the
Fourier coefficients into appropriate blocks leads to the dyadic decomposition, which is uncondi-
tional.

In characterizing decompositions, the behaviour under randomization was found to be of inter-
est, and in this connection, the Khintchine—-Kahane inequality provided a useful tool. We also saw
that the notion of R-boundedness of operator families is very naturally related to the boundedness
of generalized multiplier transformations, which are obtained from sequences of operators acting
componentwise on a Schauder decomposition. These considerations lead to interesting abstract
multiplier theorems with a relatively small effort.

In order to efficiently apply the abstract machinery to obtain strong Fourier multiplier theorems
for vector-valued functions, some conditions on the geometry of the Banach space are needed. It is
natural to impose a condition related to the boundedness of a representative “test multiplier”, and
for this purpose, the Hilbert and Riesz transforms were found to be appropriate. However, it was
more convenient to take as a starting point the requirement of the unconditionality of martingale
differences (UMD), which implies the other two (and is, in fact, equivalent to them). Working with
the UMD-condition, we showed the independence of the condition on the exponent p; furthermore,
we found that UMD-spaces are reflexive, and X* and LP(T'; X) are UMD whenever X is.

The boundedness of the Hilbert transform was applied to deduce the boundedness of a large
class of multiplier operators acting on functions taking values in a UMD-space, and we found
that the dyadic decomposition is unconditional on LP(R; X) for X UMD. Finally, the interplay
of R-boundedness with the unconditionality of the dyadic decomposition lead to operator-valued
Fourier multiplier theorems on UMD-spaces, the most recent results in the field.
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The results in this work have appeared elsewhere, but the collective presentation is new. In
preparing this work, we have in particular exploited the lecture notes of de Pagter [5], the mono-
graph of Hieber and Priiss [8], the thesis of Witvliet [28] (and the related article by Clément et
al. [3]), and the paper of Zimmermann [29].

In addition to the arrangement, the following attributes are, up to our knowledge, new in this
work: We have introduced here the notion of relative R-boundedness (Definition 4.9), which does
appear implicitly in [3] and in [28], though. As Theorem 4.14 shows, this notion is appropriate in
characterizing certain abstract multipliers. Also, the proof of the vector-valued Jensen’s inequality
(Lemma 5.7) is possibly new, and it differs from the usual argument in the scalar-valued situation.
Chapter 9 is largely translated to the language of R-boundedness and Schauder decompositions
from the somewhat more cumbersome original notion.



Appendix A

Vector-Valued Analysis

A.1 Introduction

The appendix provides an account of the principles of mathematical analysis of vector-valued
functions, which are used throughout this work. In the present context, “vector” always refers
to a point of a Banach space. The topics to be touched are vector-valued integration and the
theory of the Lebesgue-Bochner spaces LP(€Q; X) and their duals, vector-valued extensions of
linear operators, differentiability properties of vector-valued functions, Fourier analysis, and the
theory distributions.

A.2 Abstract integration

We will here develop an appropriate theory for integrating functions defined on a measure space
Q (with a o-algebra F and a positive measure u), and taking values in a Banach space X. For
the moment, we will restrict the considerations to separable spaces; this ensures that we can use
simple functions as an auxiliary device in much the same way as in real analysis. At the end of
the section we discuss how to remove this assumption.

There are various ways of defining measurability and integration in the vector-valued setting,
but we only present one; alternative procedures are discussed at some length in Section A.9.

A Borel measurable function is defined, as in the real case, as f : @ — X, for which the
preimage of every Borel set of X is a measurable set, i.e., f~1:B(X) = F. Recall (or see [20])
that this is equivalent to merely requiring that the preimage of every open set be measurable; the
vector-valued setting does not affect this topological fact. As usual, the class B(X) of Borel sets
of X means the g-algebra generated by the topology T induced by the norm of X.

We now state the first lemma, which gives us the possibility to approximate arbitrary measur-
able functions by simple functions in a convenient way. The separability of X will play the key
role in the proof.

Lemma A.1. Let ¢ : X — R be continuous and convexr and attain a minimum at o € X.
Then each measurable function [ : Q — X is a pointwise limit of simple measurable functions f,

satisfying ¢(fn(w)) < ¢(f(w)) + 5 and | fo(w) = f(W)]x < |f(W)lx +zolx for alln € Zy, w € Q.
If ¢ attains the minimum at a unique point, then the % can be omitted.

For the construction of the integral, we merely need the special case of the lemma with ¢ given
by ¢(z) = |z| 5. This clearly satisfies the hypotheses, and the unique point of minimum is 2y = 0;
thus the estimate for the difference of f and the approximating functions in the assertion reduces
0 [faw) = F@)lx < 1F(@)]x.

The full strength of the lemma is exploited in proving a vector-valued version of Jensen’s
inequality.
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Proof. Let {z}7°, be a dense sequence in X, and consider the sequence {x}}7° ,, where we have
added the point z¢ where ¢ has the minimum. (If the point of minimum is not unique, we just pick
one.) We define the auxiliary functions s, : X — {2}7_, C X, n € Z, as follows: s,(2) := z,
where |z — 21|y is the minimum, subject to the constraints k € {0,...,n} and ¢(zx) < ¢(z) + =.
For definiteness, let k£ be the smallest value with this property. Note that at least z( satisfies the
constraint conditions, so that the mappings s,, are well-defined for each n. Writing the definition
of s, the other way round, we find that

1
sit(zg) = {z € X : ¢p(x) > p(x1) — E,|x—xk|X <l|z -y for 0 <L<k,

|z — x|y < |z —a¢y for k < €< 2n}.

This is obviously a Borel set: it is an intersection of a finite number of open and closed sets,
which appear almost explicitly in the expression. Note in particular that {z : ¢(z) > ¢(xk)} =
¢~ o(zr) — £, 00) is a closed set, since ¢ is continuous. (The same conclusion is clearly true with
the % omitted, which is the case if the point of minimum of ¢ is unique.) Furthermore, the image
under s, ! of any Borel set of X (in fact, of any subset of X) is the union of the images of the
finite number of xj, it contains, which is again a Borel set. Thus s,, is a Borel function, for each n.

Now {s,}5%; has the following properties, for each z € X:
L ¢(sn()) < ¢(2) + 7,
2. |sn(x) — 2|y <lwo —=lx < lwolx + |2y,

3. [sn(z) — 2|y = min{|z — 2|y 1 k <n,¢(xx) < d(x) + 1} L0 asn 1t oc.

(Again, we omit the % if xo is the unique point of minimum of ¢.) Items 1 and 2 are immediate

from the definition. If we did not have the condition ¢(zx) < ¢(x)+ L, item 3 would follow directly
from the density of {1} . Even with this condition, the conclusion is quite readily established:

If 2 is the unique point where ¢ attains its minimum, then 2 = z, is among each set {z;}}_,,
so there is nothing to prove. If xq is the unique minimum but z # g, then we clearly find a point
y € X such that ¢(y) < ¢(z) (say, y = x0), and even if ¢ has several points of minimum, we
nevertheless find, for any z € X, a y € X such that ¢(y) < ¢(z) + L. We proceed with this latter
form; it is understood that the % is omitted in case ¢ has a unique minimum point.

Now for A € (0,1), ¢(Ay + (1 = Nz) < Ad(y) + (1 — N)d(z) < ¢(z) + L. As XA [ 0, yy :=
Ay + (1 = XN)z — z. Thus, arbitrarily close to z, we can find a yy such that ¢(y) < é(z) + <.
Then due to the density of {z1}%2,, we can find zj in the vicinity of any such y,, and by the
continuity of ¢, they also satisfy ¢(zy) < ¢(x) + %, when chosen close enough to y,. Thus clearly
|z — x|y can be made as small as desired, retaining the condition ¢(zx) < ¢(z) + L. Now all the
items listed above are verified.

The auxiliary functions s,, with the above mentioned properties at hand, the lemma is almost
proved: If f: Q — X is measurable, let f,, := s, o f, whence the f,, are obviously simple; also,
they satisfy the norm bounds of the assertion by 1 and 2 above, and f is the pointwise limit of f,
by 3. Finally, as a composition of a measurable and Borel functions, each f, is measurable. [

In addition to Lemma A.1, it is useful to know that any pointwise limit (when it exists) of
a sequence of measurable functions, whether simple or not, is again measurable. Unfortunately,
the familiar real analysis results of similar kind concerning suprema, infima and lower and upper
limits do not have meaning in the vector-valued setting.

Lemma A.2. The pointwise limit f of measurable functions f,, n € Z 4, is measurable.

Once this is proved, it follows immediately that also the pointwise limit a.e. of measurable
functions is measurable, possibly after being redefined on a set of measure zero (indeed, on the
set where convergence does not take place, for instance).
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Proof. We have to show that the preimage of every open set G C X is measurable. Let Gy :=
{r € G : d(z,G°) > 1}, where d(-,-) denotes the distance of an element from a (closed) set;
G is certainly closed as the complement of the open G. Then the Gj are open, and Gi 1 G.
Furthermore, for f(w) € G we have f(w) € Gy for some k and then f;(w) € Gy, for all £ > n (say).
Conversely, is f/(w) € Gy for all £ > n, for some k, then f;,(w) must converge to a point f(w) in
G C Gryi1 C G (the convergence to some point f(w) was in the hypothesis of the lemma). Tt
follows that

oo 0 XX

{recy= U N{fec,

k=1n=1/(=n

and each of the {f;, € G} is a preimage of an open set G, thus measurable, and the measurability
of {f € G} follows, since the class F of measurable sets is a o-algebra. O

It is now time to define what we mean by integration of measurable vector-valued functions. We
call a measurable f integrable whenever the real-valued function |f(-)| x is integrable. Observe
that [f(-)|x : @ = [0, 00) is certainly measurable as a composition of the measurable f : @ — X
and the continuous ||y : X — [0,00). We use the customary notation L' (2; X) for the (Lebesgue—
Bochner) space of integrable functions, unless different o-algebras are involved, in which case we
switch to the more accurate notation L!(F; X). Only one measure (possibly restricted to different
o-algebras) will be used on the space {2, so there is no need to indicate the measure in the
notation of integrability. The norm is defined in analogy with the scalar case by |f| QX)) =
Jo If ()] x dp(w). The spaces LP(; X) for p > 1, including p = oo, and the corresponding norms
are defined similarly in the obvious way.

With the definitions as above, many of the properties of vector-valued integrals (to be defined
pretty soon) boil down to the corresponding properties of the real-valued Lebesgue integral. The
facts that LP(Q2; X) is a Banach space for each p € [1,00] can be shown essentially as in the
real case (see e.g. [20]; a proof in a Banach space is given in [9]), the crucial point being the
fact that an absolutely convergent series is convergent in a Banach space (see Section 2.2; the
completeness is needed here). Also, if f, — f in LP(€2; X), then a subsequence f,, — f a.e. Note
that these properties entirely relied on the ordinary Lebesgue integral, and did not even require
any definition of vector-valued integration! Familiar properties of probability spaces Q with a
probability measure IP, such as the monotonicity of | f] Lr(0;x) in p for fixed f, or more generally,
Jensen’s inequality ¢(|f|z1(q,x)) < Jo ¢(|f(w)|x)du(w), for ¢ : R — R convex, also follow in the
same way.

