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MAXIMAL REGULARITY FOR STOCHASTIC
INTEGRAL EQUATIONS

W. Desch and S-O. Londen

Abstract We examine the stochastic parabolic integral equation of con-
volution type

) +A/Ot Fa(t — 8)U(s) ds — /Ot kot — $)G(s) AWy (s), ¢ > 0,

where U(t) takes values in Ly(O;R) with O a o-finite measure space, and
g € [2,00). The linear operator A maps D(A) C Ly(O;R) into Ly(O; R), is
nonnegative and admits a bounded H*-calculus on Ly(O;R). The kernels
are powers of ¢, with ki(t) = t*"1, ko(t) = t”"1, and a € (0,2),

L T(a) INE))
ﬁ € (§7 2)
We show that, in the maximal regularity case, where
1
—af—n ==
f—ab—n=g,

one has the estimate

|A° DU |1, m+ xes L, (0R)) < Gz, R+ x0:L,(0;))>
where c is independent of G.
Here D] denotes fractional integration if € (—1,0), and fractional dif-
ferentiation if n € (0,1), both with respect to the ¢t-variable.
The proof relies on recent work on stochastic differential equations by v.
Neerven, Veraar and Weis, and extends their maximal regularity result to
the integral equation case.

1. INTRODUCTION

We investigate the stochastic integral equation

(L.1) U(t)—i—A/tkl(t—s)U(s) ds — /tkg(t—s)G(s) AWi(s), ¢ >0,

where we require U(t) to take values in L,(O;R) almost surely, with
O a o-finite measure space, and ¢ € [2,00). The linear operator A
maps D(A) C L,(O;R) into L,(O;R), is nonnegative and admits a
bounded H>*-calculus on L,(O;R). The kernels are powers of ¢, with
ki(t) = ﬁt""l, ko(t) = ﬁtﬁ’ﬂ and a € (0,2), 8 € (3,2). The
integral on the left side of (1.1) is a standard Bochner integral.

Let (©,.A,P) be a probability space with the filtration F = (F;);>0,
and take Wg(t), t > 0, to be a cylindrical F-Brownian motion on the
separable Hilbert space H. The stochastic integral with respect to Wy
on the right side of (1.1) is an L,(O;R)-valued random variable as

1
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defined, e.g., in [7, Sec. 2.1]. Assume G € L,(R* x Q; L,(0; H)) for
some p € (2,00) and that G is F-adapted.
Define the stochastic convolution process U(t) by

(1.2) ) :/Ot Sus(t — $)G(s) dWi(s), ¢ > 0.

Here S,5(t) € L(Ly(O;R)), t > 0, is the resolvent (see Section 2
below) associated with A, kq, and ko, i.e., the solution of

(13) Sag + A(k’l * Sag) = kol.

The process U(t) solves (1.1), at least formally.

Let D} denote fractional integration (if € (—1,0)) and fractional
differentiation (if n € (0,1)); both with respect to the t-variable. For
6 € (0,1), let A% stand for the fractional power of A.

Our main result concerns the maximal regularity case

1

—af —n=_.

5 =5

We show, assuming this and making an appropriate spectral assump-

tion on A, that A’D}U is welldefined and satisfies

(1.4) | A’ DU |1zt xerq0:m) < G, @ <y (0.

with the constant ¢ independent of G, but depending on p, q, a, 3,7, 6.
If ¢ = 2, the estimate (1.4) also holds for p = 2.

Essentially the same equation as (1.1) has previously been considered
in [4] under the stronger condition

1
(1.5) ﬁ—a&—n>§7

with ¢ = p € [2,00) and ¢ in compact sets . However, the assump-
tion that A admits a bounded functional calculus was not made in [4],
only the assumption that A be nonnegative, including the appropriate
spectral condition. Estimates analogous to (1.4) were obtained.

Technically the proofs of [4] rely on an approach due to Krylov mak-
ing use of the Burkholder-Davis-Gundy inequality and developed for
stochastic differential equations, i.e., for the case « = § =1 in (1.1),
and with —A a second order elliptic differential operator on R™. In this
case, Krylov’s approach can be used to obtain maximal regularity, how-
ever, it relies on a deep Paley-Littlewood inequality [5], [6]. For general
sectorial A in the integral equation case (i.c., a € (0,2), 8 € (3,2)), this
inequality may be replaced by estimates on the Dunford integral - but
then an infinitesimal loss of regularity must be allowed, as illustrated
by (1.5).
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To obtain maximal regularity in the integral equation case - which
in [4] was done only for the Laplacian on R™ - a highly nontrivial
generalization of Krylov’s lemma was required [3].

