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mapping is called a CHD mapping if its range is a CHD domain. Construction of a
harmonic mapping f with prescribed dilatation ω can be done effectively by the shear
construction the devised by Clunie and Sheil-Small [2].

Theorem 1.1. Let f = h + g be a harmonic and locally univalent in the unit disk
D. Then f is univalent in D and its range is a CHD domain if and only if h − g is a
conformal mapping of D onto a CHD domain.

Suppose that ϕ is a CHD conformal mapping. For a given dilatation ω, the harmonic
shear f = h+ g of ϕ is obtained by solving the differential equations{

h′ − g′ = ϕ′,

ωh′ − g′ = 0.

From the above equations, we obtain

(1) h(z) =

∫ z

0

ϕ′(ζ)
1− ω(ζ)

dζ.

For the anti-analytic part g, we have

(2) g(z) =

∫ z

0

ω(ζ)
ϕ′(ζ)

1− ω(ζ)
dζ.

Observe that

(3) f(z) = h(z) + g(z) = 2Re
[∫ z

0

ϕ′(ζ)
1− ω(ζ)

dζ

]
− ϕ(z).

We shall use (1) to find the analytic part h of the harmonic mapping f = h+ g. Then
the anti-analytic part g of the harmonic mapping f can be obtained from the identity
g = h− ϕ, or computed via (3).

It is known that the class of harmonic mappings has a close connection with the theory
of minimal surfaces. In the space R

3, the minimal surface is a surface which mini-
mizes the area with a fixed curve as its boundary. This minimization problem is called
Plateau’s Problem. Discussion concerning the differential geometric approach to the
subject can be found from the book by Pressley [10].

Our results concerning minimal surfaces are based on the Weierstrass-Enneper repre-
sentation. Let S be a non-parametric minimal surface over a simply connected domain
Ω in C given by

S = {(u, v, F (u, v)) : u+ iv ∈ Ω},
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where (u, v) identifies the complex plane R
2, which underlies the domain of F . The

following result is known as the Weierstrass-Enneper representation. This representa-
tion provides a link between harmonic univalent mappings and minimal surfaces. The
surface S is minimal surfaces if and only if S has the following representation

S =

{(
Re
∫ z

0

ϕ1(ζ) dζ + c1, Re
∫ z

0

ϕ2(ζ) dζ + c2, Re
∫ z

0

ϕ3(ζ) dζ + c3

)
: z ∈ D

}
,

where ϕ1, ϕ2, ϕ3 are analytic such that ϕ2
1 + ϕ2

2 + ϕ2
3 = 0, and

f(z) = u(z) + iv(z) = Re
∫ z

0

ϕ1(z) dz + iRe
∫ z

0

ϕ2(z) dz + c

is a sense-preserving univalent harmonic mapping from D onto Ω. In this case, the
surface S is called a minimal surface over Ω with the projection f = u + iv. Further
information about the relation between harmonic mappings and minimal surfaces can
be found from the book of Duren [5].

Systematical construction of harmonic shears of mappings of the unit disk and un-
bounded strip domains, and their boundary behaviour are presented in the article by
Greiner [7]. In most cases the dilatation is chosen to be ω(z) = zn.

In this paper, we study two classes of conformal mappings, each of which map D

univalently onto a domain which is convex in the horizontal direction. The first one
involves the mapping

ϕ(z) = A log

(
1 + z

1− z

)
+B

z

1 + cz + z2
,

which maps D onto C minus four symmetric half-lines. In [6], Ganczar and Widomski
have studied some special cases of this mapping and its harmonic shears. Analytic
examples of harmonic shears of ϕ with dilatations

ω(z) =
1− z2k

1 + z2k
, k = 1, 2,

along with illustrations, are given in [3].

The second case is related to the conformal mapping (see [8, p. 196])

(4) ϕ(z) =

∫ z

0

(1− ζn)−2/n dζ,

which maps the unit disk D onto a regular n-gon. In [4], Driver and Duren discussed
the harmonic shear of ϕ by the choice of the dilatations ω(z) = zn, ω(z) = z and
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ω(z) = zn/2. With the last choice of the dilatation, it is assumed that n is even. The
minimal surfaces of these harmonic shears were studied as well.

