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MAXIMAL REGULARITY FOR STOCHASTIC
INTEGRAL EQUATIONS

W. Desch and S-O. Londen

Abstract We examine the stochastic parabolic integral equation of con-
volution type

U(t) + A

∫ t

0
k1(t− s)U(s) ds =

∫ t

0
k2(t− s)G(s) dWH(s), t ≥ 0,

where U(t) takes values in Lq(O; R) with O a σ-finite measure space, and
q ∈ [2,∞). The linear operator A maps D(A) ⊂ Lq(O; R) into Lq(O; R), is
nonnegative and admits a bounded H∞-calculus on Lq(O; R). The kernels
are powers of t, with k1(t) = 1

Γ(α) t
α−1, k2(t) = 1

Γ(β) t
β−1, and α ∈ (0, 2),

β ∈ (1
2 , 2).

We show that, in the maximal regularity case, where

β − αθ − η =
1
2
,

one has the estimate

‖AθDη
t U‖Lp(R+×Ω;Lq(O;R)) ≤ c‖G‖Lp(R+×Ω;Lq(O;H)),

where c is independent of G.
Here Dη

t denotes fractional integration if η ∈ (−1, 0), and fractional dif-
ferentiation if η ∈ (0, 1), both with respect to the t-variable.

The proof relies on recent work on stochastic differential equations by v.
Neerven, Veraar and Weis, and extends their maximal regularity result to
the integral equation case.

1. Introduction

We investigate the stochastic integral equation

(1.1) U(t)+A

∫ t

0

k1(t− s)U(s) ds =

∫ t

0

k2(t− s)G(s) dWH(s), t ≥ 0,

where we require U(t) to take values in Lq(O; R) almost surely, with
O a σ-finite measure space, and q ∈ [2,∞). The linear operator A
maps D(A) ⊂ Lq(O; R) into Lq(O; R), is nonnegative and admits a
bounded H∞-calculus on Lq(O; R). The kernels are powers of t, with
k1(t) = 1

Γ(α)
tα−1, k2(t) = 1

Γ(β)
tβ−1, and α ∈ (0, 2), β ∈ (1

2
, 2). The

integral on the left side of (1.1) is a standard Bochner integral.
Let (Ω,A,P) be a probability space with the filtration F = (Ft)t≥0,

and take WH(t), t ≥ 0, to be a cylindrical F -Brownian motion on the
separable Hilbert space H. The stochastic integral with respect to WH

on the right side of (1.1) is an Lq(O; R)-valued random variable as
1
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defined, e.g., in [7, Sec. 2.1]. Assume G ∈ Lp(R
+ × Ω; Lq(O; H)) for

some p ∈ (2,∞) and that G is F -adapted.
Define the stochastic convolution process U(t) by

(1.2) U(t) =

∫ t

0

Sαβ(t− s)G(s) dWH(s), t ≥ 0.

Here Sαβ(t) ∈ L(Lq(O; R)), t ≥ 0, is the resolvent (see Section 2
below) associated with A, k1, and k2, i.e., the solution of

(1.3) Sαβ + A(k1 ∗ Sαβ) = k2I.

The process U(t) solves (1.1), at least formally.
Let Dη

t denote fractional integration (if η ∈ (−1, 0)) and fractional
differentiation (if η ∈ (0, 1)); both with respect to the t-variable. For
θ ∈ (0, 1), let Aθ stand for the fractional power of A.

Our main result concerns the maximal regularity case

β − αθ − η =
1

2
.

We show, assuming this and making an appropriate spectral assump-
tion on A, that AθDη

t U is welldefined and satisfies

(1.4) ‖AθDη
t U‖Lp(R+×Ω;Lq(O;R)) ≤ c‖G‖Lp(R+×Ω;Lq(O;H)),

with the constant c independent of G, but depending on p, q, α, β, η, θ.
If q = 2, the estimate (1.4) also holds for p = 2.