Our result in this paper relies strongly on the deep approach of the
recent paper [7], concerned with maximal regularity of (1.1) in the
differential equation case, i.e., « = § = 1. In fact, the major part of
the proof of [7] can be adapted almost without changes to apply to
(1.1). The only necessary major alteration is the construction of new,
different k;-functions (see Proposition 3.3 below). Note that our k;-
functions are constructed by a different approach and do not reduce to
those of [7] in case o = § = 1.

As already stated, our main result (Theorem 3.1) gives the estimate
(1.4). Observe that this estimate may be interpreted as an estimate on
D} (A%U), i.e., on the fractional time-derivative of A°U. Hence this esti-
mate combined with the additional assumption 0 € p(A) directly gives
maximal space-time L,-regularity, i.e., maximal regularity in Bessel po-
tential spaces. (See Corollary 3.2 below). Therefore, no modification
or extension of the Da Prato-Kwapien-Zabczyk factorization argument
used in [7] to obtain Bessel potential space regularity is required here.
Obviously, this simpler proof also applies in case « = § = 1.

In Section 2 we formulate some technical preliminaries. Our results
are given in Section 3. In Section 4 we show how Corollary 3.2 follows
from Theorem 3.1. Section 5 is devoted to the construction of k;-
functions representing the resolvent. Section 6 contains the proof of
Theorem 3.1.

2. TECHNICAL PRELIMINARIES

First, we consider fractional integration and differentiation in time.

Definition 2.1. Let X be a Banach space and n € (0,1), let u €
Ly((0,T); X) for some T' > 0.
1) Fractional integration in time is defined by

1
D"y = ——t" " k.
T

2) We say that u has a fractional derivative of order n > 0 provided
u = D;"f, for some f € Li((0,7); X). If this is the case, we write
Diu=f.

Obviously, DV f = f

For the equivalence of fractional derivatives in L, and fractional pow-
ers of the realization of the derivative in L, we have:
Lemma 2.2. [2, Proposition 2] Let p € [1,00), X a Banach space and
define

D(L) = {u e W, ((0,7); X) | u(0) = 0}, Lu =/, u € D(L).
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Then, with 5 € (0,1)

LPu= Dlu, ue D),

where D(LP) coincides with the set of functions u having a fractional
derivative of order B in L,, i.e.,

D(L’) = {u € Ly((0,T); X) [ 7 u € W, ((0,T); X)
In particular, Df is closed.

We then recall the definition of the resolvent associated with A, ky,
and ky.

Definition 2.3. Let X be a Banach space, let A map D(4) C X —
X and let A be sectorial. Let ki, ko be power functions as in the
introduction. Let ¢4 be the spectral angle of A and assume

«
(2.1) ¢A<7r(1—§).
The resolvent S,s associated with A, k; and k, is defined by

(2.2) Sap(t)v = (2772')_1/ MNT + AN Pud), t >0,

1y
for v € X; and where ¢ € (3, min{~, 7r_(j’/‘}), and
(2.3) ‘ ‘ |

Ly = {re [ [t] <9} U{pe™ | r < p<oo}U{pe™ |r < p< oo}

As to the properties of S,5 we have

Remark 2.4. [4] Let a € (0,2), 8 € (3,2), 0 € [0,1], n € (—1,1). Let
Sas(t) be the resolvent of Definition 2.3. Then one has

(2.4) Sap(t) € L(X), t>0; Sas(t)v € D(A), t>0,v € X,

(2.5) stt>1£)||t1+aefﬁ+”DfA95a5(t) |l cx) < o0,

(2.6)  Sas(t) + A/t Fo(t — 8)Sug(s) ds = ka(t)1, t > 0.

For the proof of these properties, see [4].