The outline of the paper is as follows: In the first part, we study the four-slit conformal
mapping, and its harmonic shears, with the dilatation ω(z) = zn. Then we consider
conformal mappings of regular n-gons, with dilatations ω(z) = z2n and ω(z) = z2.
These dilatations lead naturally to the Appel’s hypergeometric functions, which are
formal extensions of the Gaussian hypergeometric functions into two variables. Fi-
nally, we consider minimal surfaces obtained by shearing conformal mapping of the
regular n-gon described by (4). The results are also illustrated by using MATHEMAT-
ICA.

2. Shearing of Four Slit Conformal Mappings

In this section we shall give examples of harmonic shear of unbounded conformal
mappings with a suitable dilatations. For A,B > 0 and c ∈ [−2, 2], let us consider
the function ϕ defined by

(5) ϕ(z) = A log

(
1 + z

1− z

)
+B

z

1 + cz + z2
.

Recall from [3] that ϕ is univalent and it maps the unit disk D onto a domain convex
in the direction of the real axis. In special cases, namely c = −2 and c = 2, the image
of the unit disk D under ϕ is

C\
{
x± Aπ

2
i : x ∈

(
−∞,

A

2
log

2A

B
− 2A+B

4

]}
,

and

C\
{
x± Aπ

2
i : x ∈

[
−A

2
log

2A

B
+

2A+B

4
,∞
)}

,

respectively. In the case c = 0, the mapping ϕ maps the unit disk D onto C minus the
following half-lines:{

x± Aπ

2
i : x ∈

(
−∞,−A

2
log

√
2A+B +B√
2A+B − B

−
√

B(2A+B)

4

]}
,

and {
x± Aπ

2
i : x ∈

[
A

2
log

√
2A+B +B√
2A+B − B

+

√
B(2A+B)

4
,∞
)}

.

By writing c = −2 cos γ, γ ∈ (0, π), the equation (5) takes the form

(6) ϕ(z) = A log

(
1 + z

1− z

)
+B

z

(1− eiγz)(1− e−iγz)
.
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Also in [3], the authors considered harmonic shears of ϕ for some choices of A and B

with dilatations

ω(z) =
1− z2k

1 + z2k
, k = 1, 2.

Let us now consider the harmonic shear of ϕ defined in (6) with the dilatation ω(z) =

zn, n ≥ 2. First, we need the derivative of ϕ and the direct calculation gives

(7) ϕ′(z) =
2A

1− z2
− B

2 sin γ
i

[
eiγ

(1− eiγz)2
− e−iγ

(1− e−iγz)2

]
.

Thus by (1) and (7), we have

h(z) = 2A

∫ z

0

dζ

(1− ζ2)(1− ζn)

− B

2 sin γ
i

[∫ z

0

e−iγ dζ

(ζ − e−iγ)2(1− ζn)
−
∫ z

0

eiγ dζ

(ζ − eiγ)2(1− ζn)

]
.

We shall write this in the form

h(z) = 2AI1 − B

2 sin γ
i
(
e−iγI2 − eiγI3

)
,

where

I1 =

∫ z

0

dζ

(1− ζ2)(1− ζn)
,

I2 =

∫ z

0

dζ

(ζ − e−iγ)2(1− ζn)
,

I3 =

∫ z

0

dζ

(ζ − eiγ)2(1− ζn)
.

By partial fractions and zk = e2πik/n, k = 0, · · · , n− 1, we have

1

1− zn
= − 1

n

n−1∑
k=0

zk
z − zk

.

Therefore the first integral I1 can be rewritten as

I1 =
1

n
I1,0+

1

n

n−1∑
k=1

I1,k =
1

n

∫ z

0

dζ

(1− ζ)2(1 + ζ)
+
1

n

n−1∑
k=1

∫ z

0

zk dζ

(1− ζ)(1 + ζ)(zk − ζ)
.

We remark that for the case n = 1, the latter part of the integral inside the summation
sign should be omitted. For the first integral, we get

I1,0 =

∫ z

0

dζ

(1− ζ)2(1 + ζ)
=

1

2

z

1− z
+

1

4
log

(
1 + z

1− z

)
.
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The latter integral I1,k depends on whether n is odd or even. Assuming that n is odd,
we easily see that

I1,k =

∫ z

0

zk dζ

(1− ζ)(1 + ζ)(zk − ζ)

=
zk

2(zk − 1)

∫ z

0

dζ

1− ζ
+

zk
2(zk + 1)

∫ z

0

dζ

1 + ζ
− zk

z2k − 1

∫ z

0

dζ

zk − ζ
.

Thus

I1,k = −zk log(1− z)

2(zk − 1)
+

zk log(1 + z)

2(zk + 1)
+

zk
z2k − 1

log

(
zk − z

zk

)
.