Now finally, the integral of a simple integrable function is defined in the obvious way:

/ <Zl‘k1Ek> d/,t = Z:L‘ku(Ek)
Q k=1 k=1

For Ej, disjoint (and clearly they can always be chosen that way), we have

n n
Y aplp,| =Y lzklx 15,
k=1 k=1

X

and thus
n n
‘/ ZwklEkdu = Ziﬂku(Ek
Q=1 x k=1

ie, | [y fd,u|X < Jo lflx dp = | flz1(0,x) for simple integrable f.

Clearly a simple measurable f = Y/ | zx1p, (with Ej, disjoint and xj, # 0) is integrable if
and only if u(Ey) < oo for k = 1,...,n, or equivalently, u(f # 0) < oo. We will denote the
space of simple L'(Q; X) functions by S(Q;X). (This is obviously a vector space.) The basic
norm inequality above soon allows us to extend the definition of the bounded linear operator

du,

Z Tr 1,

< Z |kl x 1(Er) =
X
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Jo()dp : S(€; X) — X to all of L'(Q; X) by continuity. Indeed, all we need to show is that .S is
dense in L'(Q; X). This is the next task.

Lemma A.3. 1. The space S(Q;X) is dense in LP(2; X), 1 < p < oc.

2. If w(2) < oo, and ¢ : X — R is convex, continuous and attains a minimum at zo € X,
and f € LP(; X), then {fn}2, C S(Q;X) converging to f in LP can be chosen so that
O(fa(w)) < S(f(W)) + 5, [fa(w) = flw)lx < |f(W)lx + |zolx for alln € Zy, we Q.

If xg = 0, then the restriction u(2) < oo can be dropped.

It is obvious that S(Q; X) C LP(Q; X), also for p = oo, since a simple function attains only
finitely many values (thus certainly of uniformly bounded norm) and since the set on which a
simple integrable function differs from zero is of finite measure.

Proof. By Lemma A.1, f € LP(Q};X) is the pointwise limit of a sequence {fi}72, of simple
functions, which satisfy the inequalities (recall that ¢ = ||y, o = 0 satisfy the conditions of that
lemma) |fr(w)]x < |f(w)|x and |fe(w) — f(w)|x < |f(w)|x for every w € Q. It follows from the
first of these inequalities that f € LP(Q; X), thus f, € S(Q; X). (A priori, we only knew that the
fr are simple and measurable, not necessarily integrable.) Using the second inequality, Lebesgue
theorem of dominated convergence (for real integrals) shows that [, |fr — f|% du — 0 as k — oo,
but this is what we wanted to prove.

For the second part of the lemma, we also take the sequence {f,}52; given by Lemma A.1,
but now related to the given function ¢ instead of ||y, and we must show the L? convergence.
But this follows again by dominated convergence, since the assumption p(2) < oo guarantees that
If()]x + |zolx € LP() + L>(Q) is integrable. If zo = 0, the integrability holds regardless of
whether () < oo or not. O

This result at hand, the operator [, -du extends to all of L'(Q; X), as indicated above, and
thus the celebrated vector-valued integration over 2 is now defined. Integrals over measurable
subsets F' € F are defined in the usual way by fF fdu = fQ f1pdp. This integral has many of
the properties we would like and expect; for instance, if Y is another separable Banach space,
A e B(X;Y) and f € LP(Q; X), we see that Af : @ — Y is measurable (as a composition of
continuous and measurable functions) and [Af|;»q.v) < |Algxv) |flpr(0 x)- Furthermore, we
immediately deduce the equality

A /Q F(@)du(w) = /Q Af(w)dp(w), (A1)

which is readily verified for simple f and extends to the general case by the density of the simple
functions and the continuity of fQ -dp. As an important special case, take A = z* € X* := B(X;C)
to deduce (z*, [, fdu) = [, (z*, f) dp. Observe, in addition to this nice result, that the deduction
via the simple functions and approximation was essentially the same as the standard procedure
in the scalar case. (The equality (A.1) holds more generally for closed operators A, see [6],
Theorem I1.2.6, or [9], Theorem 3.7.12, but we will not need this here.)

In real analysis, it is an almost trivial fact that the constant zero function is essentially the only
one whose integral vanishes over every measurable set. This result extends to the vector-valued
case, with the help of the following lemma.

Lemma A.4. If X is separable, then there is a sequence {&;}5°, C S(0;1) C X* such that
| x = suprez, [(&k, ).

Proof. Let {£x}72, be a dense sequence in X. By the Hahn-Banach theorem we can find {£; }72, C
X* such that (&, &) = [&]x and €| . = 1 for each k. Then, given z € X and € > 0, we can
find a § such that [z — & |y <e. Thus [(§,2)] > [(&F, &)l — [ & — @) = €] €. O

Corollary A.5. If f € L*(F; X) satisfies [, fdu =0 for every F € F, then f =0 (a.e.).
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Proof. If f satisfies the assumption, then [, (z*, f)du = (z*, [ fdu) = 0 for all F € F and all
x* € X*. We hence know from real analysis that (z*, f(w)) = 0 except possibly for w € Z,« (say),
where u(Z;~) =0.

Now the set Z := Ug2 | Z¢-, where {&: 152, is a sequence as in Lemma A.4, has probability zero,
and for w € Z°, i.e., almost surely, (¢, f(w)) = 0 for all &, k € Z,. But this implies f(w) = 0.
Thus (a.e.) f =0. O

We will also exploit a vector version of Fubini’s theorem.

Lemma A.6 (Fubini’s theorem). Let (2;,%;,1;), i = 1,2, be two o-finite probability spaces
and (Qq x Qo, Fy x Fo, w1 X o) the product space defined in the usual way. If f € L*(; x Q95 X),
then

/leﬂ2 flwr,wa)d(p1 X pa)(wr,wa) = dpr (wr) < f(w1,w2)du2(w2)> .

Ql Q2

Proof. If f = Y.}, xx1p, is simple and integrable, then the claim reduces to the equations
Ja,xa, 1Ecd(pn X p2) = [ du (fm 1p, d,ug), which is just real-valued Fubini’s theorem [20] for
the indicator functions. In the general case, use Lemma A.1 to get simple f; such that fr — f
pointwise as k — oo, | fr — f|x < |f|x (pointwise) for all k£ and all points of the product space € x
Q5. Then, by the dominated convergence theorem, it follows that le “ Qs |f — fulx d(pa x pu2) = 0.
By the real-valued Fubini’s theorem, |f(-,-)|x € L'(Q1 x Q) implies | f(w1,-)|x € L'(Q2) for a.e.
wy € (11; thus we can also use dominated convergence to deduce fm |f(wi,-) = felwr, )| x dpa = 0
for a.e. wi € Q1. Then we have one more dominated convergence

dpi (wr) </ |flwr,w2) = fr(wi, wa)lx du2(w2)> =0,
Ql Q2
and the result follows for general f € L*(2; X). O

We conclude this section by having a look beyond separable spaces.

Remark A.7. The integration theory can be extended to non-separable Banach spaces X by re-
stricting the treatment to measurable functions f with essentially separable range, i.e., we
require that there is an A C Q such that u(A°) =0 and f(A) C X is separable.

Indeed, we can redefine f on A¢ to take values in f(A) without doing any harm in view
of the usual equivalence class philosophy. If {£,}72, is dense in f(A) (which is ran f after the
redefinition), then the set of finite linear combinations of the &, k € Z ., with rational coefficients
is dense in spanran f, and it is a countable set; thus spanran f is separable. Furthermore, if
a set is dense in spanran f, it is also dense in spanran f, and we conclude that spanran f is a
separable Banach space in which f can be integrated. Furthermore, if we have countably many
measurable, essentially separably-valued functions f, a similar argument as above, involving linear
combinations with rational coefficients, shows that Span(U32; ran fi) is also separable, whence
integrals of the fy, k € Z 4, can be defined in a common Banach space. Thus all of the integration
theory works, if we simply add the requirement of essentially separable range to the definition of
measurability.

It is obvious by now that all this hardly extends anything from the separable setting. The
whole procedure may almost appear like cheating, but we nevertheless have integration defined in
a general setting. It is possible to give other, perhaps more “natural” definitions and prove the
essential separability of the range of a measurable function as a theorem (see Section A.9); however,
this does not give us greater generality, and we can equally well take the essential separability as
a definition.
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A.3 Dual of LP($2; X)

Since duality arguments provide powerful tools for treating various problems of analysis, it is useful
to have some knowledge of the duals of the Lebesgue—Bochner spaces of integrable vector-valued
functions. We begin with an embedding result. In order not to confuse different duality pairings,
we use the notation (z*, z)  for the pairing between 2 € X and z* € X*.

Lemma A.8. If X is a Banach space, p € (1,00) and g € LP(2; X*), then
D@:X)3 10 [ (g). f@)x ()

defines a continuous linear functional g* on LP(Q; X), of norm |g|L;(Q;X*).

Thus LP(2; X*) can be identified with a (closed) linear subspace of LP(f2; X)*, the mapping
LP(Q; X*) 3 g+ g* € LP(Q; X)* being a linear isometry.

Proof. Since f and g are limits (a.e.) of simple functions, say fj and g, respectively, it is clear
that w — (g(w), f(w)) x is the limit (a.e.) of the simple functions w — (gx(w), fr(w)) y, and thus
measurable. Furthermore

/Q (9(w), F(@)) x dpu(w)

fWw)lx du(w) < |g|LF(Q;X*) f|LP(Q;X) )

< /Q 19)] -

whence |9*(1» (0, x) < 19lpr(0;x+)- We must still show that actually the equality holds.