3. RESULTS
Our main result is the following;:

Theorem 3.1. Take (2, A, P) to be a probability space with filtration
F =A{F}s0. Let Wi(t), t > 0, be a cylindrical F-Brownian motion
on the Hilbert space H. Let p € [2,00).
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Let v € (0,2), B € (3,2), 0 € [0,1), and € (—1,1), and suppose
that
1
(3.1) 5—049—7725-
Let ¢ € [2,00). Assume the operator A admits a bounded H®-
calculus on Ly(O;R) of angle w satisfying
«

(3.2) w<m(l- 5)

Let Sop(t) € L(Ly(O;R)), t > 0, be the resolvent associated with A,
ki, and ko, as defined in Definition 2.3, (where X = L,(O;R)).

Define, for any F-adapted G € L,(R* x Q; L,(O; H)), the stochastic
convolution U(t) by

Ut) :/Ot Sus(t — $)G(s) dWi(s), ¢ > 0.

Then DU is welldefined in L,(O;R), takes values in the domain D(A?)
almost surely and satisfies, for 2 < p < oo,

(3-3) |A’ DU |zt xozq0m) < G, @<y (0.

with the constant c independent of G. If ¢ = 2, then this mazimal
reqularity holds also for p = 2.

Note the necessary condition § > % Thus, e.g., the case § = 0,
n < 0, is not covered by Theorem 3.1. See however, the comments
following Corollary 3.2.

If A is invertible, then we may, in the maximal regularity case, for-
mulate a result in Bessel potential spaces.

Corollary 3.2. Let, in addition to the assumptions of Theorem 3.1,
0€p(A), and letn € [0,1) and assume

1
(34) ﬁ — 5 < Q.
Then
(3.5) 10Ul ezt s, a0y < Gl @+ <Ly 0:m))

with the constant ¢ independent of G.

Note that with @ = 8 = 1 (the differential equation case of [7] ), the
condition (3.4) is trivially satisfied.
Also note that in the differential equation case (3.5) yields
||U||Hg,p(R+;Lp(Q;D(A§79))) < CHGHL,,(R+ xQ;Lq(O:H))>
for § € [0,4]. (CL.[7, Theorem 1.2(i)]).
Suppose next that

(3.6) ﬂfa9777>%.



In the case where p = ¢, and R* is replaced by compact time-
intervals we may apply results of [4]. These results do not require
that A admits a bounded H*-calculus but only that A is sectorial and
satisfies the spectral condition (2.1).

If (3.6) holds and we wish to consider R*, and with p not necessarily
equal to ¢, then we may, for certain parameter values, argue as follows.

Suppose there exists 6y € (6,1) such that §—aby —n = % Then, by
Theorem 3.1,

A% DU | 1, ®+x0:1,0m) < Cl|GllL, ®+ xsL,(0:1)):

with ¢ independent of G. Arguing as in the proof of Corollary 3.2 we
may then proceed to obtain norm estimates on U in Bessel potential
spaces.

Finally observe that Theorem 3.1 and Corollary 3.2 allow us to in-
terpolate analogously as in [7, Theorem 1.2 (2)] to obtain maximal
estimates.

To prove Theorem 3.1, we need Proposition 3.3 below. This propo-
sition contains the essential new element needed for the appropriate
extension of the results of [7].

Below, we let H>°(3,) denote the Banach space of all bounded an-
alytic functions ¢ that map X, = {# € C\ 0| |argz| < 0} — C with
the supremum norm. The linear subspace of H>(X,) consisting of all
functions ¢ satisfying an estimate

of2|*
(L +[z*)
for some € > 0, and some ¢ < o0, is denoted by H(Z,).

p(2)] < 2 € %o,

Proposition 3.3. Let o € (0,2), B € (1,2), 0 € [0,1) andn € (—1,1).
Assume the operator A admits a bounded H®-calculus on the Banach
space X of angle w satisfying

(3.7) w<m(l-— %)

Let (3.1) be satisfied.

Let Sop(t), t > 0, be the resolvent associated with A, F(la)ta !
r(,@)tﬁ L as defined in Definition 2.3.