Note that, by assumption, zk �= ±1. To simplify our notation, let N = {0, 1, · · · , n−
1} be an index set. Suppose that a ∈ N, then we define Na = N\{a}, and Na,b =

Na ∩Nb. With this notation, in case n is even, we have

n−1∑
k=1

I1,k =
∑
k∈N0

I1,k =
∑

k∈N0,n/2

I1,k + I1,n/2,

where

I1,n/2 =

∫ z

0

dζ

(1 + ζ)2(1− ζ)
=

1

2

z

1 + z
+

1

4
log

(
1 + z

1− z

)
.

Next we compute the integrals I2 and I3. Assuming that η = eiγ �= zk, i.e, γ �= 2πk/n,
k = 0, · · · , n− 1, we compute

Iη =

∫ z

0

dζ

(ζ − η)2(1− ζn)

= − 1

n

n−1∑
k=0

∫ z

0

zk dζ

(ζ − η)2(ζ − zk)

= − 1

n

n−1∑
k=0

[
1

η − zk

∫ z

0

dζ

(ζ − η)2
+

1

(η − zk)2

∫ z

0

dζ

η − ζ
− 1

(η − zk)2

∫ z

0

dζ

zk − ζ

]

= − 1

n

n−1∑
k=0

{
1

η − zk

(
1

η − z
− 1

η

)
− 1

(η − zk)2

[
log

(
η − z

η

)
− log

(
zk − z

zk

)]}
.

In the case of γ = 2πm/n, for m = 0, · · · , n− 1, we have

I3,m =

∫ z

0

dζ

(ζ − zm)2(1− ζn)

=
1

n

∑
k∈Nm

∫ z

0

dζ

(ζ − zm)2(ζ − zk)
+

1

n

∫ z

0

dζ

(ζ − zm)3
.
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The sum can be computed as above and the last integral is

1

n

∫ z

0

dζ

(ζ − zm)3
=

1

2n

[
1

(z − zm)2
− 1

z2m

]
.

Note that, we have an identity I2 = I3,n−m and if m = 0, we have I2 = I3,0.

Finally, the function g can be solved readily from the following identity

g = h− ϕ.

In Table 1 we have the integral I1 of h, which depends on whether n is odd or even.
On the other hand, integrals I2 and I3 depend on whether γ �= 2πm/n or γ = 2πm/n,
for an m = 0, · · · , n− 1 and the result is given in Table 2.

TABLE 1. Analytic part h = 2AI1 + B
2 sin γ

i(e−iγI2 − eiγI3) of the
harmonic shear f of the slit mapping ϕ with a dilatation ω(z) = zn.
Note that in the case of n = 1, the summation should be omitted. See
Table 2 for the integrals I2 and I3.

.
n I1

even
1

n

(
I1,0 +

n−1∑
k=1

I1,k

)

odd
1

n

⎛
⎝I1,0 + I1,n/2 +

∑
k∈N0,n/2

I1,k

⎞
⎠

TABLE 2. The integrals I2 and I3 for the analytic part h = 2AI1 +
B

2 sin γ
i(e−iγI2 − eiγI3) of the harmonic shear f of the slit mapping ϕ

with a dilatation ω(z) = zn. See Table 1 for the integral I1.

γ I2 I3
is not 2πm/n Iη Iη

is 2πm/n I3,n−m I3,m

Therefore, we have obtained the following result:

Theorem 2.1. Let ϕ be given by (6). Then the harmonic shear f = h+ g, where h is
given in Table 1 and Table 2 and the anti-analytic part g = h− ϕ, maps the unit disk
D univalently onto a domain which is convex in the horizontal direction.

In the case of A = 1
2
sin2 α, B = cos2 α and c = 0, we have the Corollary.
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Corollary 2.2. Let ϕα be defined as

ϕα(z) =
1

2
sin2 α log

(
1 + z

1− z

)
+

z cos2 α

1 + z2
.

Then ϕα maps the unit disk D univalently onto C minus the following half-lines{
x± π sin2 α

4
i : x ∈

(
−∞,−1

2
sin2 α log cot

α

2
− cosα

2

]}
,

and {
x± π sin2 α

4
i : x ∈

[
1

2
sin2 α log cot

α

2
+

cosα

2
,∞
)}

,

which is convex in the horizontal direction. Then the harmonic shear fα = h+g, with

h = sin2 α I1 − cos2 α

2
(I2 − I3),

where I1, I2, I3 are given in Table 1 and Table 2, and g = h − ϕa, maps the unit disk
D onto a CHD domain.