Take first g € S(; X*), g = >, }1p,, Ex disjoint. The norm is then given by |g|L;(Q;X*) =

1
(22:1 |25 % ,u(Ek)) " and by the duality of the scalar-valued function spaces L?(€) and LP(¢&),
where € is the finite algebra generated by {Ex}}_,, there exist ay > 0, k = 1,...,n, such that

n n r
|9l poixs) = D ar |z}l x- p(E)  and (Z a’,:u<Ek)) <1 (A2)
k=1 k=1

Given any € > 0, we can find 2 € X of norm at most 1 such that (z},zx) > |z} |y. — €. Then
fi=Y 1, arzilp, € S(Q; X) satisfies

P

n
|flprix) = <Z ap |zl N(Ek)> <1
k=1

where the last inequality follows from |zj|y <1 and equation (A.2). Furthermore

(g*7f)LP(Q;X) = Zak (ks Tk) x W(Ex) > Zak (|m2|x* - 6) W(Ex) = |g|L5(Q;X*) - Ezak/‘(Ek)~
k=1 k=1 k=1

It follows that |g*| o (q.x) > |9]r7(0.x) = € Zok=1 aki(Er), and this being true for all € > 0, we
have the desired equality. Thus g — g¢* is a linear isometry from S(Q; X*) C LP(Q; X*) into
LP(Q; X)*, and so extends to a linear isometry on all of LP(Q); X). O

Lemma A.9. Let (2,3, 1) be a finite measure space, p € (1,00). If X* has the Radon—Nikodym
property with respect to (Q, 3, 1), then LP(Q; X)* = LP(Q; X*).

Proof. We must show that every A € LP(€Q; X)* can be represented as an integral operator like the
one in Lemma A.8. So let A be such a functional and define the vector-valued measure ¥ : § — X*
by

(V(E),z) x = (A, 21EB) (0. x) for E€gf, z€X.
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Then [(¥(E), 7} x| < Al [olx #(E)?, whence [¥(E)|y. < |Alqx)- #(E)F. Tt follows
that ¥ is continuous on the null-set (which is equivalent to o-additivity) since p is; thus ¥ is a
proper vector measure, and it is clearly absolutely continuous with respect to p. Furthermore, for
E = U}_, E} (a disjoint union) and z3 € X, |21y < 1, we compute

= <A ZxklEk>

n

> (U(E), zi) x

k=1

Lr(Q;X)

-

1

Taking supremum over all disjoint unions E = Zk:l Ey and all z;, € B(0;1) C X, we find that
¥y (B) < [AlLe0;x)- /J,(E)% With E = 2, we find that ¥ is of bounded variation. Since

X* has the Radon—Nikodym property with respect to (€2, &, ), the X*-valued measure ¥ has a
Radon-Nikodym derivative g € L*(Q; X*) such that ¥(E) = [}, gdu. Thus

(A, 215) ) = (U(E),2)y = < / g(w)du(w),x>x = [ 00015 y du(e).

and by linearity we may replace x1g by any simple function f.

We must still show that g € LP(Q; X*). To this end, observe that fQ (91g,,") x dy, E, =
{lglx+ < n}, is a bounded linear functional on LP({2; X) (since g1g, is bounded). Furthermore,
this functional coincides with A for all simple functions supported on E,,, and by continuity for all
f € LP(E,; X). Thus g € L®(E,; X*) C LP(E,; X*) represents the linear functional A|LP(E";X)
in the sense of Lemma A.8, so by that lemma we have |9];7 5. x«) = Al 1o(m,.x)« < [Alpr.x)-
Since E,, T Q as n 1 0o, it follows from the monotone convergence theorem that also |g| L x) S
[A] Lo(Q:X)"- Then, with the help of Holder’s inequality we can apply the dominated convergence
theorem to the equation

(8 F1ED s = [ (0150, 1) du@)

to show that we actually have (A, f);,q.x) = Jo (9, f)x dp, so g € LP(2; X*) represents the
arbitrarily chosen operator A € LP(Q; X)*. Thus LP(Q; X)* = LP(Q; X*) with obvious identifica-
tions. (]

The finiteness of the measure space in Lemma A.9 is not a serious restriction. For if (2, §, u)
is a o-finite measure space, we can find a positive function w € L'(Q) so that (Q,F, wp) is a
finite measure space, and f w%f is a unitary bijection from LP(wu; X) to LP(u; X). (See [20]).
Furthermore, if A € LP(u; X)*, then Am, 1/, € LP(wp; X)*, so if X* has the Radon-Nikodym
property with respect to (Q, 3, 1), then Am, 1/, is represented by some g € LP(wu; X*), i.e., for
each f'uf:l? € LP(wu; X) (f € LP(u; X)), we have

A D) = <Amw1/p’w7%f>m(wu X) / <g,w pf> wip = /Q <w%g’f>x d

and w%g € LP(u; X), so A € LP(u; X)* is representable by this function, and LP(u; X)* =
LP(p; X*).

A more difficult task is determining when the Radon—Nikodym property is satisfied by X*. In
one particular case it is easy:

Remark A.10. Every Banach space X has the Radon—Nikodym property with respect to every
(Q,3, 1), where § is a finite algebra. Indeed, if bs§ = {F}5_,, then

n

d¥ o U(E)
dp kz::l 1(Ey)

E} -
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Consequently, LP(F; X)* = LP(F; X*) whenever § is a finite algebra.

The condition of a finite algebra is too restrictive for most applications though. The following
result provides a more useful condition. Unfortunately, the limitations of space force us to omit
the proof.

Lemma A.11. FEwvery reflexive Banach space has the Radon—Nikodym property with respect to
every finite measure space. Consequently, LP(T'; X)* = LP(T'; X*) whenever p € (1,0c), T is
o-finite and X is reflexive.

Observe that “finite” now refers to pu(f2) < oo, as usual.

Proof. The proof is found in [6], Corollary IT1.2.13. O

A.4 Vector-valued extensions of linear operators

Many operators classically viewed as acting on scalar-valued functions can be extended to the
vector-valued setting in the following canonical way:

Definition A.12. Let T € B(LP(Q); LY(Q)). We say that T € B(LP(Q; X); LY(Q; X)) is an

X -valued extension of T if
T (Z :Ifkfk> = Z l‘kak (A3)
k=1 k=1

forallneZy,z, € X, fr e LP(Q), k=1,...,n.

Remark A.13. 1. Owing to the density of simple integrable functions in LP, 1 < p < oo,
condition (A.3) can be replaced by the formally weaker requirement

T(ZxklEk> :Zl‘leEk
k=1 k=1
foralln € Z4, xp, € X, Ey, of finite measure, k =1,...,n.

2. The vector-valued extension is always unique (when it exists); indeed, its value is given for
every simple function, so the general case follows from the requirement that the extension be
continuous.

The observation that S(;X) € X QLP(Q) = {d,_ zxfe : zx € X;fr € LP(Q);k =
1,...,n;n € N}, and the consequent density of X & LP(Q2) in LP(); X) are occasionally useful.

An example of a vector-valued extension is the vector-valued conditional expectation E( -| &)
constructed in Section 5.2. The fact that E(-| &) acting on L!(F; X) is an extension of E(-| &)
acting on L!(g) is sometimes emphasized by writing Ex (/&) instead of E(-| &) when the vector-
valued operator is in question. We find this unnecessary, for it should always be clear from
the context which operator is used. In the extension lemmas below, we nevertheless follow this
convention for clarity.

There are several results concerning vector-valued extensions. The simplest is probably the
following one, which guarantees the existence of an X-valued extension, with the same norm, of
every bounded positive linear operator on LP(2).

Lemma A.14. Let Q be a o-finite measure space, X a Banach space and p,q € [1,00). Then
every positive T € B(L1(Q); LP(Q)) has an X -valued extension Tx of the same norm.

The existence of the vector-valued conditional expectation could have been derived from this
general result, but due to the fundamental role of E( -] &), we found it instructive to give a separate
proof in the main text.
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Proof. Define T on simple functions by

Tv <Z xklEk) = ZkalEka
k=1 k=1

whenever z; € X and the Ej, are measurable. Then

T (ZfﬂklEk) )| <D lerly T1g (W) =T (Z okl x 1Ek> W) =T > arlp,
k=1 k=1 k=1

X k=1
by the triangle inequality and the fact that T1g, > 0 since 15, > 0. We assumed that the Ej
are disjoint to obtain the last equality.

We have shown, for simple f, that ‘ff‘x (W) <Tf|x (w). Thus

w)

(

([ |zl <w>du<w>)% <([ (T|f|X<w))pdu<w>)% < Tlaaiasrcan [ 1F@ due))’

Hence ‘ff‘
LP(2;X)

a bounded operator on all of L7(€; X) with the same norm, and the assertion is established. O

< |T|3(LQ(Q);LP(Q)) |f|Lq(Q;X) for all simple f. The operator T then extends to

The following results show that once we have the extension of an operator in one Banach space,
we also have it in certain others.

Lemma A.15. Let X be a Banach-space, Q, T o-finite measure spaces and 1 < p < oo. If

T € B(LP(NN)) has an X -valued extension Tx, then T also has an LP(T'; X)-valued extension
TLP(F;X), which satisﬁes |TLP(F§X)|3(LP(Q;LP(F;X))) S |TX|'B(LP(Q;X))'

Proof. The operator T:= Tre(r;x) should satisfy

T (Z.%fk) =Y aTh
k=1 k=1

forn € N, g € LP(T; X), fr € LP().
By the density of X ) LP(T') in LP(T'; X) and the required continuity and linearity of T, it
suffices to construct a T satisfying the previous equality for all g € X @ LP(T"), i.e., we need to

have
n

T (zn: fkhkmk> = Z(Tfk)hkxk (A4)
k=1

k=1

for fr € LP(Q). hy € LP(T') and 25, € X.
Since the right-hand side of (A.4) is well-defined, we can take (A.4) as the definition of an
operator T on LP(Q) @ LP(T') @ X. For the operator defined like this we compute

-

LP(Q;LP(I;X))
P

Ty (Z fk(~)hk(7)wk)
k=1

n P »

> (T )

k=1

-

n

> (T ) (Vhx ()

k=1

dp(y)
LP(;X)

dp(y) < |TX|%(LP(9;X))/
LP(9;X) 8

P

du(y)

Lr(9;X)
D

> fOhi()w
k=1

kahkﬂﬁk

k=1

= |Tx I3 (1o (:x))

LP(Q;LP(I5X))

This computation applied to the difference of two expressions 22:1 frhixy representing the same

function shows that 7 is well defined, and thus it defines a linear operator whose norm is bounded
by |Tx |10, x) by the same calculation.
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The operator T' then extends to a bounded linear operator on all of LP(; LP(T; X)), since
LP(Q) Q LP(T') @ X is dense in LP(2; LP(T; X)); indeed, any function f in this last space can be
approximated in the L? norm by a simple function Y ;_, gx1g,, g» € LP(T; X), and each g;, can
again be approximated by a simple function Z;n:kl x§1 Fi x;“ € X. This completes the proof. O

Lemma A.16. Let p,q € (1,00). If T € B(LY(Q); LP(Q)) has an X-valued extension Tx €
B(LI(Y; X); LP(2; X)), then the dual operator (Tx)* € B(LP(Q; X)*; LYU(Q; X)*), restricted to
LP(Q; X*) C LP(Q; X)*, is the X *-valued extension of T* € B(LP(Q); LI(Q)).

In particular, since dual operators have equal norms, we find that 7* has an X*-valued exten-
sion whenever 7' has an X-valued extension, of no larger norm.