Then there exists wy € (w,7), and for j = £1 functions k; : (0, 00) X
(0,00) — C, and ¢; € H*(X,,) such that, fort >0, z € X,

du
A’D]Sps(t)r = Z/ (u,t)[p;(uA))*x "

j==%1

Moreover, for fited u we have k;(u,-) € W((0,00); C), with

(3.8) | gl <
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where the constant M is independent of u, but depends on the parame-
ters a, 3,0,m and on the norm of the operator H>(X,,) — L(X) given

by o — p(A).

Proposition 3.3 is proved in Section 5, via three lemmas.

In Section 6, we briefly outline the proof of Theorem 3.1, using the
proof of [7], combined with Proposition 3.3 above. Our goal in this
outline is only to demonstrate that Proposition 3.3, combined with the
proof of [7] is sufficient to prove Theorem 3.1.

4. PROOF OF COROLLARY 3.2

Proof. First recall that by the assumption 0 € p(A),

(4.1) U ety @pa0y) = AU s @ n, @, 0:m)-

Then note that (see [9, p.29, Example 2.8.1] and recall that U(¢t = 0) =
0) we may take
(4.2)

||AGU||H§(R+;LP(Q;LQ(O:R))) = ||A9D1?U”Lp(]R+XQ;Lq(O;R))+HA0U||LP(R+><Q;LQ(O;]R))'
By (3.3) of Theorem 3.1,

(4.3) | A’ DU |1, &+ xesr,0m) < llGllL, @+ x0:1,(0:m))-

Then define 6y by 3 — afy = % By the assumption 3 > % we have
6y > 0. By (3.4), 6y < 1. Then, by Theorem 3.1,

AU 1, s xszq 0 < CllGllr, st ©im)-
By the assumption 0 € p(A), and by the fact that 6y > 6, we have that
(A%=9)~L exists. See, e.g. [1, Lemma 5.3.5]. Thus
(44) 1A%l 2, w0 < CllGlL, @ <oty ©im)-
From (4.1) - (4.4) we have (3.5). O

5. PROOF OF PROPOSITION 3.3

Lemma 5.1. Let the assumptions of Proposition 8.3 hold. Choose p,w
such that

(5.1) e

By (3.7) this is possible. Then, for j = +1,

a) The function s — (s€P)*((se¥P)® + A)~! is welldefined and umni-
formly bounded in L(X) for s € (0,00).

b) Define, for j = +1,

)y wi € (w,mM), ap+wy < 7.

0

(5.2) ¥;(2)

T 14 emipay’
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Then, for j = %1, there exists a function ¢; € H3°(3,,) such that

(5.3) Vi(2) = ¢(2)%, 2z € 2y,

Proof. To prove (a), note first that for s > 0, by (5.1),
= (se"")* e, .

Consequently,

1
su = su
zEEE)1|,u+Z‘ zezzgl‘l"‘

R

o

with ¢ independent of p. Now note that w; > w and apply the bounded
H>-calculus of A to get a).

To prove (b), take z € 3, and notice that by (5.1) there exists a
constant M such that

|1+ e % > M|z|, z€%,,.
Thus, since 6§ < 1, ¢;(2) € H*(X,,). Write
Uy(2) = [0 e
to see that for z € 3,
larg(1;(2))| < max(wy, pa +w;) < 7.

Therefore, one may take ¢; = (1;)2 € H*(3,,), where 22 denotes any
branch of the square root in the slotted plane C\ (—o0, 0]. O

Lemma 5.2. Under the assumptions of Proposition 3.3, and with p as
m Lemma 5.1; define for j = +1; t,u > 0;

1. eiiP(L+n=0) 55 pePtu=t/
2mia

Then, for fized u > 0, we have k; € W ((0,00); C) and

(5.4) i (u, t) =

(5.5) | Vil ar < o

with a constant M independent of u.

Proof. By the fact that p > Z, we have R(e”) < 0, so that for fixed
u the function k;(u,-) € Wi((0,00); C). Estimating the integral gives
(with suitable constants K that may vary from line to line, and a

change of variables s = tu‘§)7



o 0
V| = ki(u,t)| dt
A ot
* —1/(2c) 0 elipty—1/a
< K Viu |—e | dt
0 ot
= K/ Viy—te |eijpu_1/aeeijﬂt“_l/a\ dt
0
= K/ Vi1 |7y e gy
0

- K/ Vs e ds
0
= K.