Essentially the same equation as (1.1) has previously been considered
in [4] under the stronger condition

(1.5) β − αθ − η >
1

2
,

with q = p ∈ [2,∞) and t in compact sets . However, the assump-
tion that A admits a bounded functional calculus was not made in [4],
only the assumption that A be nonnegative, including the appropriate
spectral condition. Estimates analogous to (1.4) were obtained.

Technically the proofs of [4] rely on an approach due to Krylov mak-
ing use of the Burkholder-Davis-Gundy inequality and developed for
stochastic differential equations, i.e., for the case α = β = 1 in (1.1),
and with −A a second order elliptic differential operator on R

n. In this
case, Krylov’s approach can be used to obtain maximal regularity, how-
ever, it relies on a deep Paley-Littlewood inequality [5], [6]. For general
sectorial A in the integral equation case (i.e., α ∈ (0, 2), β ∈ (1

2
, 2)), this

inequality may be replaced by estimates on the Dunford integral - but
then an infinitesimal loss of regularity must be allowed, as illustrated
by (1.5).
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To obtain maximal regularity in the integral equation case - which
in [4] was done only for the Laplacian on R

n - a highly nontrivial
generalization of Krylov’s lemma was required [3].

Our result in this paper relies strongly on the deep approach of the
recent paper [7], concerned with maximal regularity of (1.1) in the
differential equation case, i.e., α = β = 1. In fact, the major part of
the proof of [7] can be adapted almost without changes to apply to
(1.1). The only necessary major alteration is the construction of new,
different kj-functions (see Proposition 3.3 below). Note that our kj-
functions are constructed by a different approach and do not reduce to
those of [7] in case α = β = 1.

As already stated, our main result (Theorem 3.1) gives the estimate
(1.4). Observe that this estimate may be interpreted as an estimate on
Dη

t (A
θU), i.e., on the fractional time-derivative of AθU . Hence this esti-

mate combined with the additional assumption 0 ∈ ρ(A) directly gives
maximal space-time Lp-regularity, i.e., maximal regularity in Bessel po-
tential spaces. (See Corollary 3.2 below). Therefore, no modification
or extension of the Da Prato-Kwapien-Zabczyk factorization argument
used in [7] to obtain Bessel potential space regularity is required here.
Obviously, this simpler proof also applies in case α = β = 1.

In Section 2 we formulate some technical preliminaries. Our results
are given in Section 3. In Section 4 we show how Corollary 3.2 follows
from Theorem 3.1. Section 5 is devoted to the construction of kj-
functions representing the resolvent. Section 6 contains the proof of
Theorem 3.1.

2. Technical preliminaries

First, we consider fractional integration and differentiation in time.

Definition 2.1. Let X be a Banach space and η ∈ (0, 1), let u ∈
L1((0, T ); X) for some T > 0.

1) Fractional integration in time is defined by

D−η
t u =

1

Γ(η)
tη−1 ∗ u.

2) We say that u has a fractional derivative of order η > 0 provided
u = D−η

t f , for some f ∈ L1((0, T ); X). If this is the case, we write
Dη

t u = f .

Obviously, D0
t f = f

For the equivalence of fractional derivatives in Lp and fractional pow-
ers of the realization of the derivative in Lp we have:

Lemma 2.2. [2, Proposition 2] Let p ∈ [1,∞), X a Banach space and
define

D(L) = {u ∈ W 1
p ((0, T ); X) | u(0) = 0}, Lu = u′, u ∈ D(L).
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Then, with β ∈ (0, 1)

Lβu = Dβ
t u, u ∈ D(Lβ),

where D(Lβ) coincides with the set of functions u having a fractional
derivative of order β in Lp, i.e.,

D(Lβ) = {u ∈ Lp((0, T ); X) | t−β ∗ u ∈ W 1
0,p((0, T ); X)}.

In particular, Dβ
t is closed.

We then recall the definition of the resolvent associated with A, k1,
and k2.