Proof. Consider functions f := Y./ 2} fr € LP(Q) @ X* C LP(Q;X*) C LP(Q; X)* and g :=
s xigi € LY2) @ X C LI(; X). Then we compute

<(TX)*fag)Lq(Q;X) = <f7TX Z-r]g] > = <faZxJTg]>
j=1

=t LP(2X) LP(2:X)

=Y @hm)x T3 1oy = D @) x (T s 95) Loy
k,j

k,j
n n
= <Z .I‘ZT*fk, ijgj>
k=1 Jj=1

La(;X)

Since this is true for all simple g € L1(2) @ X, a dense subset of L(2; X), we conclude that
(Tx)" <Z x;;fk> =>_ ;T fi,
k=1 k=1
i.e., (the restriction of) (T'x)* is the desired X *-valued extension as asserted. O

A.5 Functions on Euclidean spaces

For X-valued functions f defined on R?, which are measurable with respect to the Lebesgue
measure m = mg, we can discover some further structure resulting from the properties of the
Lebesgue measure and the geometry of the Euclidean spaces. We begin with the change-of-variable
formula. The version we give is quite a bit more powerful than what we will need; however, since
the vector-valued result follows almost instantly from the scalar case, we can equally well present
the general form.

Lemma A.17 (Change of variable). Let E C G C R?, E Lebesgue-measurable and G open.
Let g : G — R? be continuous on G and differentiable at each point of E. Let g| be one-to-one
and m(g(G \ E)) =0.

Then, for f € L'(R?%; X),

/ fdm = / fog-|det Dg|dm. (A.5)
9(E) E

Proof. For f = 21p, m(F) < oo, we can extract the z from both sides of the asserted equal-
ity (A.5), and the claim reduces to the scalar-valued theorem [20]. By linearity of the integral,
we know that (A.5) is valid for all simple integrable functions. For an arbitrary f € L'(R%; X),
we can take simple integrable fi, which tend to f in L'(R?; X) (by Lemma A.3). Then clearly
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fg(E) fdm = limy_, o frdm. Applying the change-of-variable formula to the positive function
|f — fr|x we also deduce

[ 11~ filxog- et Dgldm = [ 1f = felcdm < 1F = fulps e
E 9(E)

and this tends to zero as k — oc. Thus [}, fog-|det Dg|dm = limj_,o [5, fr 0 g-|det Dg|dm and
the claim follows for general f € L'(R¢; X). O

Another question of interest is the existence of Lebesgue points. This matter can be settled
with the aid of the Hardy—Littlewood maximal function

1
MW= s ) /BW) 7l dm

as in real analysis with almost no modifications. Since it is clear from above that M f = M |f(-)| y,
and of course, for measurable f : @ — X, we have f € L' (Q; X) if and only if | f(-)|x € L*(Q2), and
the norms agree, we can immediately generalize the familiar weak type inequality for the maximal
function (see [20] or [23]) to obtain

cd
m(Mf>}) < 5y |fl@:x) -

To deduce the existence of Lebesgue points, we also need to be able to approximate integrable
functions by continuous ones. In fact, it is easy to obtain a much stronger result, which will be
useful later. We need a preliminary result concerning smooth scalar-valued functions on R?.

Lemma A.18. If K C G C R? with K compact and G open, then there exists a 1) € C°(R?)
such that Y| =1, Y|, =0 and rane = [0,1].

Proof. The function z — e~ s on R, tends to 0, together with all its derivatives as © — 0. Since
this function is clearly C* on R, it follows that ¢(z) := e v 1(0,00)(z) is C*° on R, and vanishes
on (—o0,0]. Then, for a < b, Yap(x) := ¢(x — a)d(b — z) is positive for z € (a,b) and vanishes
elsewhere, and clearly ¢, € C*. Furthermore, for a box Q = (a,b;) X -+ x (aq,bs) C R?, the
C* function g (z) = Qay by (T1) * * * Pay b, (x?) is positive on @ and vanishes elsewhere. Also, the

function .
L fo (pO,edt
f(]e QOO,edt

is C°, vanishes on (—o0, 0], and increases on (0, €) to the constant value 1 on [e, 00).

Since G is open, for every t € GG, we can find a box ), such that = € ), C G. The boxes @,
z € @G, clearly cover the compact set K; whence a finite number of them, say Q1,...,Q, cover
K. Then the function & := Zle Q, is positive on K and vanishes outside UleQi, in particular
outside G.

The continuous function ¢ attain a minimum on K, say € > 0 (since the function is positive
on K). A function of the desired type is now given by ¥, o ®. O

\Ile (.T) 1R+ (CC)

Lemma A.19. Functions of the form Y o_, bk, z1, € X, 1y € D(R?) (infinitely differentiable
with compact support) are dense in LP(R; X), 1 < p < oo.

It is obvious that the functions 22:1 Yy are continuous with compact support. In fact, they
are in the space D(R?; X) to be defined below.

Proof. By Lemma A3, simple integrable functions, i.e., ones of the form Y";_, zx1p,, m(Ej,) < oo,
are dense in LP(R?; X), 1 < p < oo. Thus it clearly suffices to show that 215 can be approximated
in the LP(R¢; X) norm arbitrarily well by functions of the form z, 1 € D(R?). This follows
readily: From the properties of the Lebesgue measure we know [20] that m(E) can be approximated
from below and above by m(K), K C E compact, and m(G), G D E open. But for K ¢ G C R?
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as above, one can find (by Lemma A.18) a 1) € D(R?) such that ranty = [0,1] with ¢|, = 1,
Y]ge = 0. Then [21p — 29|y gax) < |2|x m(G°\ K) < |z]x (m(G\ E) + m(E \ K)), and the
measures of the two difference sets in the last expression can be made as small as one likes. O

The existence of Lebesgue points now follows:

Lemma A.20. If f € L. (R?; X) then almost every t € R? satisfies

loc

1 -
lim m(BET) /B(t;r) |f = F(t)|x dm = 0. (A.6)

(The existence of the limit is part of the assertion.)

At € R? satisfying (A.6) is called a Lebesgue point of f; the set of all such points is denoted
by £(f). It is easy to see that every point of continuity of f is a Lebesgue point of f.

Once Lemma A.20 is shown, it follows from (A.6) that a similar convergence is true at every
Lebesgue point even if the balls B(z;r) are replaced by any sequence of measurable sets Ej
shrinking nicely to t, i.e. satisfying E, C B(z;ri), m(Ey) > em(B(x;r)) for some fixed
c € (0,1) and a sequence {r;}7>, C Ry with 7, — 0. This is an immediate consequence of the
observation

o _ o m(Blazry) 1 ) .
m(Ek)/EkU f(t)|Xd : m(Ey,) m(B($§Tk))/l?(z;rk)|f f(t)|Xd’

m(B(z;rk))
m(Ex)

and < 1. An obvious corollary is the convergence (in the norm of X)

Jim AN fdm = f(t), t e £(f), {Ex}32, shrink nicely to ¢. (A7)

Now we turn to the proof.

Proof. Observe first that we loose no generality in assuming that f € L'(R?; X): If f is locally
integrable, then f1p,,) € L'(R?; X), and the value of the left-hand side is the same for f and
f1pB(r). Since countably many balls B(t;r) cover R?, the asserted identity (A.6) is true almost
every where on R? if it is true almost everywhere on each of the countable number of balls. Thus
assume f € L'(R%; X).

We denote Lf(t) := limsup,_, mfl?(t;r) |f — f(t)|x dm; we must show that Lf = 0
a.e. for f € LY(R?; X). (Observe that the expression for Lf(t) is the same as (A.6), with limit
replaced by upper limit; for this latter one, the existence is guaranteed.)

L is not a linear operator, but it is readily seen that it is subadditive; L(g+h) < Lg+ Lh at each
point. Since continuous compactly supported functions are dense in L'(R%; X) by Lemma A.19,
we can decompose f as g + h, where g € C.(R?; X) and h = f — g can be made as small as one
likes in the L'(R¢; X) norm.

Then Lf(t) = L(g+h)(t) < Lg(t)+Lh(t) = Lh(t) < Mh(t)+|h(t)| i, where the last inequality
is immediate from the definitions of L and the maximal operator M. Therefore

m(Lf > 26) = m(Lh > 2¢) < m(Mh > €) + m(hly > ¢) < 42

|h|L1(]Rd;X) '

Since the L' norm of h is at our disposal and the left-hand side of the above estimate is independent
of h, it follows that m(Lf > 2¢) must vanish. Since {Lf > 0} is a countable union of such sets, it
follows that Lf must vanish almost everywhere, as we asserted. O

The abundance of Lebesgue points also immediately yields positive information about differen-
tiability properties of measurable functions. It is first in order to make the appropriate definitions,
although these are essentially the same as in elementary calculus.
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For any function f : R? — X, we can consider the difference quotients +(f(t + he;) — f(1))-
If these converge (in norm) to a point of X as h — 0, we call this point the partial derivative
(with respect to the ith coordinate) of f at ¢, and denote it by D; f(¢) (or g—t{(t) or other similar
familiar symbols). If f has a certain partial derivative at all points of some set E C R?, these
define a function, denoted by D;f on E. If this function is continuous on E, we say that f
is continuously differentiable on E with respect to the ith coordinate. If (an X-valued) f is
continuously differentiable on E with respect to all the coordinates, we denote f € C1(E; X) and
say that f is continuously differentiable. More generally, the class of those f : E — X for which
D;, ---D;, f is continuous for all » < k and all choices of 4y ...,i, € {1,...,n} is denoted by
C*(E; X).

To facilitate notation involved in integration and partial differentiation with respect to some
but not necessarily all the variables, we introduce the notation

fi(sa) = flar, .-, ai-1, 5 Qizr1, .- -, aq)

for the restriction of f to one variable, the other variables held constant at the values given by
the corresponding coordinates of a. More generally, we use fr(-;a), I C {1,...,n} to denote the
restriction of f to the coordinates i € I; the other variables are held constant at a, which is
interpreted as a parameter of f;. Similarly, ¢; denotes the vector (t;);e; C R#*!, for any t € R9.
Since in the definition of the partial derivative all variables except one are held constant, it is clear
that D;f(a) = D;fi(as;a), for any I > 1.

The fundamental theorem of calculus is naturally of interest. One half is easy:

Lemma A.21. If f € L'([a,b]; X), then Dfax fdt = f on Lebesgue points of f on [a,b] C R, thus
a.e. on this interval, and everywhere, if f € C([a,b]; X).

