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1 Multicentric representation of holomorphic functions

1.1 Motivation
As power series converge in discs it has been natural to treat holomorphic functions
in discs, use conformal maps to help in dealing with more complicated domains, and
if need be, to use local variables or charts to provide accurate local representations
of functions. However, in concrete computations this often leads to path dependent
approaches and and then much of the basic power of function theory such as residue
calculus is lost.

A natural source for the need of a practical calculus in complicated geometries
comes from the holomorphic functional calculus. Recall that any compact nonempty
set can be the spectrum of an element in some Banach algebra.

Let A be a unital Banach algebra and assume given an element a ∈ A and a
scalar function f which is holomorphic in a neighborhood of the spectrum of a. In
order to have a systematic way to express f(a) ∈ A and estimate its size effectively,
we, rather than trying to spread out the function on a suitable covering surface, take
a very opposite angle: we try to pack the information many times over on as small a
neighborhood of the origin as possible.
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In [5] we provided an algorithm which, for a given a ∈ A, produces a sequence of
monic polynomials p with distinct roots such that the sets

Vp(a) = {z ∈ C : |p(z)| ≤ ‖p(a)‖} (1.1)

squeeze around the polynomially convex hull of the spectrum of a ∈ A. In particular,
if f is holomorphic in some neighborhood of the polynomially convex hull of the spec-
trum, then there exists a p such that f is holomorphic in a neighborhood of Vp(a) as
well. Assuming such a polynomial we next outline the multicentric representation of
f which it induces. More details can be found in [6].

Let p ∈ Pd be a monic polynomial of degree d with simple roots λj and let δk ∈
Pd−1 denote for k = 1, . . . , d the polynomials which take the value 1 at λk and vanish
at the other roots. We then form the multicentric representation of f with respect to
centers λk:

f(z) =
d∑
k=1

δk(z)fk(w), where w = p(z). (1.2)

So, rather than using several local variables or charts we use two global variables z
and w, associate to each center λk a function fk in the variable w and finally combine
them together using the basis polynomials in the original variable z. One may view the
construction as a combination of Lagrange interpolation and Jacobi series. In [6] we
have discussed the computation of the functions fk and shown in particular that their
Taylor series can be computed in a natural recursive fashion if the derivatives of the
original function f are available at the local centers.

The representation allows an obvious avenue for analysis, estimation and computa-
tion in complicated sets. One just treats the functions fk in discs |w| ≤ R and combines
the estimates for f in the sets satisfying |p(z)| ≤ R.

1.2 Basic estimate
In this paper we demonstrate this approach by generalizing a well known result of von
Neumann on contractions in Hilbert spaces. In order to do this we need to have an
estimate of the following form

sup
|w|≤R

|fk(w)| ≤ C(R) sup
|p(z)|≤R

|f(z)|. (1.3)

Such an estimate would then imply that the sets Vp(A) are K-spectral sets with some
K.

In order to state the estimate we need some notation. Let γR denote the lemniscate

γR = {z ∈ C : |p(z)| = R}.

For small R the lemniscate consists of d separate circular curves, for large R it reduces
to just one circular curve. In general the lemniscate is smooth except if it contains a
critical point, where the derivative of p vanishes. Thus there are at most d − 1 such
exceptional valuesR. Let s(R) denote the distance from γR to the set of critical points.

Theorem 1.1. If p is a monic polynomial of degree d with distinct roots, then there
exists a constant C such that if f is holomorphic for |p(z)| ≤ R, then the functions fk
in (1.2) are holomorphic for |w| ≤ R and if γR does not contain any critical points of
p the estimate (1.3) holds with some C(R) satisfying

C(R) ≤ 1 +
C

s(R)d−1
. (1.4)
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Remark 1.2. If C(R) denotes the smallest constant such that (1.3) holds for all f then
C(R) → 1 as R → 0 or R → ∞. Generically the critical points are simple and then
the constant is proportional to 1/s(R) but we include an example where the behavior
is of the form 1/s(R)d−1.

We postpone the proof but first apply this to spectral set theory.

2 Applications to spectral sets

2.1 K-spectral sets using the von Neumann Theorem
Let A be a unital Banach algebra. We recall the definitions related to this topic.

Definition 2.1. A closed set Σ ⊂ C is a spectral set for a ∈ A, if for all rational
functions R with poles off Σ there holds

‖R(a)‖ ≤ sup
z∈Σ
|R(z)|. (2.1)

If the equation holds in the form

‖R(a)‖ ≤ K sup
z∈Σ
|R(z)|,

with a fixed K, then Σ is called a K-spectral set.