Lemma 5.3. With the conditions of Proposition 3.3, with p,; as in
Lemma 5.1, and k; as in Lemma 5.2, we have fort >0, v € X,

(5.6) A’DIS,5(t)r = Xjoiy / kj(u, t);(ud)x %
0

Proof. The Laplace transform of A?D;]'S,s(t) is given by (see [4, Defi-
nition 5.4],

=B Al NT  A)7L
We let, for r > 0, I', be the contour
67ip|t|a t S -,

ert, t >,
er, |s| < p.
Then

1
A’D}Ss(t)r = — [ MNP ANNT 1 A) T wd).

~2mi Jp,
Note that

sup||A0)\a(1’9>()\°‘I + A)’1||£(X) < 00,
el

and so, by (3.1),

I NN O AN 4 A) ad) ||y < Kre,
{eisr | |s|<p}
for some constant K independent of r. Consequently, by analyticity
we may without loss of generality take r = 0. Write I' = I'y. We then
have, for ¢ > 0,
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DI A’S,5(t)x
- L / A NTE AT (A 4 A) T dA
211 T
_ i/eﬁ NP AY (14 A~ A) T 2 d
r

271

= Z / seiirt 1B olir(n=0) 48 (1 4 efwapsfaA) -1 7 e9P ds.
27m

Continue with the change of variables s = u’é, ds = —_u"" "o du
and later use (3.1), (5.4) and (5.2):

D] A’S,5(t)x
_ QL ciip(Lin-B) .
T
> etippy—1/ (ﬁ* )/a —0 0 i -1 71/04 ]' du
e w0 (wA) (1 + e PuA) pu Y ——
o au
R S cintin=0) / e 120 ()0 (14 vy 4) g T
2T s 0 u
d
:Z/k:utz/)]uA)xl
Jj==1

By (5.5) and (5.6) we have Proposition 3.3.

6. PROOF OF THEOREM 3.1

Proof. As in [7] we note first that it suffices to consider F-adapted
finite step processes G : Rt x Q — D(Ag) with Ay = A® Iy.
By Proposition 3.3, with X = L,(O; H) we have the representation

d
(6.1) A’D}S,5(t)x = Z / (u, t)[p;(uA)]*x u’
j==*1 u
with
(6.2) pj € Hi*(Eu,), wi € (w,7).

(This corresponds to relation (4.2) of [7]). The functions k; depend on
a, 3,n and, through (3.1), on 6. Below, we do not explicitly write out
this dependence.
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By the stochastic Fubini theorem, and by (6.1), for ¢ > 0,
t
A°DY / Suslt — 5)G(s) Wi (s)

Z//%M (1,1~ $)C(s) Wi (s)

Jj==%1

> [Twarmen 5

j==%1

with
wwmmzémwmwm@ﬂm@.

The remainder of the proof follows that of [7, Theorem 4.3].

Our notation (as in [7]) resorts to the concept of Banach func-
tion spaces. Let E be a Banach function space over (O, %, u) and
‘H a Hilbert space. Then E(H) denotes the space of all strongly p-
measurable functions G : O — H, such that ||G()|| belongs to E. In
the sequel, we will use the following spaces:

(6.3) E = L0 )
H = L@+ )
B = p(R+xQL(O H)),
By = L,(R* x Q;L,(O;R)).

Let p '+ () t=1,¢'+(¢)"' =1. Then

du

(M) = L,(OsH) = L,(O: La(®" 1))
Ey(H) = Ly(RY x Q; L,(O; Ly(RT; ?))),
BT = q’(OQR)§
E; = Lp/(R+ X Q,Lq/(O,R))
Thus
B (M) = Ly (0 LR ),
du

E3(H) = Ly (RY x Q; Ly (O; Ly(RT; " —))).
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Now take any £* € E5. We wish to estimate (A°D]U, £*) g, g;. One
has, using Fubini,

(6.4) < A’DJU&* >p, p;

- > e /soguA (LGOS (1) > i)

j=—141
- ¥ / // 3 (uA) (I () G) (8] (2)

[0 (uA)E" ()] (x) *dxdt

So, using again Fubini and twice Holders inequality,

(6.5) | < A’D}U, & >p, B
< 1[0 (wA)(L; (w)G) ()] (@)
Ry A :

H%‘(UA*)i*( )]( Mr dadt
S s WA L) Gl e [l (wA*)E|

j==1

IN

E3(H)-

The estimation of the last factor on the right side of (6.5) may be
done by an application of the following Proposition ([7], [8]). (In [7] this
proposition is stated under the assumption that the bounded functional
calculus has angle w < 7 but a simple rescaling argument shows that
the proposition is true under the assumption w < 7).