Note that it follows from Fubini’s theorem that fi(;a) € L'(R;X) for almost every a if
f e LY (R X).
Proof. Obviously the sets Ey := (t,t + hy) if hy > 0, Ey := (t + hy, t) otherwise, shrink nicely to ¢
h
for any hy — 0. Thus - ( [ T fdm) = w5y i, fdm — f(2) for t € £(f) by (A7)
resulting from Lemma A.20. O

The version of the fundamental theorem with the order of differentiation and integration re-
versed is more involved (and needs additional assumptions) even in the real-valued case, and it is
not surprising that the vectors do not simplify this. However, in the sequel we will concentrate on
functions with more regularity properties, and in this case things can be settled quite readily.

Lemma A.22. If, for f: (a,b) - X, Df =0 everywhere, then f is a constant.

Recall that this result fails even for X = R if “everywhere” is replaced by “a.e.”; unless more
assumptions are imposed on f.

Proof. For each t € (a,b), each x* € X*, we have

S =

(@ sy = o o) = (a7 e e m - 50| <[t - se)] o

X

as h — 0; thus the scalar-valued functions (z*, f(-)) have a vanishing derivative at each point
of (a,b). Thus we know from elementary calculus that (x*, f(¢1)) = (z*, f(¢2)) for any points
ti1,t2 € (a,b). Since X* separates the points of X, we conclude that f(t1) = f(t2), i.e. fisa
constant. (]

Lemma A.23. If f € C'([a,b]; X), then fat Dfdm = f(t) — f(a) for all t € [a,b].

Proof. Denote ¢(t) := f; Dfdm — f(t). Then Dg = Df — Df = 0 at every t € [a,b]. Thus
g =g(a) = —f(a), ie., [} Dfdm = f(t) — f(a) for all t € [a,b]. O
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Before we can properly use the usual notation related to partial derivatives of higher order, the
commutativity of the partial derivative operators on a class of sufficiently smooth vector-valued
functions must be established.

Lemma A.24. If D;f, D;f, D;D;f and D;D;f are continuous in an open set G, then the two
mized derivatives coincide at each point of G.

Iterative application of this result shows that operator products of at most k partial derivative
operations on f can be performed in any order, given that f € C*(R?; X); and for f € O,
the order of any finite number of partial derivatives is completely immaterial. When restricting
the domain of the operators D; to such functions, it follows that all operator products of partial
derivative operations can be represented in the form D' ... D3¢, a := (a;)¢_; € N. This operator
is given the usual short-hand notation D.

Proof. Let us fix a point a € G; we must show that D;D; f(a) = D;D; f(a). Since for any function
g, 91(+;a) is continuous whenever g is, and since D;g(a) = D;g;(as;a) for I 3 i, we can clearly
consider f; j1(-; a) instead of f. This is a function of two variables (which can obviously be named
1 and 2), and thus the claim reduces to showing that D1 Dsg(ai,a2) = DaD1g(ar,a2) whenever
the functions Dy g, Dag, D1Dsg and D2 D1 g are continuous in a neighbourhood of (a1, a2). So let
the assumptions of this reduced assertion be satisfied and choose any two points (by,bs), (c1,¢2)
such that [by, ¢1] X [ba, co] lies inside the above mentioned neighbourhood, say B, in which the four
derivative functions are continuous.

Using Lemma A.23, we compute

C1 C2 Cc1
/ dty DyD1g(t1,t2)dts = / (D1g(t1,c2) — D1g(t1, b)) dty
b1 bz bl

= g(c1,¢2) — g(b1,ca) — gler, b2) + g(b1, ba)

and similarly fbc; dt, bcll D1 Dyg(ty,ts)dt; yields the same result. But by Fubini’s theorem, each
of these integrals is equal to an integral over [by, ¢1] X [ba, ca] with respect to the two dimensional
Lebesgue measure ms = my X my. Thus we have deduced that fQ DiDsgdms = fQ D5 D1 gdms
for any box @ = [b1,¢1] X [ba, c2] C B.

Let us now assume, contrary to the assertion, that x := D1 Dsg(a) # DsD1g(a) =: y for some
a € B. By the assumed continuity, we can find a box @ around a such that |D1Dyg(t) — 2|y <
+1z —ylx and [D2D1g(t) — y|x < i |z — y|y for ¢t € Q. But then

/DlDngm—/DZDlgdm‘ > /(:c—y)dm‘ —/ (|D1D2g—:c|X+|D2D1—y|X)dm
Q Q X Q X Q

1
> Jo =yl m(@) =2+ 3 |e — ylx m(Q) > 0,
and this contradicts the fact that the two integrals, the difference of which occurs on the left-hand
side, are equal. O

It is obvious that the vector-valued partial derivatives satisfy the usual linearity property
D;(MA1f1 + Aafa) = MD;fi + AaDs fo, whenever the right-hand side exists. The derivatives of a
product of an operator-valued and a vector-valued function can be computed as in the case of two
scalar functions:

(G(t + hei) f(t + hei) — G(t) (1))

= = (Gt + hed) = G(®) (0) + Gt + hei) - (F(¢ -+ hes) = £(1)) —, DGF(0) + GO)D:f(1),

1
h

given that G is strongly differentiable (i.e., the difference quotients converge strongly to the
derivative) with respect to the ith coordinate and norm-continuous at ¢, and f is differentiable at
the same point. Differentiability of both functions in norm is more than sufficient.
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Tterative application of this result with the help of Lemma A.24 gives the usual Leibniz rule

Qa
D¢ — Da—9 A _DG
(fo) =3 ( 9> f-D%,
0<a
for a € N?, whenever f € Cl*h(R?; X), g € ¢l (R?). (We use the multi-index notation (5) =
0!((3710)!, where a! := a;!---aq4l.)

There is no difficulty in extending Taylor’s theorem to the vector-valued setting. Observe,
however, that the many proofs from elementary calculus which exploit the mean-value theorem
are not applicable here. The mean-value theorem is not true in the vector-valued setting, even for
X = R?, as the example f(t) := (sint,cost — 1) shows: Clearly f(0) = f(27) =0, but |f'(t)] =1
for all ¢.

Lemma A.25 (Taylor’s theorem). For f € C"t1(R?; X),

n

HEIOEDY

k=0

| =

(h-D)f(1)| < —

S G Ayl P ALy
X

o

Proof. Consider first the one-dimensional case, and denote

n _s k
o(t.) =3 DR ()R
k=0 )

Then g(t,t) = f(t), and

n —s k n —s k—1 —_ 5"
Daglt.s) = Y D9 - 3 Dt G = o
k=0 : k=1 ’

Since g(t,s) — g(t,t) = [ Dag(t,r)dr, we have the estimate

="

n!

— i (t—s*
> DEf(s) = () dr
k=0 ’

< / |Dag(t,r)| dr < max | D™ ()] /
x t t

The d-dimensional case follows in the usual way by investigating the function R 3 h — f(t +
hei). O

We conclude this section with a brief comment on the test function space D(R?;X) :=
C>®(R4; X). By the product rule of differentiation, functions of the form Zi:l Yy, with 2y, € X,
Yr € D(R?), are in D(R?; X). Then Lemma A.18 provides us with many examples of D(R?; X)
functions and Lemma A.19 shows that they are dense in each of the spaces LP(R?; X), 1 < p < oo.

A.6 Fourier transform

The Fourier transform of f € L'(R?; X) is defined as one could expect:

~

THO = 1@ = [ foe™ed,  T7@=1©) = | f@e*r i (A8

Observe that F*(f) = F(f) = Ff (by the change-of-variable formula; f(t) = Rf(t) := f(—t)
is the reflection). This gives some taste of the inversion formula, which is the main reason for
introducing the operator F*. The properties of the two transforms are essentially identical. In the
sequel, we mostly consider F only.
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It follows immediately from the definition that

mmmd;x) = /Rd )] dt =111 ax) (A.9)

The convolution of two Borel functions f and g, one of which is operator-valued, is defined by
frglt / ft—s)g(s)ds = F(s)g(t — s)ds, (A.10)
Rd

whenever the integrand is integrable. (The last equality follows from the change-of-variable formula
and shows that fxgis symmetric in f and g). Observe that scalar-functions can always be identified
with operator-valued ones, with the identification of A € C and Aid € B(X).

Minkowski’s integral inequality shows that |f * g|;, < |f|;1 9], for p € [1,00):

(f][ate=s11c0as pdt)’l’ < [(f1ate- s>|f’dt); 1) ds = lgl0 1F111

where the absolute values can be replaced by appropriate norms. (The corresponding inequality
for p = oo is even easier.)

With the aid of the convolution, the Fourier transform can also be written f(f) = fxeg(0),
where we denote by e;, t € R?, the function e;(¢) := €€, For the sequel, also recall that
mf = f(-—h).

The following properties of the Fourier transform follow instantly for f € L'(R%; X), g €
L*RY), A > 0, (using the vector-valued Fubini’s theorem and the change-of-variable formula
where appropriate):

~

/ f(t = h)e ¢ dt = / F@)e BNt = omETER f(6) = (e f)(€)
nf(€) = [ enfe-cdi= / fe e mdt = Fle =) = (m)(©)
T / dt / dsf(t — s)g(s)e—i2mllt=s)+s}e
= [ as [ dutweEmegse s~ (7))
FO9(©) / FO)e P e dt = / fu)e™2mEs ‘“i“ = A(%f)

The following result is also immediate from the definition; it will play the central role in
extending F beyond L!.

Lemma A.26. For f € L'(R?; B(X;Y)), g € L'(R?; X), we have

/ Fgdm = / fgdm
Ra Ra

Proof. Writing out the definition of the Fourier transform and using Fubini’s theorem, the left-
hand side is equal to

[ e [ arwe g0,
R R
and this is clearly symmetric in f and g, thus also equal to the right-hand side. O

As in the Fourier analysis of real-valued functions, the Schwartz space §(R?; X) of rapidly
decreasing functions turns out to be one of the spaces on which the Fourier transform works
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most “naturally”. This space is defined, as in the case X = C, as the class of those 1 € C*®(R%; X)
for which each of the countable number of seminorms
|’(/)|ozﬁ 1= sup |tBDa,(/} |X’
teRd
a, 3 € N is finite.

(Recall the usual multi-index notation used here: % := 5" ...¢54 Do .= DM . DY) We
also refer to the elements of 8§ as test functions. (Sometimes this name is reserved only for the
smaller test function space D of all C* functions with compact support, but we find it convenient
to apply this name also to the functions of 8.)

8 becomes a metric space when endowed with the (translation invariant) metric

Y — 4|
2= laf; =18, 17 "laB of
- 2 L+ —dl,s

a,BeNd

It is easy to see that g(¢x,4) — 0 if and only if [y, — |, 5 — O for all @, f € N?. This will be

called convergence in §(R?; X); it is convergence in the topology induced by the metric o. All
topological notions related to 8§ will always refer to this topology.