Definition 2.3. Let X be a Banach space, let A map D(A) ⊂ X →
X and let A be sectorial. Let k1, k2 be power functions as in the
introduction. Let φA be the spectral angle of A and assume

(2.1) φA < π(1− α

2
).

The resolvent Sαβ associated with A, k1 and k2 is defined by

(2.2) Sαβ(t)v = (2πi)−1

∫
Γ1,ψ

eλt(λαI + A)−1λα−βv dλ, t > 0,

for v ∈ X; and where ψ ∈ (π
2
, min{π, π−φA

α
}), and

(2.3)
Γr,ψ = {reit | |t| ≤ ψ} ∪ {ρeiψ | r < ρ < ∞} ∪ {ρe−iψ | r < ρ < ∞}.
As to the properties of Sαβ we have

Remark 2.4. [4] Let α ∈ (0, 2), β ∈ (1
2
, 2), θ ∈ [0, 1], η ∈ (−1, 1). Let

Sαβ(t) be the resolvent of Definition 2.3. Then one has

(2.4) Sαβ(t) ∈ L(X), t > 0; Sαβ(t)v ∈ D(A), t > 0, v ∈ X,

(2.5) sup
t>0
‖t1+αθ−β+ηDη

t A
θSαβ(t)‖L(X) <∞,

(2.6) Sαβ(t) + A

∫ t

0

k1(t− s)Sαβ(s) ds = k2(t)I, t > 0.

For the proof of these properties, see [4].

3. Results

Our main result is the following:

Theorem 3.1. Take (Ω,A,P) to be a probability space with filtration
F = {Ft}t≥0. Let WH(t), t ≥ 0, be a cylindrical F-Brownian motion
on the Hilbert space H. Let p ∈ [2,∞).
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Let α ∈ (0, 2), β ∈ (1
2
, 2), θ ∈ [0, 1), and η ∈ (−1, 1), and suppose

that

(3.1) β − αθ − η =
1

2
.

Let q ∈ [2,∞). Assume the operator A admits a bounded H∞-
calculus on Lq(O; R) of angle ω satisfying

(3.2) ω < π(1− α

2
).

Let Sαβ(t) ∈ L(Lq(O; R)), t ≥ 0, be the resolvent associated with A,
k1, and k2, as defined in Definition 2.3, (where X = Lq(O; R)).

Define, for any F-adapted G ∈ Lp(R
+×Ω; Lq(O; H)), the stochastic

convolution U(t) by

U(t) =

∫ t

0

Sαβ(t− s)G(s) dWH(s), t ≥ 0.

Then Dη
t U is welldefined in Lq(O; R), takes values in the domain D(Aθ)

almost surely and satisfies, for 2 < p <∞,

(3.3) ‖AθDη
t U‖Lp(R+×Ω;Lq(O;R)) ≤ c‖G‖Lp(R+×Ω;Lq(O;H)),

with the constant c independent of G. If q = 2, then this maximal
regularity holds also for p = 2.

Note the necessary condition β > 1
2
. Thus, e.g., the case θ = 0,

η ≤ 0, is not covered by Theorem 3.1. See however, the comments
following Corollary 3.2.

If A is invertible, then we may, in the maximal regularity case, for-
mulate a result in Bessel potential spaces.

Corollary 3.2. Let, in addition to the assumptions of Theorem 3.1,
0 ∈ ρ(A), and let η ∈ [0, 1) and assume

(3.4) β − 1

2
< α.

Then

(3.5) ‖U‖Hη
p (R+;Lp(Ω;D(Aθ))) ≤ c‖G‖Lp(R+×Ω;Lq(O;H)),

with the constant c independent of G.

Note that with α = β = 1 (the differential equation case of [7] ), the
condition (3.4) is trivially satisfied.

Also note that in the differential equation case (3.5) yields

‖U‖
Hθ,p(R+;Lp(Ω;D(A

1
2−θ)))

≤ c‖G‖Lp(R+×Ω;Lq(O:H)),

for θ ∈ [0, 1
2
]. (Cf.[7, Theorem 1.2(i)]).