The above conformal mapping ϕα is given in [8, p. 197]. In Figure 1, we have the
conformal mapping ϕα of the unit disk D onto a four-slit domain with α = π/3.
Harmonic shears of this mapping as given in Corollary 2.2 are shown in Figure 2 with
α = π/3, for n = 1, 2.

�2 �1 1 2

�2

�1

1

2

FIGURE 1. Conformal mapping ϕα of the unit disk D onto a four-slit
domain with α = π/3, and the omitted half-lines are dashed. Illustra-
tions of harmonic shears are given in Figure 2.
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�2 �1 1 2

�2

�1

1

2

(A) Dilatation ω(z) = z.

�2 �1 1 2

�2

�1

1

2

(B) Dilatation ω(z) = z2.

FIGURE 2. Harmonic shears fα given in Corollary 2.2 with α = π/3

and a dilatation ω(z) = zn, for n = 1, 2.

3. Shearing of Regular n-gons

As pointed out in the introduction, the authors in [4] considered the conformal map-
ping ϕ given by (4). Then the harmonic shear f (with dilatations ω(z) = zkn/2,
k = 1, 2, and ω(z) = z) can be given in terms of the Gaussian hypergeometric func-
tion, which is defined by

F (a, b; c; z) = 1 +
∞∑
n=1

(a)n(b)n
n!(c)n

zn, |z| < 1,

where

(α)n = α(α + 1) · · · (α + n− 1) =
Γ(α + n)

Γ(α)
, α ∈ C,

is the Pochhammer symbol. For Re c > Re b > 0, this can also be written as the Euler
integral

F (a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− zt)−a dt.

Now we consider the dilatation ω(z) = z2n. Therefore, by (1), (2) and (4), we have

(8)

⎧⎪⎪⎨
⎪⎪⎩

h(z) =

∫ z

0

(1− ζn)−2/n(1− ζ2n)−1 dζ,

g(z) =

∫ z

0

ζ2n(1− ζn)−2/n(1− ζ2n)−1 dζ.
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Notice that we can write h and g as⎧⎪⎪⎨
⎪⎪⎩

h(z) =

∫ z

0

(1− ζn)−1−2/n(1 + ζn)−1 dζ,

g(z) =

∫ z

0

ζ2n(1− ζn)−1−2/n(1 + ζn)−1 dζ.

Using the change of variable ζ = t1/nz, we obtain

h(z) =
z

n

∫ 1

0

(1− znt)−1−2/n(1 + znt)−1t1/n−1 dt.

In order to rewrite h in a compact form for our purpose, we recall the first Appel’s
hypergeometric function [1, p. 73], which is defined by

F1(a, b1, b2; c; x, y) =
∞∑
k=0

∞∑
l=0

(a)k+l(b1)k(b2)l
(c)k+l k! l!

xkyl,

where (α)n is the Pochhammer symbol given above. As for hypergeometric functions,
Appel’s hypergeometric functions can be defined by Euler’s integral as follows [1, p.
77]:

F1(a, b1, b2; c; x, y) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1(1− xt)−b1(1− yt)−b2 dt,

where Re c > Re a > 0. Set a = 1
n
, b1 = 1 + 2

n
, b2 = 1, c = 1 + 1

n
. We have

(9) h(z) = zF1

(
1

n
, 1 +

2

n
, 1; 1 +

1

n
; zn,−zn

)
.

A direct computation shows that g defined by (8) can be written in the form

(10) g(z) =
z2n+1

2n+ 1
F1

(
2 +

1

n
, 1 +

2

n
, 1; 3 +

1

n
; zn,−zn

)
.

This proves the following result.

Theorem 3.1. Let ϕ be given by (4). Then the harmonic shear f = h + g, where h

and g are given in (9) and (10), respectively, maps the unit disk D univalently onto a
domain which is convex in the horizontal direction.

In Figure 3, we have illustrations of the conformal mapping ϕ onto regular n-gon and
the harmonic shear f = h + g with dilatation ω(z) = z2n, for n = 3, 4, 5. It is worth
remarking that this situation was not considered by Duren and Driver in [4].
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FIGURE 3. Conformal mappings from the unit disk D onto a regular n-
gon and its harmonic shears with the dilatation ω(z) = z2n, n = 3, 4, 5

For a comparison with a dilatation ω(z) = zn/2, see [4].
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Next we let n be odd and we consider the dilatation ω(z) = z2. Thus, by (1), (2) and
(4), we have ⎧⎪⎪⎨

⎪⎪⎩
h(z) =

∫ z

0

(1− ζn)−2/n(1− ζ2)−1 dζ,

g(z) =

∫ z

0

ζ2(1− ζn)−2/n(1− ζ2)−1 dζ.