Proposition 6.1. Take q € (1,00), and assume that A has a bounded
H>(%,)-calculus on Ly(O;R) for some w € (0,7), and let wy € (w, )
be arbitrary. Then, for each ¢ € H(X,,) there exists a constant ¢
such that

(6.6) lp(ud)zllsmr < cllzlli,om), € Ly(O;R),

(6.7) lp(uA®)a"]

E*(H) S CHx*HLq/(O;R)? AN Lq/(O,R)

By (3.2) and (6.2) we may apply the above Proposition pointwise in
R* x Q. Thus, by (6.7),

(6.8) [l (wA™)E™
The estimation of the terms
[0 (uA) L;(w) G| 5y m)

requires a more elaborate machinery.

As in [7], define (M as in (3.8))

By < cll€ e

K= {kewl®D)| [ Vi@l <),
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and for k € K, and an F-adapted finite rank step process G : RT x Q) —
L,(O; H), the process

I(K)G(t) = /Otk(t — $)G(s) dWx(s), t > 0.

By the Ito isometry, these (scalarvalued) processes are welldefined. To
extend I(k) to a bounded operator from L, (Rt x Q; L,(O; H)) into
L,(R* x Q; L,(O;R)), use the inequality (see (2.1) of [7])

£l Gl om < EIG im0

Note that by Proposition 3.3, in particular by (3.8), the functions k; €
K.
The operators I(k) are uniformly bounded, by the fact that

o0

sup/ E*(t) dt < co.
kek Jo

To see this, write

/Ooo K2(t) dt = —/00o K (s) /Osk(t) dtds——/Ooogék’(s)[s—é/osk(t) ] ds

and observe that

|s*%/ k(t) dt| = |/ S%k’(r) d7-+/ Ts’%k;'(T)dﬂ
0 s 0
g/ 72|k (7)| dr.
0

But even more is true, the operator family I is R-bounded, [7, The-
orem 3.1J:

Proposition 6.2. For all p € (2,00) and ¢ € [2,00), the opera-
tor family I is R-bounded from L, z(RT x Q; L,(O; H)) to L,(R" x
Q; L,(O;R)). The same result is true if p = q = 2.

For the definition of R-boundedness and the proof of this proposi-
tion, see [7].

The following multiplier result makes use of the R-boundedness. (See
7], [8].)
Proposition 6.3. Let E,, E, be Banach function spaces with finite
cotype and let v be a o-finite Borel measure on R*. Let M : Rt —
L(Ey, Ey) be a function with the following properties:

(1) for all x € Ey the function t — M(t)x is strongly v-measurable
m EQ,
(2) the range M = {M(t) | t € Rt} is R-bounded in L(E1, Es).

Then, for G € Ey(Ls(RT;v)) we have MG € Ey(Ly(RT;v)) and
MGl gy (Lot ) < RIMNG Ey Loty
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Above, R(M) denotes the R-bound of the operator family M.
Take Ej,Es as in (6.3) and recall that f € Ej(H) is defined by
requiring || f|l» € Ei. Then note that

pi(uA);(u)G = I;(u)p;(uAn)G,

apply Proposition 6.3 and (6.6) of Proposition 6.1 pointwise in R* x Q
to obtain

(6.9) s (uA) ()G s <
R(I,(u), u € RY, j = 1) 5 (uAn)Gl ) <
R(I;(u),u € RY, j = £1)||G||E, -
By (3.8) and by Proposition 6.2,
(6.10) R(I;(u), u e RT, j==41) < ¢ < oo.
By (6.8), (6.9), (6.10),
|< A’DjU, ¢ > By, B}

< |Gl €7

E; < 1 giVCS

Taking the supremum over [|£*|
1A’ DU g, < cl|Gllp,-

Recall the definitions of F; and Es to see that (3.3) has been obtained.
O
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