It is sometimes useful to observe that the same topology of 8 is generated by the metric o'
defined like ¢ but using the seminorms ||¢|,, . := sup;epa(l + |t1)2 | D(t)| x, where o € N,
r € N. Indeed, the following is true:

Lemma A.27. For 1 € §(R?; X), a, 3 € N?, |B|, < r, we have

Yo < W]y, < Aln,r) Z 9000 (r

The topological equivalence of ¢ and o' follows from this: o(¢y,¢) — 0 if and only if, for all
a,f €N gy — | — 0 if and only if, for all @« € N?, r € N, ||¢g — ¢||a6—>01fand only if
0' (¢, ¢) — 0; the second “if and only if” follows from the assertion of the lemma.

Proof. We first observe that

r

’," . .
1+t = 1+Zt2 = Z ( ,)tf“---tj;
. L 10y ++5%a
0+...+ig=r
contains each 2%, 8 < r, with a coefficient not less than one; thus (1 + |t[*)” > ¢*%, and after
taking square roots it follows that ||¢[[,, > [, 5 for any B < 7. To derive an inequality of
converse type, we recall first the following simple result:
For 0 < ¢ < p < o0, £ € R™, we have

= <Z|flc|p) < (Z|§k|q> =:[¢l,- (A.11)
k=1 k=1

This is easy to derive, since the homogeneity of the inequality allows us to assume that the right-
hand side is equal to unity (after introducing n := £/ |§|q, if necessary). When this assumption
holds, then [&] € [0,1] for each k, and therefore |&x|” < |£|? for p and ¢ as in the assertion,
whence Y7 & |” < Sit, [€k]" =1, and we can take the pth root to deduce the claim.

1
=1 t?) <1+ E?Zl |t;|, and combining

Applying (A.11) to p = 2, ¢ = 1, we find that (1 + Z

T
this with Jensen’s inequality (n%—l Z?:o aj) < n+-1 Zj:o ay, with a; := |tj] for j > 1, a0 =1

and r > 1, we can estimate

d
1+ #
j=1

T

d
1+ 1] <@m+1)? 1+Z|t|
=1

N3

IN
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It then follows that

d
2\ ¢ —1
U+ IED™| <+ 1) D] + Y [0
j=1

d
=+ D) [Plag+ D o,

j=1
The assertion is now proved. O

It is clear that [, , = [¢| - From the previous lemma it also follows that

Lemma A.28. For v € §(R%; X), |1/1|LP(R(,;X) < Azzzl |1/)|075k’ where A = A(d,p) and B =
Br(d).

Proof. The pth power of the LP norm can be written as

b dt
1% dt < 1+ [t%) 20 (e / PN T P
[k i< (s i wol ) [ o = ) 9l
where ¢(n,p) := [p.(1+ [t|*)"2(+DPdt < oo. The asserted norm estimate now follows from
Lemma A.27. u

The convenience of the Schwartz space lies in two main attributes:
1. It behaves well with various common operations of analysis.
2. It is dense in many spaces of interest.

The density of S(R?; X) in LP(R?; X), 1 < p < oo, is immediate from the fact that D(R?; X) C
S(R?; X) is dense in these spaces. In the following, our purpose is to justify the former statement,
once it is given more precise content, of course.

Several results are conveniently stated for slowly increasing functions, i.e., C*° mappings,
all of whose derivatives are bounded by a polynomial. In particular, each test function and each
polynomial is slowly increasing.

Lemma A.29. Let ® be slowly increasing and v € N*. Then the mappings 1) — ® and ¢ — D7)
are continuous from 8 to S.

It is implicitly assumed that at least one of ® and v is operator-valued in the first mapping.
Although it is conventional to write operators to the left, we take the freedom not to always obey
this rule in order to simplify the statement of some result. It is always understood that in any
product, all functions, except possibly one, are operator-valued. Also recall the identification of
scalar-functions with operator-valued ones.

Proof. First, obviously the product of two C* functions is C'*°, as is any derivative of a C'*®
function. The computation

[®9las = 7D (@), < D DR [D] = 3 (DO TR [l
<a <a

shows that ®¢ € §, and the same equation applied to 1, — % in place of ¥ shows that ®, — P
in § whenever 1, — ¢ in 8. The other assertion of the lemma follows similarly from the obvious

identity |D7‘/J|a,/3 = |'/)|a+%/3‘ )

The above assertion could equally well have been established for the function class D. The
real benefit of 8 compared to D is its behaviour with the Fourier transform.
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Lemma A.30. The Fourier transform F is continuous from 8 to 8. Furthermore, if P is a
polynomial, then

~ ~

F(PD)P)(E) = P(i2r)p(§)  and  P(D)y(E) = F(P(=i2m-) f)(E).

Proof. Assume for the moment that the two formulae in the assertion have been verified. It then
follows that

0

= |PD¥p| = |F((i2r) 1Pl DB (—i2m)lelitoqp)
073, = | |

a,3 L

N
< (2m)leli =18k |D'Bto‘¢|L1 < CZ 1¥lo.5, -
k=1

where the first inequality is (A.9), and the second follows from Lemmas A.29 and A.28. Once we
verify the two asserted formulae, the continuity of F from 8 to 8 follows.

For ¢ € § and v € N, ¢74) and D74 are in 8§ (by Lemma A.29) and thus integrable (by
Lemma A.28). Since DVeg = (i27¢)1heg, it follows easily from the dominated convergence theo-
rem applied to appropriate difference quotients that the convolution v * e can be differentiated
by differentiating under the integral in A.10 either of the functions ¢ or g = e¢. Thus (observe
that £ is regarded as a parameter and not a variable in the following computation)

(P(D)¢) xec = ¢ x P(D)eg = 1 * P(i2m§)eg = P(i2m¢) (1) * e¢);

in particular P(D)4(§) = (P(D)y) * e¢(0) = P(i27&)(¢ * €¢)(0) = P(i2m)(§).

The differentiation with respect to & in the definition (A.8) of the Fourier transform can be
brought under the integral by exactly the same domination estimates as above in this proof, and
this immediately yields the second formula in the assertion. O

In establishing the inversion formula, the following fixed point of F can be exploited:
Lemma A.31. (e*”‘tﬁ) — e 7lEl?

Proof. Since et is a product of n functions of one real variable of the similar form, it suffices

to consider the one-dimensional case. Then

o 2 o i2 2 g [ootig 2 2 [ 2
/ e—wt e—l27rt§dt _ / e—w(t+l.§) 6—7T§ dt = 6—7T§ / e~ dy = 6—7T§ / e ™ dZ,
—oo —oo —oco+i€ —oo

where Cauchy’s theorem (e.g. Rudin [20], with some easy estimates related to the smallness of the
integrand at infinity) was used in the last step; the familiar integral on the right has the value 1,
and the proof is complete. O

Lemma A.32. The Fourier transform is a bijection of $ onto S, with continuous inverse F—1 =
F* = F3. Furthermore, F2 = R (the reflection operator).

Proof. Applying Lemma A.26 and the basic properties of the Fourier transform to the functions
d(e), ¢ € S(R?; X) and ¢ € §(R?), we deduce

[ oteyidm = [ ity = [ giteran = [ Goedm.
As € = o0, ¢(e) = ¢(0) and (e-) — ¥(0) at each point. Since ¢ and ¢ are bounded and ¥ and
$ integrable, it follows from the dominated convergence theorem that ¢(0) [ @dm =(0) [ adm.

Taking 1(t) := ¢(t) := e~ (Lemma A.31), it follows that ¢(0) = Ik ¢dm. Then

6(t) = (1_8)(0) = / T oddm = / 2R () dg = T () (1),
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ie., ¢ =F*F¢.

The continuity of ¥ was already proved, and the continuity of 3* follows from the fact that
F* = RF and the obvious continuity of R.

The injectivity of F is also obvious now, for if F¢ = F, then ¢ = F*Fp = F*Fo = 1. Using
the formula 3* = RTF, we further have ¢ = RF2¢, and applying once more R to both sides (recalling
that R? is the identity) we obtain R¢ = F2¢. Thus F* = R? =id and F* = RF = F% = F 1,

The proof is complete. O

We obtain immediate corollaries involving convolutions.
Corollary A.33. For ¢ € 8, ¢ — ¢ *x ¢ is continuous from 8 to 8. Furthermore, F(v¢) = 15* $

Proof. From the elementary properties of the Fourier transform on L! we recall that F(¢*1)) = &Z
Applying F* to both sides gives ¢px1p = F* (&Z) which shows that convolution is continuous, since
¥, multiplication by an 8 function, and F* are continuous.

The asserted formula is obtained by substituting 1/) and ng in place of 4 and ¢ in the L!
convolution formula to yield:

bxd =T (T2 FP) = T (o) = T*R() = F (o).
O

Next we will establish the completeness of §. A simple preliminary results dealing with the
type of convergence involved is in order.

Lemma A.34. Let {f;}?°, be a sequence of continuous functions from R? to X such that D; fx
is continuous for each k. Let fr, — f at each point of R and D;fr — g uniformly on RE. Then
f is continuously differentiable with respect to the ith coordinate, and D;f = g.

Proof. The uniform limit of continuous functions is continuous; the usual argument applies as such
to vector-valued mappings. Thus it suffices to show that D;f = g at each point.

By Lemma A.23, fi(t + he;) — fi(t) = t+h D(fi)i(s;t)ds for each k € Z,, t € R and

h € R. From the assumed convergence it follows that the left-hand side tends to f(t + he;) — f(¥)

as k — oo, and the uniform convergence of D;fi to g ensures that the right-hand side tends to

tt;+h gi(s; t)ds. But it now follows from the very definition of the partial derivative, together with

Lemma A.21, that D;f(t) = g;(t;;t) = g(t). This proves the claim. O

Lemma A.35. $(R?; X) is complete.

Proof. Let {¢}%2, be a Cauchy sequence on §(R%; X). In terms of the metric ¢’ of § (which is
topologically equivalent to g), this means that o'(¢y, ¢]) —0ask,j— oo, ie, ||¢r — ¢j||a »—0

for all @ € N/, v € N. Denoting p,(t) := (1 + [t|*)%, the assumed convergence means that
{prD*¢1, }32, is Cauchy (in the supremum norm), and thus converges to a continuous function gq ,
uniformly on R¢. In particular, D®@x — ga.o uniformly, and iterative application of Lemma A.34
shows that ¢ := go is infinitely differentiable with D*¢ = go,0. Thus we know that p, D*¢;, —
prD%¢ uniformly for each a and r, and it follows that ¢ € 8 (since uniform convergence implies
convergence of the supremum norms), and ¢ is the 8-limit of the sequence {¢;}7°,. Thus an
arbitrary Cauchy sequence converges in 8§, and the proof is complete. O

We already know that D C § C LP, 1 < p < oo, and the two first spaces are dense in the
third. It is also true that D is dense in §; this is not immediate from the previous inclusions, since
we require density in the sense of 8, where convergence is much stronger than L? convergence.
Nevertheless, this can be obtained quite readily with the aid of the following lemma.