Since n is assumed to be odd, we have
1 + ζn

1 + ζ

1− ζn

1− ζ
= (1− ζ + · · · − ζn−2 + ζn−1)(1 + ζ + · · ·+ ζn−1)

= 1 + ζ2 + · · ·+ ζ2(n−1),

and as a consequence of this observation, h defined above takes the form

h(z) =

∫ z

0

1 + ζ2 + · · ·+ ζ2(n−1)

(1− ζn)1+2/n(1 + ζn)
dζ =

n−1∑
k=0

∫ z

0

ζ2k

(1− ζn)1+2/n(1 + ζn)
dζ.

A similar expression holds for g as well. Finally, by computation, we obtain that

(11)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h(z) =
n−1∑
k=0

z2k+1

2k + 1
F1

(
2k + 1

n
, 1 +

2

n
, 1; 1 +

2k + 1

n
, zn,−zn

)
,

g(z) =
n∑

k=1

z2k+1

2k + 1
F1

(
2k + 1

n
, 1 +

2

n
, 1; 1 +

2k + 1

n
, zn,−zn

)
.

We have shown the following result:

Theorem 3.2. Let ϕ be given by (4). Then the harmonic shear f = h+g, where h and
g are given in (11), maps the unit disk D univalently onto a domain which is convex in
the horizontal direction.

In Figure 4, illustrations of the conformal mapping ϕ onto a regular n-gon and the
harmonic shear f with dilatation ω(z) = z2, for n = 3, 5, are given.

4. Minimal Surfaces

A harmonic function f = h + g can be lifted to a minimal surface if and only if
the dilatation ω is the square of an analytic function. Suppose that ω = q2 for some
analytic function q in the unit disk D. Then the corresponding minimal surfaces has
the form

{u, v, w} = {Re f, Im f, 2 Imψ},
where

ψ(z) =

∫ z

0

q(ζ)
ϕ(ζ)

1− ω(ζ)
dζ.
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FIGURE 4. Harmonic shear of the mapping ϕ, which maps the unit
disk D onto a regular n-gon with the dilatation ω(z) = z2.

Let ϕ be a conformal mapping, which maps the unit disk D onto a regular n-gon and
let the dilatation be ω(z) = z2n. Then the minimal surfaces is determined by the
integral

ψ(z) =

∫ z

0

ζn(1− ζn)−1−2/n(1 + ζn)−1 dζ.

By the substitution ζ = t1/nz, we have

ψ(z) =
zn+1

n

∫ 1

0

t1/n(1− znt)−1−2/n(1 + znt)−1 dt.
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(A) n = 3

(B) n = 4

FIGURE 5. Minimal surfaces of the harmonic shear f , which is given
by Theorem 3.1.

Appel’s hypergeometric presentation gives

ψ(z) = zn+1F1

(
1 +

1

n
, 1 +

2

n
; 1; 2 +

1

n
; zn,−zn

)
.

In Figure 5, we have the minimal surfaces for the above mapping for n = 3, 4.
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In the second polygonal example, let n be odd and let the dilatation be ω(z) = z2. In
this case the minimal surface lifting is given by integral

ψ(z) =

∫ z

0

ζ(1− ζn)−2/n(1− ζ2)−1 dζ

=
n−1∑
k=0

∫ z

0

ζ2k+1(1− ζn)−1−2/n(1 + ζn)−1 dζ

=
n−1∑
k=0

z2(k+1)

n

∫ 1

0

t2(k+1)/n−1(1− znt)−1−2/n(1 + znt)−1 dt.

Again the above integral can be written by Appel’s hypergeometric function

(12) ψ(z) =
n−1∑
k=0

z2(k+1)

2(k + 1)
F1

(
2(k + 1)

n
, 1 +

2

n
; 1; 1 +

2(k + 1)

n
; zn,−zn

)
.

In Figure 6, minimal surfaces of (12), for n = 3, 5, are illustrated.
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(A) n = 3

(B) n = 5

FIGURE 6. Minimal surfaces of the harmonic shear f , which is given
by Theorem 3.2.
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