Suppose next that

(3.6) β − αθ − η >
1

2
.
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In the case where p = q, and R
+ is replaced by compact time-

intervals we may apply results of [4]. These results do not require
that A admits a bounded H∞-calculus but only that A is sectorial and
satisfies the spectral condition (2.1).

If (3.6) holds and we wish to consider R
+, and with p not necessarily

equal to q, then we may, for certain parameter values, argue as follows.
Suppose there exists θ0 ∈ (θ, 1) such that β−αθ0− η = 1

2
. Then, by

Theorem 3.1,

‖Aθ0Dη
t U‖Lp(R+×Ω;Lq(O;R)) ≤ c‖G‖Lp(R+×Ω;Lq(O;H)),

with c independent of G. Arguing as in the proof of Corollary 3.2 we
may then proceed to obtain norm estimates on U in Bessel potential
spaces.

Finally observe that Theorem 3.1 and Corollary 3.2 allow us to in-
terpolate analogously as in [7, Theorem 1.2 (2)] to obtain maximal
estimates.

To prove Theorem 3.1, we need Proposition 3.3 below. This propo-
sition contains the essential new element needed for the appropriate
extension of the results of [7].

Below, we let H∞(Σσ) denote the Banach space of all bounded an-
alytic functions ϕ that map Σσ = {z ∈ C \ 0 | |arg z| < σ} → C with
the supremum norm. The linear subspace of H∞(Σσ) consisting of all
functions ϕ satisfying an estimate

|ϕ(z)| ≤ c|z|ε
(1 + |z|2)ε

, z ∈ Σσ,

for some ε > 0, and some c <∞, is denoted by H∞
0 (Σσ).

Proposition 3.3. Let α ∈ (0, 2), β ∈ (1
2
, 2), θ ∈ [0, 1) and η ∈ (−1, 1).

Assume the operator A admits a bounded H∞-calculus on the Banach
space X of angle ω satisfying

(3.7) ω < π(1− α

2
).

Let (3.1) be satisfied.
Let Sαβ(t), t ≥ 0, be the resolvent associated with A, 1

Γ(α)
tα−1,

1
Γ(β)

tβ−1, as defined in Definition 2.3.

Then there exists ω1 ∈ (ω, π), and for j = ±1 functions kj : (0,∞)×
(0,∞) → C, and ϕj ∈ H∞

0 (Σω1) such that, for t > 0, x ∈ X,

AθDη
t Sαβ(t)x =

∑
j=±1

∫ ∞

0

kj(u, t)[ϕj(uA)]2x
du

u
.

Moreover, for fixed u we have kj(u, ·) ∈ W 1
1 ((0,∞); C), with

(3.8)

∫ ∞

0

t
1
2 | ∂

∂t
kj(u, t)| dt ≤M,
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where the constant M is independent of u, but depends on the parame-
ters α, β, θ, η and on the norm of the operator H∞(Σω1) → L(X) given
by ϕ → ϕ(A).

Proposition 3.3 is proved in Section 5, via three lemmas.
In Section 6, we briefly outline the proof of Theorem 3.1, using the

proof of [7], combined with Proposition 3.3 above. Our goal in this
outline is only to demonstrate that Proposition 3.3, combined with the
proof of [7] is sufficient to prove Theorem 3.1.

4. Proof of Corollary 3.2

Proof. First recall that by the assumption 0 ∈ ρ(A),

(4.1) ‖U‖Hη
p (R+;Lp(Ω;D(Aθ))) = ‖AθU‖Hη

p (R+;Lp(Ω;Lq(O;R))).

Then note that (see [9, p.29, Example 2.8.1] and recall that U(t = 0) =
0) we may take
(4.2)
‖AθU‖Hη

p (R+;Lp(Ω;Lq(O:R))) = ‖AθDη
t U‖Lp(R+×Ω;Lq(O;R))+‖Aθu‖Lp(R+×Ω;Lq(O;R)).