The topic began with a fundamental result by von Neumann for contractions in
Hilbert spaces.

Theorem 2.2. (von Neumann, 1951 [7])
If A ∈ B(H), and ‖A‖ ≤ 1, then the closed unit disc is a spectral set for A.

This can clearly be reformulated also as follows:

‖f(A)‖ ≤ sup
|z|≤‖A‖

|f(z)| (2.2)

provided f is holomorphic in |z| ≤ ‖A‖.
We formulate our results for holomorphic functions rather than for polynomials or

rational functions as we consider sets which may consist of several components. Here
is the main result of this paper.

Theorem 2.3. Suppose we are given a monic p ∈ Pd with distinct roots and a bounded
operator A ∈ B(H) in a Hilbert space H . Let R ≥ 0 satisfy ‖p(A)‖ ≤ R and be
such that the lemniscate γR contains no critical points of p. Then for all f which are
holomorphic for |p(z)| ≤ R there holds

‖f(A)‖ ≤ K sup
|p(z)|≤R

|f(z)|, (2.3)

where the constant K satisfies

K ≤ C(R)
d∑
k=1

‖δk(A)‖, (2.4)

with C(R) as in Theorem 1.1.
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Proof. The claim follows immediately from Theorem 1.1 and from the von Neumann
Theorem 2.2. In fact, denoting B = p(A) we have from (2.2)

‖fk(B)‖ ≤ sup
|w|≤R

|fk(w)|

and so by Theorem 1.1

‖fk(B)‖ ≤ C(R) sup
|p(z)|≤R

|f(z)|.

Then the result follows from

f(A) =
d∑
k=1

δk(A)fk(B).

2.2 Application to the Riesz spectral projections
A simple but useful application of the previous result is obtained as follows. Suppose
γR consists of several components and is free from critical points. Then one can define
f to be identically 1 in some open neighborhood of some of the components and to
vanish in a neighborhood of all the others. IfA ∈ B(H) is such that ‖p(A)‖ ≤ R, then
the resulting operator is simply the Riesz spectral projection to the invariant subspace
w.r.t. the part of the spectrum where f equals 1.

The following example shows that the constant C(R) of Theorem 1.1 has to blow
up near the critical lemniscates, and that the worst behavior in (1.4) may happen.

Example 2.4. Let ε > 0 be small. Consider the matrix

A(ε) =
(
ε 1
0 −ε

)
, (2.5)

with spectrum σ(A(ε)) = {ε,−ε}. Let p(λ) = λ2 − 1 so that we have one critical
point at the origin. Put R = 1 − ε2 so that the spectrum lies on the boundary of the
lemniscate |p(z)| = ‖p(A(ε))‖ = 1 − ε2. Let f be 1 on the right open half plane
and 0 on the left open half plane, so in particular it is holomorphic inside and in a
neighborhood of the lemniscate. Then f(A(ε)) = P (ε) is well defined and equals the
Riesz spectral projection onto the direction of the eigenvector wrt the eigenvalue ε. In
fact, the resolvent satisfies

(λI −A(ε))−1 =
1

λ2 − ε2

(
λ+ ε 1

0 λ− ε

)
The Riesz projector can be obtained as the residue at ε:

P (ε) =
(

1 1/2ε
0 0

)
.

As the distance from γR to the critical point is ε, we have

‖P (ε)‖ ∼ 1/2
s(R)

.
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Likewise, if p(λ) = λd− 1 we could take R = 1− εd and e.g. the truncated backward
shift and perturb it slightly:

S(ε) =


0 1

0 1
. . . . .
. . . . .

0 1
εd 0 . . 0

 .

Again, the eigenvalues are at distance ε from the origin and the projection to the direc-
tion of an eigenvector behaves like

‖P (ε)‖ ∼ 1/d
s(R)d−1

.

In fact,

P (ε) =
1

dεd−1


εd−1 εd−2 . . 1
εd εd−1 . . ε
. . . . .
. . . . .

ε2d−2 ε2d−3 . . εd−1

 .

In this case we would take the analytic function f to be identically 1 in the compo-
nent which contains the point 1 and in the others we set it equal to zero. Then again
f(S(ε)) = P (ε).