Lemma A.36. If ¢ € $(R?) and ¢ € S(R?; X), then 1)(e-)p — ¥(0)¢p in & as e — 0.
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Proof. Denote a :=1(0). The Leibniz rule yields the estimate:

|7 D ((et)d(t) — ad(®)) |
< 2 <3> [#D0(0)| x [(D* ) (en)| s + |7 D $(0)] (et) —al.

0#£0<a

In the summation, [*D*~?¢(t)|, and |(D?4)(et)| are bounded uniformly in ¢, since 1, ¢ € §;
thus the supremum norm of the first term on the right vanishes as e — 0.

To estimate the last term, we first note |t|> 7 is slowly increasing, and thus [t|” #°D%¢ is in 8
by Lemma A.29. In particular, it is uniformly bounded, and thus |t5D“¢(t)|X <C |t|_2 for some
C. It is then clear (since [¢(et) — 1] < [t)|pe(gay + 1 < 0o, that the last term above is less than
any given n > 0 for all |¢| not less than some R. (This is true independently of the value of the
parameter e¢.) On the other hand, the continuity of ) ensures that in a suitable r-neighbourhood
of 0, | —a| < |¢|;{,3 1. Therefore, the last term is also less than n in ¢ < R, given that € is
sufficiently small so that eR < r. We have thus shown that even the supremum norm of the last
term above can be made as small as desired by choosing sufficiently small e.

The asserted convergence in each of the seminorms ||, 5 is now established. (]

Corollary A.37. D(R?; X) is dense in S(R?; X).

Proof. For ¢ € D(R?) and ¢ € 8(R?; X), clearly ¢(e:)¢ € D(R?; X) for ¢ > 0. Choosing ¢ so
that 1(0) = 1 (which is certainly possible by Lemma A.18), it follows from Lemma A.36 that the
functions ¢ (e-)¢ € D(R?; X) converge in § to ¢. O

Lemma A.36, the essential ingredient of the previous proof showed that the functions ¢ (e-),
¥ € D(R?) provide an approximation of the identity in the topology of 8 as € — 0. Another result
of similar kind will be of use, too:

Lemma A.38. If¢) € C.(R%), rany) C [0,00), [patbdm =1, and f € L{, . (R?; X), then for every
te L£f

lim (s)e ™p(e (s — t))ds = f(1).

r—0 R4
In particular, this holds for ¢ € D(R?).

Proof. We compute

150 = 10w -y G = T [ 1) = 50 (e o )

ey
<——— s) — f(t)|x ds - m(supp ) sup (s
m{esupp ¥+ 1) Esupp¢+t|f( ) — )l ( ¢)S€Rd¢( )
and the integral average here tends to zero as e — 0: it is easy to see that the sets e supp )+t shrink
nicely to . (We used the properties of the Lebesgue measure via the identities e?m(supp¢) =

m(esupp ) = m(esupp® +t).) O
Yet another density result, useful in Fourier analysis, is the following;:

Lemma A.39. The functions ¢ € 8(R%; X) satisfying T € D(R?; X) and 0 ¢ supp Fo, are
dense in LP(R?; X) for p € (1,00). The functions in T 1D(R?; X) without the support condition
are dense even in 8(R?; X), thus in LP(R?; X), p € [1,00).

Proof. Since D is dense in § and F~! is continuous from 8§ to 8, it is clear that F~1D C § is dense
in 8§, thus in L?, p < oc. Thus it suffices to show that, given ¢ € 1D, there exist ¢. € F~ 1D
such that ¢.(0) = (0), and [¢¢| 1, ga,x) = 0 as e = 0.



130 APPENDIX A. VECTOR-VALUED ANALYSIS

This is readily achieved, since taking (Z € D such that (Z =1 in a neighbourhood of zero, it is
clear that ¢(e')@ = F(e?p(e-) * @) is in D and coincides with @ in a neighbourhood of zero; thus
the difference of these two is a function with required properties. Furthermore,

|6d¢(6') * ¢|LP(R4;X) < |€d¢(€') |Lp(]Rd) |90|L1(R4;X)

and
" dt _
[SICOI / etoten]” dt = / LM X7 = e [l gay

and this clearly tends to zero as € — 0. O

A.7 Distributions

So far we have analyzed the Fourier transform on a rather restricted set of functions. The extension
of this concept by duality to a significantly larger domain is our next goal. Other applications of
the related notion also appear.

In the theory of scalar-valued distributions, the duality extension is somewhat more obvious,
since one simply considers the usual dual space 8*(R?) of §(R?), i.e., the continuous linear trans-
formations from $(R?) to C. As is well known, this class includes all L? functions, 1 < p < oo,
(with the suitable identification (f, @) = [, f¢dm, f € LP(R?), ¢ € §(R?)). Two modifications
are needed to build a class of vector-valued distributions for which similar identifications can be
made:

1. The space of test functions on which we make pairings (u,¢), u a distribution, ¢ a test
function, must consist of scalar-valued functions in order to be able to identify vector-valued
functions with distributions in the usual way.

2. We cannot stick to a dual space in the usual sense, i.e., mappings to the complex plane C,
since vector-valued functions will yield vector outcomes when identified with distributions.

The following definition satisfying the requirements above has proved to be useful:

Definition A.40. For a Banach space X, the space of vector-valued tempered distributions is
defined by $*(R%; X) := B(S(RY); X).

Observe that this does coincide with the usual dual space definition when X = C.

Continuity of u € §*(R?; X) on §(R?) naturally means that (u,,) — (u,) (in the norm of
X) whenever |1, — 1/)|a/3 — 0 for all @, 8 € N?, i.e., whenever g(1,,1) — 0. This continuity can
also be characterized as follows:

Lemma A.41. A linear transformation u : S(RY) — X is a tempered distribution if and only if
for some finite C' and N,
(w,)lx <C Y [Wlagss (A.12)

lal,, |8, <N
for all i € §(RY).

Proof. If u satisfies (A.12), it is obvious that the convergence ¢, — ¢ — 0 in S(R?) implies the
convergence |(u, ¢,) — (u, )|y — 0.

To show the converse, suppose u € 8*(R?; X). Since u is continuous, there is a § > 0 such
that |(u,¢)|y < 1 whenever p(¢,0) < §. Having chosen such a 4, pick an N large enough so
that ZIQIMBMEN 2-leli=18h < %5. (This is possible, since the series is absolutely convergent.)
But then on(¢,0) := Z\all’IBMSN 2= leli=18h 1J|r¢||d‘)’|fﬁ < 16 implies |(u, ¢)|y < 1. Since on(@) <

>, 181, <N |9la g, it follows that [(u, )|y <1 whenever 37, 15 < ¢, 5 < 2.
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But for any (non-zero) ¢ € 8(R?), the previous inequality is certainly satisfied by ¢ :=
21
50U (Em\l,\mlszv |¢|a,ﬁ) ; therefore

N S,

12 [(u, 9)|x = Ku, ¥)|x

Z |1/)|oz,ﬁ

lalys 18, <N
for all ¢ € 8(R?), and the claim follows with C' = 2. O

Example A.42. Every measurable g : R? — X, for which (1 + |t|2)*Ng € LP for some N, is in
8*(R?; X) with the identification (g, ¢) := [;. gpdm.

In particular, every slowly increasing function is a tempered distribution.

Proof. We have (g,6) = ((1+[t")™g, (1+ [t")¥6). Since ¢ > (1+|t]*)¥¢ is continuous
from §(R?) to §(RY), it suffices to prove that LP(R; X) C 8*(R¢; X). By Holder’s inequality,
g, D) x < |g|LP(Rd;X) |¢|LF(Rd;X): and since |¢|LF(Rd;X) is bounded by a finite number of the
seminorms ||, 5 of 8 by Lemma A.28, the assertion follows. O

Whenever there is, for a certain u € 8*(R?; X), a locally integrable function f : R — X such
that (u, @) = (f, ¢), we identify u with the function f. We sometimes emphasize this by saying
that v is a proper function (as opposed to a generalized function, another name occasionally used
for distributions).

The standard operations of analysis are defined for v € §* “by duality”. Thus we have, for each

u € S*, g,p €S
1. the Fourier transform (u, ) := <u,1//;>,
2. multiplication by a slowly increasing function (u¢,¥) := (u, ¢p),
3. convolution by a test function (u * ¢, ) := <u, q~$* 1/)>,
4. differentiation (D%u, 1)) := (=1)1*h (u, D¥).

5. reflection (u, ) := <u,1z>

Since the right-hand sides of each of the above equalities are well-defined for and continuous
in ¢ € 8, we see that U, u¢ etc., as defined, are proper tempered distributions (in particular,
continuous on 8, so S*, too, is closed under these operations. Recall that an element of the dual
8* is determined by its action on each element of the Schwartz space S8, justifying the way of
definition used here.

The definitions above agree with the ones for functions, when u € 8* is identifiable with a proper
function f, i.e., (u,¥) = (f,9) = [ya ftbdx. Another important class of tempered distributions
consists of those corresponding to finite Borel measures by (u, ) = [, ¢dp.

The operations on §* defined above inherit many of the familiar properties of these operations
on test functions, as illustrated by the following simple lemma.

Lemma A.43. For u € 8%, ¢ € § we have m = ﬂa
Proof. For ¢ € § we compute <ﬂ$,@/}> = <ﬂ, $¢> = <u,3"($@/})> = <u,3"2¢*12> = <u,$* 1Z> =
<u*¢,12)\>:<u/>|-<\¢,1/)>. O

In fact, we can say a lot more about the convolution of a distribution with a test function: the
result turns out to be a rather well-behaving proper function, as demonstrated next.
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Lemma A.44. Ifu € §*, ¢ € 8, then ux¢ can be identified with a slowly increasing (in particular,
C smooth) function f. The value of f at each z is given by f(z) = <’U,,Tz$>.