By (3.3) of Theorem 3.1,

(4.3) ‖AθDη
t U‖Lp(R+×Ω;Lq(O;R)) ≤ c‖G‖Lp(R+×Ω;Lq(O;H)).

Then define θ0 by β − αθ0 = 1
2
. By the assumption β > 1

2
we have

θ0 > 0. By (3.4), θ0 < 1. Then, by Theorem 3.1,

‖Aθ0U‖Lp(R+×Ω;Lq(O;R)) ≤ c‖G‖Lp(R+×Ω;Lq(O;H)).

By the assumption 0 ∈ ρ(A), and by the fact that θ0 > θ, we have that
(Aθ0−θ)−1 exists. See, e.g. [1, Lemma 5.3.5]. Thus

(4.4) ‖Aθu‖Lp(R+×Ω;Lq(O;R)) ≤ c‖G‖Lp(R+×Ω;Lq(O;H)).

From (4.1) - (4.4) we have (3.5). �

5. Proof of Proposition 3.3

Lemma 5.1. Let the assumptions of Proposition 3.3 hold. Choose ρ, ω1

such that

(5.1) ρ ∈ (
π

2
, π), ω1 ∈ (ω, π), αρ + ω1 < π.

By (3.7) this is possible. Then, for j = ±1,
a) The function s → (seijρ)α((seijρ)α + A)−1 is welldefined and uni-

formly bounded in L(X) for s ∈ (0,∞).
b) Define, for j = ±1,

(5.2) ψj(z) =
zθ

1 + e−ijραz
.
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Then, for j = ±1, there exists a function ϕj ∈ H∞
0 (Σω1) such that

(5.3) ψj(z) = ϕj(z)2, z ∈ Σω1 .

.

Proof. To prove (a), note first that for s > 0, by (5.1),

μ = (seijρ)α ∈ Σπ−ω1 .

Consequently,

sup
z∈Σω1

| μ

μ + z
| = sup

z∈Σω1

| 1

1 + z
μ

| ≤ c,

with c independent of μ. Now note that ω1 > ω and apply the bounded
H∞-calculus of A to get a).

To prove (b), take z ∈ Σω1 and notice that by (5.1) there exists a
constant M such that

|1 + e−ijραz| ≥M |z|, z ∈ Σω1 .

Thus, since θ < 1, ψj(z) ∈ H∞
0 (Σω1). Write

ψj(z) = [z−θ + e−ijραz1−θ]−1

to see that for z ∈ Σω1 ,

|arg(ψj(z))| ≤ max(ω1, ρα + ω1) < π.

Therefore, one may take φj = (ψj)
1
2 ∈ H∞

0 (Σω1), where z
1
2 denotes any

branch of the square root in the slotted plane C \ (−∞, 0]. �

Lemma 5.2. Under the assumptions of Proposition 3.3, and with ρ as
in Lemma 5.1; define for j = ±1; t, u > 0;

(5.4) kj(u, t) =
1

2πiα
eijρ(1+η−β)u− 1

2α eeijρtu−1/α

.

Then, for fixed u > 0, we have kj ∈ W 1
1 ((0,∞); C) and

(5.5)

∫ ∞

0

√
t| ∂

∂t
kj(u, t)| dt ≤M,

with a constant M independent of u.

Proof. By the fact that ρ > π
2
, we have �(eijρ) < 0, so that for fixed

u the function kj(u, ·) ∈ W 1
1 ((0,∞); C). Estimating the integral gives

(with suitable constants K that may vary from line to line, and a

change of variables s = tu− 1
α ),
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∫ ∞

0

√
t | ∂

∂t
kj(u, t)| dt

≤ K

∫ ∞

0

√
t u−1/(2α)| ∂

∂t
eeijρtu−1/α| dt

= K

∫ ∞

0

√
tu−1/α |eijρu−1/αeeijρtu−1/α| dt

= K

∫ ∞

0

√
tu−1/α |eeijρtu−1/α|u−1/α dt

= K

∫ ∞

0

√
s |eeijρs| ds

= K.