2.3 Application to power boundedness
We can apply Theorem 2.3 with R = 0 but then A has to be an algebraic operator and
all eigenvalues are nondefective. Requiring p(A) = 0 with p simple zeros says exactly
that.

Consider now power bounded operators. Let D denote the open unit disc. Suppose
that

Vp(A) ⊂ D. (2.6)

If p(λ) = (λ− 1)2 and

A =
(

1 1
0 1

)
then p(A) = 0, Vp(A) = {1} ⊂ D but A is not power bounded as

An =
(

1 n
0 1

)
.

Observe that if p has multiple zeros, then w = 0 is a critical value. Thus we need to
exclude this case.

Corollary 2.5. Let p be monic with simple zeros and suppose R ≥ 0 is such that γR
contains no critical points and γR ⊂ D. If A ∈ B(H) is such that ‖p(A)‖ ≤ R, then
A is power bounded and with the constant C(R) provided by Theorem 1.1 we have for
all n ≥ 1

‖An‖ ≤ C(R)
d∑
k=1

‖δk(A)‖. (2.7)

5



Proof. The claim follows from

max
z∈γR

|zn| ≤ 1.

Notice that here the fact that the constant is larger than 1 is not important but instead
we need that the same constant works for all holomorphic f .

Remark 2.6. If A is algebraic then we can take p to be the minimal polynomial.
Recall that a polynomial is called minimal polynomial if it is monic, p(A) = 0 and
the polynomial is of smallest possible degree. Then Corollary 2.5 and Remark 1.2
yield

‖An‖ ≤
d∑
k=1

‖δk(A)‖. (2.8)

Observe that this can be obtained directly as follows. For every n there exists a poly-
nomial qn such that

zn =
d∑
k=1

λnkδk(z) + qn(z)p(z)

which implies (2.8), as p(A) = 0.

Example 2.7. Let B(ε) = 1
εS(ε) with S(ε) as in the Example 2.4. Then

B(ε)d = I.

In particular, B(ε) is power bounded: for k ≥ 0 and 0 ≤ m ≤ d− 1

‖B(ε)kd+m‖ =
1
εm

. (2.9)

The minimal polynomial,
p(λ) = λd − 1

is independent of ε and so are the basis polynomials δk(z). As ε→ 0 we have

‖δk(B(ε))‖ =
1

d εd−1
(1 + o(1))

and
d∑
k=1

‖δk(B(ε))‖ =
1

εd−1
(1 + o(1))

so that the bound in (2.8) gives

‖B(ε)n‖ ≤ 1
εd−1

(1 + o(1)),

comparing well with (2.9).
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2.4 Other extensions
K. Okubo and T. Andô [8] have showed that if the numerical range is in the closed unit
disc, then the disc is K-spectral with constant K = 2. Recall that the numerical range

W (A) = {(Ax, x) ∈ C : x ∈ H, ‖x‖ = 1}

of A ∈ B(H) is always convex, contains the spectrum and is included in the disc
|z| ≤ ‖A‖. Denote by w(A) the numerical radius of A:

w(A) = sup
z∈W (A)

|z|.

Then we can formulate the following modification of Theorem 2.3.

Corollary 2.8. If the assumptions of Theorem 2.3 hold with the only exception that the
condition ‖p(A)‖ ≤ R is relaxed to w(p(A)) ≤ R, then the conclusion holds with
constant K satisfying

K ≤ 2 C(R)
d∑
k=1

‖δk(A)‖.

More recently B. and F. Delyon [2] have generalized Okubo’s and Andô’s result
from the disc to arbitrary compact convex sets.

Theorem 2.9. (B. and F. Delyon [2] )
If Σ is a convex compact set such that W (A) ⊂ Σ then there exists a constant KΣ

such that
‖R(A)‖ ≤ KΣ sup

z∈Σ
|R(z)| (2.10)

for all rational R holomorphic in Σ.

Remark 2.10. M. Crouzeix [3] has shown that KΣ ≤ 11.08. He conjectured that
KΣ = 2 will always do.

We can extend this result in the same way as that of Okubo and Andô. In fact,
let p ∈ Pd be a monic polynomial with distinct zeros and A ∈ B(H) be given. Put
B = p(A) and assume W (B) ⊂ Σ with Σ convex and compact with a boundary that
contains no critical points of p. Then we have

‖fk(B)‖ ≤ KΣ sup
w∈Σ
|fk(w)| (2.11)

Suppose we have an estimate of the form

sup
w∈Σ
|fk(w)| ≤ CΣ sup

z∈p−1(Σ)

|f(z)|. (2.12)

Then we can combine these two inequalities as follows.