Proof. Since, for h = hje;, th(THhZE— Ta 5) — —Tszain 8 and u is a continuous linear functional,
we see that f defined as in the assertion satisfies %(f(w +h) — f(z)) = <u, hij(rﬁhqz - qu~5)> -
- <u,Txqu~$>. By iteration, f has derivatives of all orders and D®f(z) = (—1)l°h <u,TxD“q~5>.
Since D“q~$ € §, we also see, from the expression for D f, that it is only required to prove that

flz) = <u,7’xq~$> is bounded by a polynomial for any ¢ € 8, and the same will follow for the

derivatives.
To show that f is bounded by a polynomial, use (A.12) to get C, N > 0 such that |f(z)| =

‘<u,rm$>‘ < O ol 181,<n [T @l We then observe that each of the finite number of terms in
the right-hand side is bounded by

280y =50 |y D0ty = )] = s (e + 07 D000 < 3= () 11101,
y

v<B

a polynomial in (the absolute values of the components of)

We now know that f has the asserted properties. In particular, since f is slowly increasing,
we know that it can be identified with a tempered distribution. It remains to show that this
distribution coincides with the convolution ux ¢, i.e., that (u * ¢, 1/1 = Jya fioda for each p € 8. To

this end we compute (u * ¢, 1)) = <u,q~$>|< 1/)> = < fRd —z) )d:c> = <u,fRd(qu~$)z/1(ac)dw> =
Jra <u, Te $> Y(x)dx = [4 f(x)Y(z)dr. Passing u inside the integral is legitimate, if we can verify
that the Riemann sums of the integral converge in §. Indeed, the linearity of u guarantees that

we can bring it inside a finite sum, and the rest | follows from the continuity of u on 8.
For this last task, we first note that D* [, ¢(- — )1/1( Ydz = [5.(D*¢)(- — x)¢(z)dz; indeed,

oo | 2@ +h—2) = dly - ))‘ ()| dz < fRdmaX‘ ()| dz — 0 as |h| — 0, and the
claim for general D¢ follows by iteration. Our intention is to show that

Sy D iy — e )ia)m(A) > [ 47Dy — 2)(e)ds

as maxm(A;) 1 0 and U;A; 1 R?, where A; are disjoint volumes such that x; € A;. Furthermore,
this convergence should take place uniformly in y € R?. This is exactly what is meant by the
convergence of Riemann sums in the topology of 8.

For convenience, we denote t := y — x, ¢ := D%p € 8. Then our task is to approximate
Jra2y<s ( )5~ 7g0( )z i (x)dx by Y, Ev<6 ( V57 p(t) ] p(z;)m(A;) uniformly in ¢ € RY.

Since ¢ € §, |tﬁ 730(t)| < Ct"] for any 7, for some C, and it follows from the fact that
z — 7 (z) is in § C L that both the integral and the Riemann sums above become as small as
one likes for large enough |t|. Thus it is sufficient to establish the approximation property in an
arbitrary compact set, and due to the continuity in ¢ of both the integral and the Riemann sums,
the task further reduces to approximation on the points of a finite e-net.

For a fixed ¢, the integral is continuous and vanishes at infinity faster than the inverse of any
polynomial; thus the desired convergence follows from the elementary properties of the Riemann
integral. For the finite number of ¢ in our e-net, the convergence is certainly uniform.

The proof is now complete. |

A.8 Fourier series

A useful fact in the study of Fourier series is the density in LP(T% X), p € [1,c), and in C’( 3 X),
of the trigonometric polynomials. For C(T; X), this can be established as in the case X = C
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by considering convolutions with an appropriate sequence of trigonometric functions, such as the
Fejér kernel
1 sin®((n + 1)wt)
n+1  sin?(nt)
or some other sequence providing an approximation of the identity in the limit (see e.g. [20], pages
89-91).

The case C(T%; X) can be reached by induction: Assume the density of the trigonometric
polynomials in C(T¢~'; X). Since we already showed that they are dense in C(T;X), for any
Banach space X, we can take C(T91; X) in place of X to deduce the density of functions of the
form

b

Z €i27rk~fk’ fk € C(Td_l;X),

k=—n
on C(T;C(T4;X)). Since the f; can be approximated by trigonometric polynomials, we de-
duce, after identifying C'(T; C'(T¢~!; X)) with C(T%; X), that trigonometric polynomials are also
dense in C(T9; X). The conclusion on L?(T%; X) follows from the density of continuous functions
(Lemma A.19; this is easily modified to work on T¢ instead of R?).

Before stating the first basic results concerning vector-valued Fourier series, we observe the

following null-criterion similar to Corollary A.5:
Lemma A.45. If, for f € L'(T% X), the integral [, fgdm vanishes for every g € C(T%), then
f=0 (ae.).
Proof. If the assumption is true, then fQ (z*, f) gdm = 0 for every z* € X*, thus (z*, f(t)) =0
for all ¢, except possibly those on a null-set Z,«. Taking {£;}32, as in Lemma A.4, we find that
Z = U2, Zg is anull-set, and (&}, f(t)) = 0 for all §;, k € Z, for t € Z¢. By the properties of
the sequence {£;}52,, f =0 on Z¢, thus almost everywhere. O

The following basic results then follow:
Lemma A.46. Let f € LY(T% X).

1. If [p. €2 ™ f(t)dt = 0 for all k € Z%, then f = 0 a.e. Consequently, no two functions have
the same Fourier series.

2. If the Fourier series ), ;. 2,.ei27C) of f converges absolutely, then it defines a continuous
functions which is equal to f (a.e.).

Proof. 1. By linearity we have fT +9fdm = 0 for all trigonometric polynomials g on T?, and finally,
by density, for all g € C(T¢; X). Thus f = 0 (a.e.) by Lemma A.45.
2. By assumption, ) kEZd z,.127% () is the uniform limit of continuous functions (trigonometric

polynomials), and thus continuous. The Fourier coefficients of ZHEZd €275 (g, are the same as
those of f, so the functions coincide (a.e.) by part 1. O

Some observations regarding the connection between Fourier series and the Fourier transform
are in order. If f € L*(R?; X), then

S [ otrnlcd=Y [ jf@ldt= [ 17Ot =1l <
KEZA [071)d KEZAd [Oﬂl)d+ﬁ R4

S0 Y, eza f(- 4+ K) converges absolutely on L' (T%; X); thus it defines a function on the torus. The
Fourier coefficients of this function are given by

flt+k) | e 2™ tdt = / f(t + k)e 2™t gy
/[0,1)‘1 Z Z [0,1)¢

KEZY KEZ

— Z / f(t)ei%rl/-(t—n)dt — f(t)e—i27ru-tdt — ]/c\(,/)
ez 0,1) 4k Rd
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In the second to last step we used the fact that e>™”* = 1, since v - k € Z. The change of the
order of summation and integration is valid due to the absolute convergence shown above.
These ideas lead to the important Poisson summation formula:

Lemma A.47 (Poisson summation formula). For ¢ € $(R%; X), we have

Yo dttr) =Y dlr)e

KEZA KEZ4

The assumption that ¢ be rapidly decreasing is quite a bit stronger than what is required
to derive the conclusion, but we only need the result in the present form. Once the lemma is
proved, a slight generalization is obtained by substituting ¢(A-) in place of ¢ (and recalling that
F(p(\)) = A~9¢(A~1+)), and then A~'¢ in place of ¢. This yields

Z d(t+ ) =171 Z B r)ei2TR AT,

KEZ KEZ?

Proof. Since ¢ is rapidly decreasing, Y onczd (Z(n)em”'(') converges absolutely, and so defines a
continuous function, which is equal to »_, ;4 f(- + &) (a.e.). Since this series is also absolutely
convergent for f € $(R?; X), the latter function is also continuous, and we actually have the
equality everywhere. O

A.9 Notes and comments

The integration theory in Banach spaces (Section A.2) is developed following Neveu [16], with
minor influence from de Pagter [5]. This is a little different from the standard references such as
Hille and Phillips [9] and Diestel and Uhl [6]; more details on this are given below.

Section A.3 follows de Pagter [5] and Diestel and Uhl [6]. The reason for omitting the proof
of Lemma A.11 is not that it would be beyond the level of our treatment; however, the proof
requires a series of results from the theory of compact operators, which are certainly interesting
on their own, but which would be of no other use in the present context. The material required
for the proof is mostly concentrated on pages 5976 of Diestel and Uhl [6]; some additional results
concerning the Bochner integral are also needed.

Section A.4 again follows de Pagter [5]. An important extension result omitted is the theorem
of Marcinkiewicz and Zygmund (1939), which states that every T' € B(LF(Q2); L4(£2)), p,q € [1, 00),
can be extended to any Hilbert space I to yield an operator of norm at most Cp, , |T|B(LP(Q);LQ(Q)).
Here C,, , are universal constants depending only on p and ¢, and C}, , = 1if 1 < p < g < co. This
could be used to prove that every Hilbert space is UMD from the knowledge that C is UMD; it
also follows that M, (3) = M,(C) for any Hilbert space K.

Section A.5 is based on Rudin [20] and Spivak [22], Section A.6 on Rauch [17] and Rudin [19],
and Section A.8 on Stein and Weiss [24]. These books deal with the scalar-valued theory, but the
vector-valued generalizations above are rather straightforward.

The vector-valued distributions (Section A.7) are defined as they appear in Hieber and Priiss [8].
Our results are generalized to the vector-valued situation from those appearing in Rudin [19] and
Stein and Weiss [24]. The classical treatment of the theory of distributions is Schwartz [21].

Notes on vector-valued integration. We shortly quote Hille and Phillips [9], pages 71-85,
for alternative definitions of measurability and integration in the vector-valued setting; we also
refer to this work for the proofs of the results cited in the following.

The multiplicity of notions of integration results from the various topologies available in a
Banach space. One often introduces at least two distinct notions of measurability: f: Q@ — X
is called weakly measurable if the scalar-valued functions (z*, f(-)), z* € X* are measurable.
A strongly measurable function is one which is the limit a.e. of a sequence of countably-valued
functions, each value of which is attained on a measurable set. Since Lemma A.1 shows that a
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Borel measurable function is a limit of simple, i.e., finitely-valued, functions taking each distinct
value on a measurable set, it is clear that Borel measurability implies strong measurability in
separable spaces. To see the converse, observe that each countably-valued function 220:1 Trlg,,
with each Ej disjoint and measurable, is Borel measurable. Indeed, the preimage of any Borel set
(in fact, of any set) is the (countable) union of the preimages Ej, of the zj it contains; since each
E}, is measurable, so is their countable union. Thus each strongly measurable function is the limit
a.e. of Borel measurable functions, thus it is Borel measurable itself by Lemma A.2. Hence Borel
measurability coincides with strong measurability at least in separable Banach spaces.

Furthermore, one can show that weak and strong measurability are also equivalent in the
separable setting. In general, a function is strongly measurable if and only if it is weakly measurable
and has an essentially separable range. Thus our definition of measurability (Remark A.7 and the
discussion following it) also agrees with strong measurability in the non-separable case.

Several definitions of the integral can also be made. Ours is equivalent to the Bdochner integral:
integrable functions f are precisely those that are strongly measurable and satisfy fQ |flx dp < o0
([9], Theorem 3.7.4, or [6], Theorem I1.2.2).

Another way of defining the Bochner integral is the following: Integrable functions are those
having an expansion f = Y ,- x;1p,, with Ej, measurable and Y - | zju(E},) absolutely conver-
gent. Then [, fdu := Y7, xppu(E N E) ([6], page 55). This notion is exploited systematically
in Mikusinski [15]. On R?, the regularity properties of the Lebesgue measure allow one to restrict
to expansions where each Fj is a finite box [a1,b1] X - -+ X [ag, bg], and we still get the same class
of integrable functions.
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