�

Lemma 5.3. With the conditions of Proposition 3.3, with ρ, ψj as in
Lemma 5.1, and kj as in Lemma 5.2, we have for t > 0, x ∈ X,

(5.6) AθDη
t Sαβ(t)x = Σj=±1

∫ ∞

0

kj(u, t)ψj(uA)x
du

u
.

Proof. The Laplace transform of AθDη
t Sαβ(t) is given by (see [4, Defi-

nition 5.4],

λη+α−βAθ(λαI + A)−1.

We let, for r > 0, Γr be the contour

e−iρ|t|, t ≤ −r,
eiρt, t ≥ r,
eisr, |s| ≤ ρ.

Then

AθDη
t Sαβ(t)x =

1

2πi

∫
Γr

eλtλη+α−βAθ(λαI + A)−1x dλ.

Note that

sup
λ∈Γr

‖Aθλα(1−θ)(λαI + A)−1‖L(X) <∞,

and so, by (3.1),

‖
∫
{eisr | |s|≤ρ}

eλtλη+α−βAθ(λαI + A)−1x dλ‖X ≤ Kr
1
2 ,

for some constant K independent of r. Consequently, by analyticity
we may without loss of generality take r = 0. Write Γ = Γ0. We then
have, for t > 0,
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Dη
t A

θSαβ(t)x

=
1

2πi

∫
Γ

eλt λη+α−β Aθ (λα + A)−1 x dλ

=
1

2πi

∫
Γ

eλt λη−β Aθ
(
1 + λ−αA

)−1
x dλ

=
1

2πi

∑
j=±1

∫ ∞

0

eseijρt sη−β eijρ(η−β) Aθ
(
1 + e−ijαρs−αA

)−1
x eijρ ds.

Continue with the change of variables s = u− 1
α , ds = − 1

α
u−1− 1

α du
and later use (3.1), (5.4) and (5.2):

Dη
t A

θSαβ(t)x

=
1

2πi

∑
j=±1

eijρ(1+η−β) ·
∫ ∞

0

eeijρtu−1/α

u(β−η)/α u−θ(uA)θ
(
1 + e−ijαρuA

)−1
x u−1/α 1

α

du

u

=
1

2πiα

∑
j=±1

eijρ(1+η−β)

∫ ∞

0

eeijρtu−1/α

u−1/(2α) (uA)θ
(
1 + e−ijαρuA

)−1
x

du

u

=
∑
j=±1

∫ ∞

0

kj(u, t) ψj(uA)x
du

u
.

�

By (5.5) and (5.6) we have Proposition 3.3.

6. Proof of Theorem 3.1

Proof. As in [7] we note first that it suffices to consider F -adapted
finite step processes G : R

+ × Ω → D(AH) with AH = A⊗ IH .
By Proposition 3.3, with X = Lq(O; H) we have the representation

(6.1) AθDη
t Sαβ(t)x =

∑
j=±1

∫ ∞

0

kj(u, t)[ϕj(uA)]2x
du

u
,

with

(6.2) ϕj ∈ H∞
0 (Σω1), ω1 ∈ (ω, π).

(This corresponds to relation (4.2) of [7]). The functions kj depend on
α, β, η and, through (3.1), on θ. Below, we do not explicitly write out
this dependence.
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By the stochastic Fubini theorem, and by (6.1), for t ≥ 0,

AθDη
t

∫ t

0

Sαβ(t− s)G(s) dWH(s)

=
∑
j=±1

∫ t

0

∫ ∞

0

[ϕj(uA)]2kj(u, t− s)G(s)
du

u
dWH(s)

=
∑
j=±1

∫ ∞

0

[ϕj(uA)]2(Ij(u)G)(t)
du

u
,

with

(Ij(u)G)(t) =

∫ t

0

kj(u, t− s)G(s) dWH(s).