Theorem 2.11. Suppose we are given a monic p ∈ Pd with distinct roots and a
bounded operator A ∈ B(H) in a Hilbert space H . Let Σ be a convex compact set
such that W (p(A)) ⊂ Σ and such that the boundary of Σ contains no critical values
of p. Then for all f which are holomorphic in p−1(Σ) we have

‖f(A)‖ ≤ CΣKΣ

d∑
k=1

‖δk(A)‖ sup
z∈p−1(Σ)

|f(z)|. (2.13)
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Proof. All we need is the existence of CΣ in (2.12). We include this as a remark at the
end of the proof of Theorem 1.1.

Remark 2.12. Clearly many of the existing results invite generalizations of this nature.
To name still one, in [1] the authors have considered operators such that several discs
are simultaneously spectral sets and shown that their intersection is then K-spectral.
Again, one could pose the assumptions on p(A) and then consider the boundary of
the intersection of the related discs. If the boundary is free from critical values, the
preimage of the intersection is again K-spectral with some K.

Remark 2.13. Recall that an operator A ∈ B(H) is called polynomially bounded if
for some K

‖P (A)‖ ≤ K sup
|z|≤1

|P (z)| (2.14)

holds for all polynomialsP . Such an operator is not necessarily similar to a contraction.
To that the inequality has to hold not only for scalar polynomials but for polynomials
with matrix valued coefficients. Such operators are called completely polynomially
bounded and it is clear by the proof technique of using the multicentric representation
that the versions with matrix valued functions extend in the very same way as the scalar
ones.

3 Proof of Theorem 1.1

In this section we discuss the estimation problem: if

f(z) =
d∑
k=1

δk(z)fk(w) where w = p(z), (3.1)

under what conditions we can bound fk in terms of f . In particular, the discussion
gives a proof for Theorem 1.1.

Proposition 3.1. If f is holomorphic inside γR0 , then for k = 1, . . . , d the functions
fk are holomorphic for |w| < R0.

Proof. In [6] we discussed the multicentric representation by first writing the multi-
centric decomposition for the Cauchy kernel. This yields a separate kernel Kk(z, w)
for each center λk

Kk(z, w) =
1

z − λk
p(z)

p(z)− w
.

It then follows that for |w| < R < R0 we have

fk(w) =
1

2πi

∫
γR

Kk(z, w)f(z)dz. (3.2)
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The integral representation (3.2) leads to bounds of the form

sup
|w|≤r

|fk(w)| ≤ C(R, r) sup
|p(z)|≤R

|f(z)|.

with r < R but here we are interested in having r = R. In order to prove such a bound
we consider a different type of explicit representation for fk in terms of f .

Assume first that w is a noncritical value of p and denote the d different roots of
p− w by ζj = ζj(w)

p(ζj)− w = 0

with numbering such that ζj(w) → λj as w → 0. Next, let εj ∈ Pd−1 be the polyno-
mials such that they equal 1 at ζj and vanish at the other roots ζl

εj(ζl) = δjl. (3.3)

The roots ζl are analytic functions of w away from the critical values, and so are the
coefficients of εj , too.

Proposition 3.2. If w is noncritical, then

fk(w) =
d∑
j=1

εj(λk)f(ζj(w)). (3.4)

Proof. For fixed w we introduce two polynomials, P and Q as follows

P (ζ) =
d∑
k=1

δk(ζ)fk(w)

while

Q(ζ) =
d∑
j=1

εj(ζ)f(ζj).

By (3.1)

f(ζj) =
d∑
k=1

δk(ζj)fk(w) = P (ζj)

and therefore

Q(ζ) =
d∑
j=1

εj(ζ)P (ζj).

But then P and Q are the same polynomial. Substituting ζ = λk we obtain

Q(λk) =
d∑
j=1

εj(λk)f(ζj) = P (λk) = fk(w).