The remainder of the proof follows that of [7, Theorem 4.3].
Our notation (as in [7]) resorts to the concept of Banach func-

tion spaces. Let E be a Banach function space over (O, Σ, μ) and
H a Hilbert space. Then E(H) denotes the space of all strongly μ-
measurable functions G : O → H, such that ‖G(·)‖H belongs to E. In
the sequel, we will use the following spaces:

E = Lq(O; R),(6.3)

H = L2(R
+;

du

u
),

E1 = Lp(R
+ × Ω; Lq(O; H)),

E2 = Lp(R
+ × Ω; Lq(O; R)).

Let p−1 + (p′)−1 = 1, q−1 + (q′)−1 = 1. Then

E(H) = Lq(O;H) = Lq(O; L2(R
+;

du

u
)),

E2(H) = Lp(R
+ × Ω; Lq(O; L2(R

+;
du

u
))),

E∗ = Lq′(O; R);

E∗
2 = Lp′(R

+ × Ω; Lq′(O; R)).

Thus

E∗(H) = Lq′(O; L2(R
+;

du

u
)),

E∗
2(H) = Lp′(R

+ × Ω; Lq′(O; L2(R
+;

du

u
))).
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Now take any ξ∗ ∈ E∗
2 . We wish to estimate 〈AθDη

t U, ξ∗〉E2,E∗2 . One
has, using Fubini,

< AθDη
t U, ξ∗ >E2,E∗2(6.4)

=
∑

j=−1,+1

E
( ∫ ∞

0

<

∫ ∞

0

[ϕj(uA)]2(Ij(u)G)(t)
du

u
, ξ∗(t) >E,E∗ dt

)

=
∑

j=−1,+1

E
∫ ∞

0

∫
O

∫ ∞

0

[ϕj(uA)(Ij(u)G)(t)](x)

[ϕj(uA∗)ξ∗(t)](x)
du

u
dx dt.

So, using again Fubini and twice Hölders inequality,

| < AθDη
t U, ξ∗ >E2,E∗2 |(6.5)

≤
∑

j=−1,+1

E
∫ ∞

0

∫
O
‖[ϕj(uA)(Ij(u)G)(t)](x)‖H

‖ϕj(uA∗)ξ∗(t)](x)‖H dx dt

≤
∑
j=±1

‖ϕj(uA)Ij(u)G‖E2(H) ‖ϕj(uA∗)ξ∗‖E∗2 (H).

The estimation of the last factor on the right side of (6.5) may be
done by an application of the following Proposition ([7], [8]). (In [7] this
proposition is stated under the assumption that the bounded functional
calculus has angle ω < π

2
but a simple rescaling argument shows that

the proposition is true under the assumption ω < π).

Proposition 6.1. Take q ∈ (1,∞), and assume that A has a bounded
H∞(Σω)-calculus on Lq(O; R) for some ω ∈ (0, π), and let ω1 ∈ (ω, π)
be arbitrary. Then, for each ϕ ∈ H∞

0 (Σω1) there exists a constant c
such that

(6.6) ‖ϕ(uA)x‖E(H) ≤ c‖x‖Lq(O;R), x ∈ Lq(O; R),

(6.7) ‖ϕ(uA∗)x∗‖E∗(H) ≤ c‖x∗‖Lq′ (O;R), x∗ ∈ Lq′(O; R).

By (3.2) and (6.2) we may apply the above Proposition pointwise in
R

+ × Ω. Thus, by (6.7),

(6.8) ‖ϕj(uA∗)ξ∗‖E∗2 (H) ≤ c‖ξ∗‖E∗2 .

The estimation of the terms

‖ϕj(uA)Ij(u)G‖E2(H)

requires a more elaborate machinery.
As in [7], define (M as in (3.8))

K = {k ∈ W 1
1 (R+) |

∫ ∞

0

√
t|k′(t)| dt ≤M},
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and for k ∈ K, and an F -adapted finite rank step process G : R
+×Ω →

Lq(O; H), the process

I(k)G(t) =

∫ t

0

k(t− s)G(s) dWH(s), t ≥ 0.

By the Ito isometry, these (scalarvalued) processes are welldefined. To
extend I(k) to a bounded operator from Lp,F(R+ × Ω; Lq(O; H)) into
Lp(R

+ × Ω; Lq(O; R)), use the inequality (see (2.1) of [7])

E‖
∫ ∞

0

G dWH‖p
Lq(O;R) ≤ cE‖G‖p

L2(R+;Lq(O;H)).

Note that by Proposition 3.3, in particular by (3.8), the functions kj ∈
K.

The operators I(k) are uniformly bounded, by the fact that

sup
k∈K

∫ ∞

0

k2(t) dt <∞.

To see this, write∫ ∞

0

k2(t) dt = −
∫ ∞

0

k′(s)
∫ s

0

k(t) dt ds = −
∫ ∞

0

s
1
2 k′(s)[s−

1
2

∫ s

0

k(t) dt] ds

and observe that

|s− 1
2

∫ s

0

k(t) dt| = |
∫ ∞

s

s
1
2 k′(τ) dτ +

∫ s

0

τs−
1
2 k′(τ) dτ |

≤
∫ ∞

0

τ
1
2 |k′(τ)| dτ.

But even more is true, the operator family I is R-bounded, [7, The-
orem 3.1]:

Proposition 6.2. For all p ∈ (2,∞) and q ∈ [2,∞), the opera-
tor family I is R-bounded from Lp,F(R+ × Ω; Lq(O; H)) to Lp(R

+ ×
Ω; Lq(O; R)). The same result is true if p = q = 2.

For the definition of R-boundedness and the proof of this proposi-
tion, see [7].

The following multiplier result makes use of theR-boundedness. (See
[7], [8].)

Proposition 6.3. Let E1, E2 be Banach function spaces with finite
cotype and let ν be a σ-finite Borel measure on R

+. Let M : R
+ →

L(E1, E2) be a function with the following properties:

(1) for all x ∈ E1 the function t → M(t)x is strongly ν-measurable
in E2,

(2) the range M = {M(t) | t ∈ R
+} is R-bounded in L(E1, E2).

Then, for G ∈ E1(L2(R
+; ν)) we have MG ∈ E2(L2(R

+; ν)) and

‖MG‖E2(L2(R+,ν)) ≤ R(M)‖G‖E1(L2(R+;ν)).
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Above, R(M) denotes the R-bound of the operator family M.
Take E1,E2 as in (6.3) and recall that f ∈ E1(H) is defined by

requiring ‖f‖H ∈ E1. Then note that

ϕj(uA)Ij(u)G = Ij(u)ϕj(uAH)G,

apply Proposition 6.3 and (6.6) of Proposition 6.1 pointwise in R
+×Ω

to obtain

‖ϕj(uA)Ij(u)G‖E2(H) ≤(6.9)

R(Ij(u), u ∈ R
+, j = ±1)‖ϕj(uAH)G‖E1(H) ≤

cR(Ij(u), u ∈ R
+, j = ±1)‖G‖E1 .

By (3.8) and by Proposition 6.2,

(6.10) R(Ij(u), u ∈ R
+, j = ±1) ≤ c <∞.

By (6.8), (6.9), (6.10),

|< AθDη
t U, ξ∗ >E2,E∗2 | ≤ c‖G‖E1‖ξ∗‖E∗2 .

Taking the supremum over ‖ξ∗‖E∗2 ≤ 1 gives

‖AθDη
t U‖E2 ≤ c‖G‖E1 .

Recall the definitions of E1 and E2 to see that (3.3) has been obtained.
�
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