Assume now that f is holomorphic inside and on γR and let w0 be a critical value
of p such that |w0| < R. For simplicity, let us assume that z0 is the only critical point
such that

p(z0) = w0.
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The modifications needed with several such critical points are obvious and left to the
reader. Assume that the roots ζj(w) are numbered such that for j = 1, . . . ,m we have
ζj(w) → z0 as w → w0 while the other roots stay within a positive distance from the
critical point. Then we may denote

ζj(w) = z0 + (ζ1(w)− z0)e2πi j−1
m (1 + o(1)). (3.5)

By Proposition 3.1. we know that w0 must be a removable singularity of

w 7→
m∑
j=1

εj(λk)f(ζj(w)). (3.6)

In order to compute the limit, we use the explicit representation of the polynomials:

Lemma 3.3. At noncritical w we have

εj(ζ) =
p(ζ)− w

p′(ζj(w))(ζ − ζj(w))
.

In particular, as p(λk) = 0,

εj(λk) =
w

p′(ζj(w))(ζj(w)− λk)
.

Proof. This is just the usual formula for the basis polynomials in Lagrange interpola-
tion, applied to the nodes ζl(w).

Hence the individual polynomials εj are not bounded as ζj(w) → z0. However,
we have with some c 6= 0

p′(ζj(w)) = (ζj(w)− z0)m−1c+O((ζj(w)− z0)m)

w = w0 +O((ζj(w)− z0)m)

ζj(w)− λk = (z0 − λk) + (ζj(w)− z0),

and after expanding f(ζj(w)) into power series around z0 and substituting all expan-
sions into (3.6) we see that the key terms are of the form

const

(ζ1(w)− z0)m−1−n

m∑
j=1

e−2πi j−1
m (m−1−n)

with n ≥ 0. As long as n < m − 1 all sums vanish and hence (3.6) stays bounded as
w → w0.

Suppose now that γR does not contain any critical points. Then for |w| < R

|fk(w)| ≤ Ck(R) sup
z∈γR

|f(z)|

with

Ck(R) = sup
|w|=R

d∑
j=1

|εj(λk)|. (3.7)

What remains is to estimate C(R) from (3.7).
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From Lemma 3.3 we see that near w0

|εj(λk)| ∼ |w0|
|z0 − λk|

1
s(R)m−1

where we denote by s(R) the distance from γR to the nearest critical point. Further, as
R→ 0 we have εj(λk)→ δjk, and so Ck(R)→ 1. When R→∞, we have

εj(λk) =
1 + o(1)

d

and again Ck(R)→ 1. Hence, there exists C such that for all R ≥ 0

Ck(R) ≤ 1 +
C

s(R)d−1
.

Naturally, generically the critical points are simple and in such a case one can bound
Ck(R) by 1/s(R).

Example 3.4. Let p(z) = z2 − 1 and consider the lemniscate with R = 1 so that γ1

passes through the origin which is a critical point of p. We show that there exists no
finite C(1) such that

sup
|z2−1|≤1

|fk(z2 − 1)| ≤ C(1) sup
|z2−1|≤1

|f(z)|. (3.8)

would hold for all f holomorphic inside and on γ1. One checks easily that if we set
λk = (−1)k+1, then

fk(z2 − 1) =
1
2

(f(z) + f(−z)) + (−1)k+1 1
2z

(f(z)− f(−z)).

Consider the one-parameter family of functions with ε > 0:

f(z; ε) =
ε

z − iε
.

Then we have, as ε→ 0,

sup
|z2−1|≤1

|fk(z2 − 1; ε)| ∼ const

ε
,

while
sup

|z2−1|≤1

|f(z; ε)| = O(1).

Example 3.5. We can use the previous example to also demonstrate what happens in
estimating f(A) if the lemniscate contains a critical point. Let f( ; ε) and p be as in
the previous example and take

A =
(

0 1
0 0

)
, (3.9)

so that p(A) = −I . Then in particular ‖p(A)‖ = 1 and the eigenvalue of A is at the
critical point. Again, as ε→ 0 we have

sup
|z2−1|≤1

|f(z; ε)| = O(1),
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while
‖f(A; ε)‖ ∼ const

ε
.

So, there exists no constant K such that for all ε > 0

‖f(A; ε)‖ ≤ K sup
|p(z)|≤1

|f(z; ε)|.

In particular, the requirement, that γR contains no critical points, cannot be omitted in
Theorem 2.3.

Remark 3.6. For the proof of Theorem 2.11 we need to establish the bound (2.12).
However, all we need is to have a bound for

w 7→
d∑
j=1

|εj(λk)|

along the boundary of Σ. But as the boundary does not pass through any critical value,
this function is continuous, and since the boundary is compact, the function is bounded.
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